Regenerative Heat Sink Patents (Class 422/206)
  • Patent number: 10712092
    Abstract: A thermochemical regenerator system is operated without encountering accumulation of unwanted solids on the interior surfaces of the passages through which flue gas passes.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: July 14, 2020
    Assignee: Praxair Technology, Inc.
    Inventors: Hisashi Kobayashi, Kuang-Tsai Wu
  • Patent number: 9276278
    Abstract: Disclosed herein is a method of producing hydrogen, including selectively applying heat to a fuel within a canister thermally insulated and inside a cartridge, firing fuel with heating elements to facilitate decomposition and release hydrogen, and, removing said hydrogen from said cartridge via a fluid communication means.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: March 1, 2016
    Assignee: Intelligent Energy Limited
    Inventors: Paul Adcock, Anand Chellappa, Peter David Hood
  • Patent number: 9269975
    Abstract: Disclosed herein is a method of producing hydrogen, including selectively applying heat to a fuel within a canister thermally insulated and inside a cartridge, firing fuel to facilitate decomposition and release hydrogen, and, removing said hydrogen from said cartridge via a fluid communication means.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: February 23, 2016
    Assignee: Intelligent Energy Limited
    Inventors: Anand Chellappa, Paul Adcock, Peter David Hood
  • Publication number: 20150027931
    Abstract: Methods, systems and units for liquefaction of combustible material are provided. After separating the combustible material from waste rock gravitationally in an aqueous salt solution selected to have a density which is intermediate between a density of the combustible material and a density of the waste rock and after heating and grinding the separated combustible material to yield a paste of purified combustible material, the paste is fluidizing and hydrogenated underground in a hydrogenation chamber including a Segner turbine. The described processes significantly reduce the energy consumption of the process, remove environmental hazards and result in more efficient liquefaction with respect to existing technologies.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 29, 2015
    Applicant: S.G.B.D. TECHNOLOGIES LTD.
    Inventor: Alexander BRODT
  • Patent number: 8932534
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 13, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Publication number: 20140334992
    Abstract: A counter current heat exchanger amenable to fabrication from monolithic materials and particularly useful in corrosive and high temperature environments is described. The heat exchanger uses multiple series of holes bored axially through a monolithic material. Axial holes are bored in adjacent flow paths arranged in closely spaced concentric rings. In operation, counter current flow and heat transfer occurs between multiple adjacent axial flow paths. The heat exchanger design is scaleable over a wide range and particularly useful in reactors for the hydrogenation of halosilanes also using cylindrical heating elements. The design enables a small overall reactor size for a given capacity.
    Type: Application
    Filed: April 7, 2014
    Publication date: November 13, 2014
    Inventor: Bruce Hazeltine
  • Patent number: 8765070
    Abstract: A system for rejecting heat from equipment using endothermic isomerization. includes a heat exchanger configured to receive an elevated-temperature process fluid and an isomerization compound capable of endothermic isomerization. When the system is in operation, heat from the elevated temperature process fluid is transferred to the isomerization compound and the isomerization compound endothermically isomerizes to a higher energy state form. A vehicle includes an engine and a body. The body houses a catalytic heat exchanger having an output in fluid communication with the engine, a pump for urging an isomerization compound into the heat exchanger, and a heat sink controller for controlling the pump. A method for rejecting heat from equipment using endothermic isomerization includes providing a compound capable of endothermic isomerization and transferring heat from a process fluid to the compound, such that the compound endothermically isomerizes to a higher energy level isomer.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 1, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Daniel G. Norton, Robert J. Perry, Edward H. Allen, Paul B. Glaser
  • Publication number: 20140151603
    Abstract: An integrated drying gasification system comprises a gasifier for gasifying carbonaceous fuel to produce hot product gas and an entrained flow dryer which receives the hot product gas to dry the carbonaceous fuel prior to gasification. At least one inlet to the gasifier communicates one or more additional gases from the system, such as recycled syngas, steam and/or recycled carbon dioxide, to the gasifier to generate an increased hot product gas mass flow rate from the gasifier. The system may comprise a plurality of lock hopper systems coupled to the entrained flow dryer. At least one intermediate storage vessel may be provided in one or more feed legs to the gasifier maintain a constant supply of carbonaceous fuel to the gasifier for a temporary period independently of carbonaceous fuel supplied to the entrained flow dryer.
    Type: Application
    Filed: May 9, 2012
    Publication date: June 5, 2014
    Applicant: HRL TREASURY (IDGCC) PTY LTD
    Inventors: Bernard Anderson, Alex Blatchford, Tom Stephanou
  • Patent number: 8734729
    Abstract: In one aspect, the invention includes a refractory material, said material comprising: (i) at least 20 wt. % of a first grain mode stabilized zirconia based upon the total weight of said material, said first grain mode having a D50 grain size in the range of from 5 to 2000 ?m, said stabilized zirconia including a matrix oxide stabilizer; (ii) at least 1 wt. % of a second grain mode having a D50 grain size in the range of from 0.01 ?m up to not greater than one-fourth the D50 grain size of said first grain mode zirconia, based upon the total weight of said material; and (iii) at least 1 wt. % of a preservative component within at least one of said first grain mode stabilized zirconia, said second grain mode stabilized zirconia, and an optional another grain mode; wherein after sintering, said material has porosity at 20° C. in the range of from 5 to 45 vol %.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: May 27, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz
  • Publication number: 20140131622
    Abstract: Improved biomass-gasification methods and apparatus are described, for cooling hot syngas without relying on recycling cool syngas. In some variations, methods are provided for producing cooled syngas from a carbon-containing feedstock, comprising: gasifying the feedstock; feeding hot gas along with liquid water to a cooling device to accomplish humidification, thereby reducing the temperature (but not the enthalpy) of the hot gas; and then feeding the stream to a waste-heat recovery unit to recover energy and produce cool syngas. The invented methods and apparatus can prevent fouling of waste-heat recovery units. Additionally, these methods allow for effective management of tars produced during biomass gasification as well as improved water management.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 15, 2014
    Applicant: MAVERICK BIOFUELS, INC.
    Inventors: John D. Winter, Benjamin F. Gardner
  • Publication number: 20140134067
    Abstract: An apparatus includes a heat transfer structure configured to be disposed at least partially within an enclosure of a fixed bed reactor and operable to transfer heat from a heat source to a heat sink. The heat transfer structure includes a plurality of fins each fin including a first end and a second end, the first end contacting an inner surface of the enclosure of the fixed bed reactor, the second end at least partially enclosed within the enclosure of the fixed bed reactor. A path of at least one of the plurality of fins comprises the shortest possible length between the first end of the at least one of the plurality of fins and the second end of the at least one of the plurality of fins.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: Ceramatec, Inc.
    Inventor: Joseph J. Hartvigsen
  • Patent number: 8721981
    Abstract: A heat exchanging system is provided. The heat exchanging system includes multiple plates wound spirally around a reaction chamber. The multiple plates also form multiple channels that operate as a counter flow recuperator terminating within the reaction chamber.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 13, 2014
    Assignee: General Electric Company
    Inventors: Sebastian Walter Freund, Gabriel Rojas Kopeinig
  • Publication number: 20140120007
    Abstract: a reactor core for use in a chemical reactor includes first and second reactor core sections. Each core section includes heat transfer fluid conduits extending through the core section in a first direction, the lengths of the conduits defining a core section width. Each core section further includes spaced apart parallel plates arranged into a plate stack, with the conduits extending through the stack. Surfaces of the plates have a catalyst coating applied to them. The plates are rectangular and define a core section depth and a core section length, the core section depth being substantially smaller than both the core section width and length. Channels are defined by the spaces between adjacent plates, and are open to flow through the reactor core section in both the core section depth and length directions. The first core section is adjacent to the second core section in the depth direction.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: MODINE MFG. CO.
    Inventor: Modine Mfg, Co.
  • Patent number: 8623285
    Abstract: Apparatus, methods and systems reside in the decomposition of ammonia into a hydrogen-containing product mixture. An ammonia-rich gaseous mixture containing ammonia and oxygen enters a conduit, within which combustion and decomposition of the mixture is initiated, thereby liberating hydrogen. A mixture of products, resulting from the reactions, is expelled from the outlet of the conduit, the mixture including non-combusted hydrogen gas, which may then be used for other purposes. The incoming reactants, including ammonia and oxygen, are heat exchanged with the outgoing product mixture containing non-combusted hydrogen gas.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 7, 2014
    Inventors: Shawn Grannell, Donald E. Gillespie
  • Publication number: 20130274531
    Abstract: The invention relates to a process for cracking a hydrocarbon-containing feed in a cracking furnace. A plurality of heat exchangers are arranged in the convection zone of the cracking furnace to utilize the heat of flue gas formed in the radiation zone by combustion. Depending on the type and state of matter of the hydrocarbon-containing feed, flow occurs through the heat exchangers to achieve, independently of the type and state of matter of the hydrocarbon-containing feed, an exit temperature of the flue gas in the range from 80° C. to 150° C.
    Type: Application
    Filed: April 16, 2013
    Publication date: October 17, 2013
    Applicant: Linde Aktiengesellschaft
    Inventors: Stefan GLOMB, Robert STEGEMANN, Gunther SCHMIDT
  • Patent number: 8512656
    Abstract: Regenerator and process for regenerative thermal oxidation of offgases comprising halooganosilocon compounds in which offgases are heated in the regenerator, fed to an oxidation zone present in the regenerator to oxidize the haloorganosilicon compounds to SiO2 and hydrogen halides which form a flue gas which is then cooled in the generator to a temperature below its acid dew point and is discharged.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: August 20, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Ulrich Westphal, Thomas Leyendecker, Michaela Maria Schütz, Mischa Theis, Dieter Förtsch
  • Patent number: 8474240
    Abstract: Systems, methods, and computer program products are disclosed that overcome the deficiencies of traditional steam engines and internal combustion engines. In an embodiment, a system is disclosed for generating reaction products having elevated temperature and pressure. The system comprises a first chamber including a reactor to decompose hydrogen peroxide to generate oxygen and water vapor. The system further comprises a second chamber including a reactor to catalytically combust a mixture of the generated oxygen and a fuel to generate reaction products having elevated temperature and pressure. The system further comprises a passageway to receive reaction products exiting the second chamber and to channel the reaction products to come into contact with external surfaces of the first and second chambers to thereby transfer heat to the first and second chambers, and an outlet to allow the reaction products to exit the system.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 2, 2013
    Assignee: NW Licensing Company LLC
    Inventor: Charles Robin Nail
  • Patent number: 8404200
    Abstract: A system to control the emissions of a fluid stream in a cyclical fashion utilizing an up-flow cycle and a down-flow cycle. The system may include a first inlet and a first outlet at a first end of the system and a second inlet and a second outlet at a second end of the system, a catalyst zone between the first end and second end, two heat transfer zones, at least one heat transfer zone positioned between the catalyst zone and the first end of the system and between the catalyst zone and the second end of the system, and two heating zones, at least one heating zone positioned between the catalyst zone and each of the at least one heat transfer zones. The symmetrical arrangement permits a bi-directional fluid cycle to recover a portion of the energy supplied to the system during each cycle.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: March 26, 2013
    Assignee: OnQuest, Inc.
    Inventor: Anu Vij
  • Patent number: 8273489
    Abstract: A hydrogen generator (100a) includes: a heater (1) which combusts a mixture gas of combustion fuel and combustion air to generate a combustion gas; a preheat evaporator (6) which heats a raw material and water by the combustion gas generated by the heater to generate a mixture gas of the raw material and the water; a reformer (2) which generates a hydrogen-containing gas by causing the mixture gas generated by the preheat evaporator to pass through a reforming catalyst (2a) heated by the combustion gas; and a shift converter (3) which incorporates a shift catalyst (3a) which reduces, by a shift reaction, carbon monoxide contained in the hydrogen-containing gas generated by the reformer, and further includes a water trapping portion (7) which traps liquid water discharged from the preheat evaporator, and the hydrogen generator (100a) is configured to carry out heat exchange between the hydrogen-containing gas supplied from the reformer to the shift converter and the water in the water trapping portion.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: September 25, 2012
    Assignees: Fuji Electric Co., Ltd., Panasonic Corporation
    Inventors: Kunihiro Ukai, Akira Maenishi, Yuji Mukai, Toru Nakamura, Masaya Tsujimoto, Shingo Nagatomo
  • Patent number: 8153090
    Abstract: A system to control the emissions of a fluid stream in a cyclical fashion utilizing an up-flow cycle and a down-flow cycle. The system may include a first inlet and a first outlet at a first end of the system and a second inlet and a second outlet at a second end of the system, a catalyst zone between the first end and second end, two heat transfer zones, at least one heat transfer zone positioned between the catalyst zone and the first end of the system and between the catalyst zone and the second end of the system, and two heating zones, at least one heating zone positioned between the catalyst zone and each of the at least one heat transfer zones. The symmetrical arrangement permits a bi-directional fluid cycle to recover a portion of the energy supplied to the system during each cycle.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 10, 2012
    Assignee: OnQuest, Inc.
    Inventor: Anu Vij
  • Patent number: 7976797
    Abstract: In one aspect, the invention includes an apparatus for pyrolyzing a hydrocarbon feedstock in a regenerative pyrolysis reactor system, the apparatus comprising a regenerative pyrolysis reactor comprising a stabilized refractory grade zirconia in a reactive region of the reactor system. In another aspect, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a reverse flow regenerative pyrolysis reactor comprising the steps of providing a reverse flow regenerative pyrolysis reactor including a stabilized refractory grade zirconia in a heated reaction zone of the reactor; and pyrolyzing a hydrocarbon feedstock within the reactive region.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: July 12, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Changmin Chun, Frank Hershkowitz
  • Publication number: 20110120853
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 7897130
    Abstract: A process for obtaining a synthesis gas (GS) at a predetermined high pressure corresponding to the ammonia synthesis pressure, in which there are hydrogen and nitrogen in a 3/1 molar ratio, comprising the steps of feeding a continuous flow of natural gas to a primary reforming step (RP) with steam and to a subsequent secondary reforming step (RS) with excess air obtaining a gaseous flow (GF) comprises hydrogen, excess nitrogen with respect to said molar ratio, undesired substances such as impurities and inerts and subjects said gaseous flow to a purification step comprising cryogenic rectification in a separator unit (S) obtaining a continuous flow of synthesis gas (GS) comprising hydrogen and nitrogen in a 3/1 molar ratio, and to a subsequent compression step up to a pressure value required for ammonia synthesis.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: March 1, 2011
    Assignee: Ammonia Casale S.A.
    Inventors: Ermanno Filippi, Geoffrey Frederick Skinner
  • Patent number: 7846401
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Jeffrey W. Frederick
  • Publication number: 20100288617
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, the apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar, an oxygen partial pressure of 10?10 bar, at a temperature of 1200° C. In some embodiments, the reactor comprises a regenerative pyrolysis reactor apparatus and in other embodiments it includes a reverse flow regenerative reactor apparatus. In other aspects, this invention includes a method for pyrolyzing a hydrocarbon feedstock using a pyrolysis reactor system comprising the step of providing in a heated region of a pyrolysis reactor system for pyrolyzing a hydrocarbon feedstock, apparatus comprising a refractory material in oxide form, the refractory material having a melting point of at least 2060° C.
    Type: Application
    Filed: October 8, 2009
    Publication date: November 18, 2010
    Inventors: Frank Hershkowitz, ChangMin Chun, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 7815873
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Krishnan Sankaranarayanan, Frank Hershkowitz, Jeffrey W. Frederick, Rajeev Agnihotri
  • Publication number: 20100202895
    Abstract: A multi-chambered pumping system is provided comprising an input cylinder configured to pump a source substance into a vessel and an effluent cylinder configured to receive an effluent from the vessel. The cylinders regulate the pressure of the source substance input into the vessel and recover the pressure of an effluent output from the vessel to pump additional quantities of source substance into the vessel. In each cylinder, a piston creates a boundary between two sections: a fluid section configured to receive working fluid and an effluent or input process section to receive the same. The fluid sections of the cylinders are in fluid communication. A guide rod is attached to each piston and may be operably sized to compensate for a pressure difference between a pressure at which the source substance is pumped into a vessel and the pressure at which an effluent is output from the vessel.
    Type: Application
    Filed: February 10, 2009
    Publication date: August 12, 2010
    Applicant: Innoventor, Incorporated
    Inventor: Gary Eugene Winkler
  • Publication number: 20100098599
    Abstract: Thermochemical processing systems for the production of chemicals using solar (110) or other radiant energy as the heat source for chemical reactions and separations. Radiant energy receivers (310) operating in conjunction with concentrator systems (300), heat exchangers, chemical reactors and chemical separators. Systems and applications include the concentration of radiant energy in support of a moderate- and/or high-temperature, endothermic chemical reaction followed by downstream reactions and separations so that a chemical fuel is produced. Efforts are made to match concentrator types with need; for example, parabolic trough concentrators may be used to produce steam at low- to moderate-temperatures and parabolic dish concentrators may be used to drive moderate- to high-temperature chemical reactions such as methane reforming, and hybrid concentrators (400) may be used to concentrate radiant energy from multiple energy sources.
    Type: Application
    Filed: January 22, 2008
    Publication date: April 22, 2010
    Inventors: John Carlton Mankins, Robert Stottle Wegeng
  • Publication number: 20100058652
    Abstract: The present disclosure relates to a method for obtaining fuels from vegetable and/or animal fat waste which contain, in addition to fat and/or oils, free fatty acids. The free fatty acids contained in the fat waste are reacted at reaction temperatures of above 220° C. with at least one polyvalent alcohol in the absence of enzymatic and solid neutral catalysts so as to produce the esterification of the free fatty acids.
    Type: Application
    Filed: October 2, 2006
    Publication date: March 11, 2010
    Inventors: Stefan Farwick, Ludger Overmann
  • Publication number: 20090324477
    Abstract: An apparatus comprising: a reaction chamber 2 into which silicon tetrachloride and hydrogen is introduced for producing a reaction product gas containing trichlorosilane and hydrogen chloride by a reductive reaction at a temperature of not lower than 800° C.; a reaction product gas discharging device 4 that discharges the reaction product gas in the reaction chamber 2 to the outside; a cooling gas introducing device 5 that mixes hydrogen, silicon tetrachloride, or hydrogen chloride in the reaction product gas being discharged by the reaction product gas discharging device 4 to cool the reaction product gas.
    Type: Application
    Filed: October 26, 2007
    Publication date: December 31, 2009
    Applicant: Mitsubishi Materials Corporation
    Inventors: Kazuki Mizushima, Makoto Urushihara
  • Publication number: 20090314994
    Abstract: A process for producing a synthesis gas containing hydrogen and nitrogen, suitable for production of ammonia, wherein a raw synthesis gas (13) obtained by reforming of a natural gas feedstock is purified in a cryogenic separator (CS), and a portion of purified gas (16) is expanded and used as a cooling medium in the same separator, said expanded portion (16) being then re-introduced in the main stream of purified synthesis gas. A suitable apparatus and revamping of conventional plants according to the invention are also disclosed.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 24, 2009
    Applicant: Ammonia Casale S.A.
    Inventors: Ermanno Filippi, Geoffrey Frederick Skinner
  • Publication number: 20090317671
    Abstract: A hydrogen generator (100a) includes: a heater (1) which combusts a mixture gas of combustion fuel and combustion air to generate a combustion gas; a preheat evaporator (6) which heats a raw material and water by the combustion gas generated by the heater to generate a mixture gas of the raw material and the water; a reformer (2) which generates a hydrogen-containing gas by causing the mixture gas generated by the preheat evaporator to pass through a reforming catalyst (2a) heated by the combustion gas; and a shift converter (3) which incorporates a shift catalyst (3a) which reduces, by a shift reaction, carbon monoxide contained in the hydrogen-containing gas generated by the reformer, and further includes a water trapping portion (7) which traps liquid water discharged from the preheat evaporator, and the hydrogen generator (100a) is configured to carry out heat exchange between the hydrogen-containing gas supplied from the reformer to the shift converter and the water in the water trapping portion.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 24, 2009
    Inventors: Kunihiro Ukai, Akira Maenishi, Yuji Mukai, Toru Nakamura, Masaya Tsujimoto, Shingo Nagatomo
  • Publication number: 20090317322
    Abstract: The invention relates to a process and to an apparatus for preparing hydrogen sulfide H2S by converting a reactant mixture which comprises gaseous sulfur and hydrogen over a solid catalyst. The reactant mixture is converted at a pressure of from 0.5 to 10 bar absolute, a temperature of from 300 to 450° C. and a sulfur excess in a reactor (1). The sulfur excess corresponds to a ratio of excess sulfur to H2S prepared of from 0.2 to 3 kg of sulfur per kg of H2S prepared.
    Type: Application
    Filed: January 14, 2008
    Publication date: December 24, 2009
    Applicant: BASE SE
    Inventors: Andreas Wölfert, Herald Jachow, Heinz Driess
  • Publication number: 20090306439
    Abstract: The invention relates to a method for using reaction heat produced by reaction during the production of 1,2-dichloroethane from ethylene and chlorine in a direct chlorination reactor. The chlorine is produced in a sodium chloride electrolysis and the reaction heat, during the formation of 1,2-dichloroethane is used at least partially for the evaporation of NaOH, which is produced during NaCl-electrolysis for producing the required chlorine for direct chlorination, as a coupling product. The invention also relates to a device for carrying out said method, comprising a multi-tube heat exchanger comprising two fixed tubular plates and a NaOH-liquid phase part, and the caustic soda passes through the inside of the tube and 1,2-dichloroethane passes the outside of the tube. The heat exchanger also comprises devices for feeding and distributing the caustic soda in the inside of the tube.
    Type: Application
    Filed: June 27, 2006
    Publication date: December 10, 2009
    Inventors: Sven Petersen, Michael Benje, Peter Kammerhofer
  • Publication number: 20090285743
    Abstract: A method and an apparatus for producing trichlorosilane comprising: producing reaction product gas containing trichlorosilane and hydrogen chloride by initiating a reaction of silicon tetrachloride and hydrogen at 900° C. to 1900° C.; preventing a reverse reaction to silicon tetrachloride and by-production of a polymer by cooling the reaction product gas discharged from the reaction chamber to 300° C. to 800° C., thereby optimizing the cooling rate of the reaction gas; preheating at least one of the silicon tetrachloride and the hydrogen introduced into the reaction chamber 2 by exchanging heat with the thus cooled reaction product gas.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 19, 2009
    Applicant: Mitsubishi Materials Corporation
    Inventors: Kazuki Mizushima, Yuji Shimizu
  • Publication number: 20090148352
    Abstract: Methods and devices for generating gas from nitrous oxide are provided as well as downstream uses for the product gas. Reactor devices of the invention are compact and incorporate a novel heat-exchange/regenerative cooling system to optimize N2O decomposition and reactor durability.
    Type: Application
    Filed: September 29, 2006
    Publication date: June 11, 2009
    Inventors: Robert M. Zubrin, David Kenneth Strott, Anthony Curtis Muscatello, Nicholas F. Jameson, Emily Bostwick-White
  • Publication number: 20090136391
    Abstract: Systems and methods for producing ammonia. The system can include a first shell having two or more discrete catalyst beds disposed therein, a second shell disposed about the first shell, a first heat exchanger disposed external to the first shell and in fluid communication therewith, a second heat exchanger disposed external to the second shell and in fluid communication therewith, and a flow path disposed within the first shell. A first portion can be reacted in the presence of the catalyst to provide an ammonia effluent. The heat of reaction from the ammonia effluent can be exchanged within the first heat exchanger and the second heat exchanger. The heated second portion of the feed gas can be introduced to the first shell and can be reacted in the presence of the catalyst.
    Type: Application
    Filed: April 22, 2008
    Publication date: May 28, 2009
    Inventors: SHASHI P. SINGH, Yue Jing
  • Publication number: 20090074637
    Abstract: Passively aligned modular microfluidic devices, and a method for fabricating such passively aligned polymeric modular microfluidic devices have been reported. The modular units fabricated are plurality of integrated microdevices. Also reported are microfluidic devices wherein isolated temperature zones exist so that the temperature within each zone may be distinctly and accurately controlled, and a method for fabricating such microfluidic devices wherein there are isolated temperature zones so that the temperature within each zone may be distinctly and accurately controlled. Such devices allow one to define constant temperature zones along a microfluidic channel where different reactions or stages of reactions occur.
    Type: Application
    Filed: June 30, 2008
    Publication date: March 19, 2009
    Inventors: Michael C. Murphy, Dimitris E. Nikitopoulos, Steven A. Soper, Pin-Chuan Chen, Daniel S.-W. Park, Mateusz L. Hupert
  • Patent number: 7503948
    Abstract: The present invention provides an improvement in the process of producing energy from fuel cells. A cyclic reforming process, referred to as temperature swing reforming, provides an efficient means for producing a hydrogen containing synthesis gas for use in solid oxide fuel cell applications. In one embodiment, at least some synthesis gas which is first produced in the temperature swing reforming process is combusted with air to provide the heat for the regeneration step of the temperature swing reforming process. The syngas produced in TSR is particularly well suited for use in solid oxide fuel cell applications.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: March 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Paul J. Berlowitz
  • Patent number: 7491250
    Abstract: Synthesis gas is produced though a cyclic method where the first step of the cycle includes reforming a hydrocarbon feed over a catalyst to synthesis gas in a first zone of a bed and the second step reheats this first zone. A hydrocarbon feed is introduced to a bed along with CO2 and optionally steam where it is reformed into synthesis gas. The synthesis gas is collected at a second zone of the bed and an oxygen-containing gas is then introduced to this second zone of the bed and combusted with a fuel, thereby reheating the first zone to sufficient reforming temperatures. Additionally, a non-combusting gas can also be introduced to the second zone to move heat from the second zone to the first zone.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: February 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Harry W. Deckman
  • Patent number: 7468167
    Abstract: A method for quickly starting up a reactor and a reactor system therefor are provided. A shell-and-tube reactor in the system is adapted to circulate a heat medium having a solid point in the range of 50-250° C. to the outside of the reaction tubes and characterized by initiating temperature elevation of the reactor by introducing a gas of a temperature in the range of 100-400° C. to the reaction tubes' side and then circulating the heat medium in a heated state to the outside of the reaction tubes. By introducing a gas of an elevated temperature preparatorily to the reaction tubes, it is made possible to prevent the heat medium after circulation from being solidified again and enable the reactor to be quickly started up.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 23, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Matsumoto, Takeshi Nishimura, Hideki Sogabe, Kazuhiko Sakamoto, Osamu Dodo
  • Patent number: 7435395
    Abstract: An alkaline cell having a flat casing, preferably of cuboid shape. The cell can have an anode comprising zinc and a cathode comprising nickel oxyhydroxide. The casing can have a relatively small overall thickness, typically between about 5 and 10 mm, but may be larger. Cell contents can be supplied through an open end in the casing and an end cap assembly inserted therein to seal the cell. The end cap assembly includes a vent mechanism, preferably a grooved vent, which can activate, when gas pressure within the cell reaches a threshold level typically between about 250 and 800 psig (1724×103 and 5515×103 pascal gage). The cell can have a supplemental vent mechanism such as a laser welded region on the surface of the casing which may activate at higher pressure levels.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: October 14, 2008
    Assignee: The Gillette Company
    Inventors: Richard E. Durkot, Paul A. Christian, Dean MacNeil, James R. Costanzo, David Anglin, Mark Ashbolt, Derek Bobowick, Robert S. Ferrin, Anthony Malgioglio, Brien Merrill, Alexander Shelekhin, Steven J. Specht, Matthew Sylvestre, Philip Trainer, Robert A. Yoppolo
  • Patent number: 7067088
    Abstract: A polymerization reactor for exothermic liquid phase reactions comprises a reaction zone which is divided into a plurality of channels by thermally conductive heat transfer fins which are conductively mounted on one or more heat pipes for the removal of heat of reaction from reactants and reaction products flowing between the heat transfer fins. The reactor of the invention is capable of maintaining essentially isothermal conditions without the use of complicated and maintenance intensive agitators. The reactor is particularly useful when viscosity of the reactants and/or reaction products is high, when the reaction conducted has a fast reaction rate and when consistent polymer properties are desired.
    Type: Grant
    Filed: January 12, 2002
    Date of Patent: June 27, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventor: Vinh N. Le
  • Patent number: 6932949
    Abstract: A reactor structure has a heat transfer layer stacking construction with a stack of heat-conductive plate elements which, alternating in the stacking direction, bound one catalyst-filled reactor layer and one tempering layer respectively, adjacent plate elements being connected in a fluid-tight manner on at least two closed side areas. The plate elements on the closed side areas are bent in a U-shape and are arranged with U-side flanks which rest against one another in the stack such that the reactor layers have a larger height than the tempering layers. In addition or as an alternative, heat-conductive corrugated ribs are inserted at least in the reactor layers which are higher than the tempering layers.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: August 23, 2005
    Assignee: Ballard Power Systems AG
    Inventors: Uwe Benz, Horst Michels, Alois Tischler, Marc Weisser
  • Patent number: 6878362
    Abstract: In a fuel processor based on autothermal cyclic reforming process, the fuel processor having a reformer, the reformer having two reactors with integrated heat exchangers, the two reactors cycling between a reforming step and a regeneration step, a method of generating hydrogen gas includes receiving a mixture of fuel and steam in the reformer reactor operating in a reforming step to produce hydrogen-rich reformate gas. The fuel is delivered from a fuel supply and the steam is generated by a heat recovery steam generator (HRSG). The reformate gas is fed to a shift reactor to reduce the concentration of carbon monoxide (CO) gas present in the reformate gas. Product gas generated by the shift reactor is received in a condenser to recover heat from the product gas. In one embodiment output gas stream from the condenser is supplied to a CO oxidizer to further reduce the CO concentration.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: April 12, 2005
    Assignee: General Electric Company
    Inventors: Ravi Vipperla Kumar, George N. Kastanas
  • Patent number: 6835360
    Abstract: A compact endothermic catalytic reaction apparatus for converting hydrocarbon feedstock and methanol to useful gases, such as hydrogen and carbon monoxide, comprising a tubular endothermic catalytic reactor, a radiant combustion chamber and an annular convection section. Thus tubular endothermic catalytic reactor receives radiant energy from a metal fiber burner that is disposed within the radiant combustion chamber. Combustion products from the radiant chamber enter an annular convection section wherein heat is transferred by forced convection to the tubular endothermic catalytic reactor. The combination of radiant and convective heat transfer results in a compact design of high thermal efficiency.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: December 28, 2004
    Assignee: Harvest Energy Technology, Inc.
    Inventor: David W. Warren
  • Patent number: 6676907
    Abstract: An arrangement for generating a hydrogen-containing gas from a hydrocarbon-containing medium includes a multi-stage reforming unit that is connected to a multi-stage carbon monoxide removal unit by a heat-conducting separating medium. The stages of the reforming unit, in an ascending order relative to the gas flow direction in the reforming unit, are in a thermal contact with stages of the carbon monoxide removal unit, in a descending order relative to the gas flow direction in the carbon monoxide removal unit.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: January 13, 2004
    Assignee: Ballard Power Systems AG
    Inventors: Uwe Benz, Stefan Boneberg, Stefan Brauchle, Dirk Georg, Martin Schäfer, Martin Schüssler, Matthias Wolfsteiner
  • Publication number: 20030198578
    Abstract: A multi-stage transport polymerization (“TP”) reactor useful for making a thin film for the fabrication of integrated circuits. One TP reactor has two distinct heating zones that facilitate the cracking of specific precursor materials. The multi-stage reactor comprises a first low temperature heating zone that heats incoming precursor materials to a temperature that is lower than the “cracking” temperature of the precursor. The second heating zone is maintained at a temperature useful for breaking the chemical bonds of a desired leaving groups in the selected precursor. Specialized heating bodies, which transfer heat to the precursor material in the low and high temperature zones, are used as elements of the invention that can simultaneously decrease the total volume and increase the inside surface area of the TP reactor. Chemistries of precursors used in the multi-stage reactor are also provided.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Applicant: DIELECTRIC SYSTEMS, INC.
    Inventors: Chung J. Lee, Oanh Nguyen, Atul Kumar, Jeff Wu, Michael Solomensky, James Yu Chung Chang, Binh Nguyen
  • Patent number: 6589395
    Abstract: The distillation plant comprises a column (1) and a heat pump (4, 5) which operates between a sump vaporizer (3) and an exhaust vapor compressor (2) of the column. The heat pump is substitutable by devices (6, 7) which can be switched to the sump vaporizer and the exhaust vapor compressor when required. These substituting devices comprise devices (6 and 7 respectively) for the production of vapor or the provision of a coolant respectively as well as connection means (63, 63′, 72, 72′). The coolants can be liquids (water) or gases (air).
    Type: Grant
    Filed: May 15, 1999
    Date of Patent: July 8, 2003
    Assignee: Sulzer Chemtech AG
    Inventor: Albert Meili
  • Publication number: 20030003034
    Abstract: Apparatus for producing nano-particles comprises a furnace defining a vapor region therein. A precipitation conduit having an inlet end and an outlet end is positioned with respect to the furnace so that the inlet end is open to the vapor region. A quench fluid port positioned within the precipitation conduit provides a quench fluid stream to the precipitation conduit to precipitate nano-particles within the precipitation conduit. A product collection apparatus connected to the outlet end of the precipitation conduit collects the nano-particles produced within the precipitation conduit.
    Type: Application
    Filed: August 16, 2002
    Publication date: January 2, 2003
    Inventors: Mohamed H. Khan, James A. Cole, Joel A. Taube