Chemiluminescent Patents (Class 422/52)
  • Patent number: 8334144
    Abstract: An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member, and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 18, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Noda, Satoshi Ozawa, Masahiro Okanojo, Kenko Uchida
  • Publication number: 20120309103
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael Gambini, John C. Voyta, John Atwood, Susan A. Atwood-Stone, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 8323982
    Abstract: Fluid analyte sensors include a photoelectrocatalytic element that is configured to be exposed to the fluid, if present, and to respond to photoelectrocatalysis of at least one analyte in the fluid that occurs in response to impingement of optical radiation upon the photoelectrocatalytic element. A semiconductor light emitting source is also provided that is configured to impinge the optical radiation upon the photoelectrocatalytic element. Related solid state devices and sensing methods are also described.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: December 4, 2012
    Assignee: Valencell, Inc.
    Inventors: Steven Francis LeBoeuf, Jesse Berkley Tucker, Michael Edward Aumer
  • Patent number: 8318099
    Abstract: Embodiments of the invention include a wireless sensor, such as an RFID tag, that includes a substrate, an antenna disposed on the substrate, and an environmentally sensitive sensor material disposed over at least a portion of said substrate. Other embodiments an RFID tag and at least one antibody coupled to the RFID tag. The RFID tag includes a substrate, circuitry disposed on the substrate, and an antenna coupled to the substrate. The at least one antibody is capable of affecting the signals emanating from the RFID tag. Further embodiments include a detection system that includes a reader. Yet other embodiments include a method for detecting specific analytes. The method includes providing an RFID tag which emanates a first signal having a first frequency, and enabling the REID tag to emanate a second signal having a second frequency upon attraction of a specific analyte to the RFID tag.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris, Kenneth Brakeley Welles, II, Andrew Michael Leach, Andrew David Pris
  • Publication number: 20120282636
    Abstract: The invention provides for rapid response analysis through lateral flow chromatographic assays of specific antigens present in human or animal fluids, or in agricultural, microbial or biological products, with an audio and visual result of the analysis and when needed, an electronic surge to provide heat for rapid results. A lateral flow device for conducting the analysis includes a plurality of components, and a method for making the device forms components of the device on an elongate, ribbon-like substrate of dielectric material, then folds the substrate into shorter lengths which are then secured together to establish a multiple-layered, self-sustaining structure.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Applicant: POP TEST, LLC
    Inventors: Randice Lisa Altschul, Neil David Theise, Myron Rapkin, Rebecca O'Brien
  • Publication number: 20120282639
    Abstract: The present teachings provide a detection cell for a biological material and methods for detecting biological material including a photosensitive material optically coupled to an interior volume containing the biological material so to avoid optical components or an external light source.
    Type: Application
    Filed: June 7, 2012
    Publication date: November 8, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Dar BAHATT, Konrad Faulstich
  • Publication number: 20120282630
    Abstract: The present invention provides for mixed metal structures that can be deposited on a substrate or free in solution that exhibit several distinctive properties including a broad wavelength range for enhancing fluorescence signatures. Further, metal surface plasmons can couple and such diphase coupled luminescence signatures create extra plasmon absorption bands. The extra bands allow for a broad range of fluorophores to couple therefore making more generic substrates with wider reaching applications.
    Type: Application
    Filed: December 17, 2010
    Publication date: November 8, 2012
    Inventor: Chris D. Geddes
  • Publication number: 20120282684
    Abstract: A laboratory automation system that is capable of carrying out clinical chemistry assays, immunoassays, amplification of nucleic acid assays, and any combination of the foregoing, said laboratory automation system employing at least one of micro-well plates and deep multi-well plates as reaction vessels. The use of micro-well plates as reaction vessels enables the laboratory automation system to assume a variety of arrangements, i.e., the laboratory automation system can comprise a variety of functional modules that can be arranged in various ways. In order to effectively carry out immunoassays by means of micro-well plates, a technique known as inverse magnetic particle processing can be used to transfer the product(s) of immunoassays from one micro-well of a micro-well plate to another.
    Type: Application
    Filed: July 16, 2012
    Publication date: November 8, 2012
    Inventors: Patrick P. Fritchie, Gregory E. Gardner, Richard W. Mahoney
  • Publication number: 20120261256
    Abstract: This invention has two synergistic elements for simultaneous use in point-of-care or field analyses of diverse substances important to clinical medicine and other applications. The first element is a sample holder in which are stored the several reagents need for quantification of target molecules. The onboard storage of reagents in a water soluble plastic obviates the need for purchase, storage, measuring and mixing of the required reagents prior to analyses. The second part of the invention is a compact hand-held analyzer made of modern miniature optical components, into which the holder is inserted right after it is loaded with a sample by capillary action. The combination of the holder and analyzer permits analyses that are ten times faster than those done with current analyzers, and equally accurate. Analyses can be performed by diverse people, who require only a few minutes of training in the use of the entire invention.
    Type: Application
    Filed: February 22, 2012
    Publication date: October 18, 2012
    Inventors: Chia-Pin CHANG, David J. Nagel
  • Patent number: 8288738
    Abstract: A substrate for detecting samples includes; a body, and a plurality of micro lenses arranged on the body and configured for attachment to at least one sample, wherein the at least one sample emits fluorescent light, and wherein the plurality of micro lenses condense the fluorescent light emitted from the at least one sample via refraction.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 16, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-ho Cho, Dong-ho Lee
  • Patent number: 8282896
    Abstract: Carriers or holders for holding microfluidic devices are provided. Some of the carriers that are provided include a hydration control device and/or a source of controlled fluid pressure to facilitate use of the carrier in conducting various types of analyses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 9, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Richard Facer, Hany Ramaz Nassef
  • Patent number: 8278114
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. A detecting apparatus may be configured so that light from luminescent samples pass through a collimator, a a first lens, a filter, and a camera lens, whereupon an image is created by the optics on the charge-coupled device (CCD) camera. The detecting apparatus may further include central processing control of all operations, multiple wavelength filter wheel, and/or a robot for handling of samples and reagents.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: October 2, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Michael Gambini, Jeff Levi, John Voyta, John Atwood, Susan Atwood-Stone, legal representative, Bruce De Simas, Edward Lakatos, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 8268249
    Abstract: An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 18, 2012
    Assignees: 3M Innovative Properties Company, Life Technologies Corporation
    Inventors: Larry J. Carson, Joel R. Dufresne, Patrick R. Fleming, Michael C. Lea, Nicholas A. Lee, John Shigeura
  • Publication number: 20120231531
    Abstract: A biochemical detection unit for detecting a sample and a biochemical device having the biochemical detection unit and a releasing unit are provided. The biochemical detection unit includes a photoconductor plate, a receptor, and a resistance sensing component. The receptor specifically binds to the sample so that the illumination projected on the photoconductor plate will change to vary the resistance value of the photoconductor of the photoconductor plate.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Inventors: Chung-Cheng Chou, William Wang
  • Patent number: 8263018
    Abstract: The present invention relates to devices for detecting the presence or absence of a target molecule or substance, compounds which may be employed in such devices and methods of using such compounds. In some embodiments, the compounds are conjugated polyenes.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 11, 2012
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Ben Zhong Tang, Matthias Haeussler, Yongqiang Dong, Hui Tong
  • Patent number: 8257651
    Abstract: In one embodiment the present invention provides a blood analyte meter that is user-friendly and easy to use. In accordance with an embodiment of the present invention an analyte measurement device, for use with a test strip for determining the amount of an analyte in a sample, displays a hierarchy of information or options to a user. The hierarchy of information or options may include, among other information or options, subroutines that are performable by the processor of the device, stored data related to past tests performed by the user, and alarm features of the device. A user scrolls through and selects individual options or pieces of information by rotating and translating a rotatable user interface around and along an axis of rotation.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: September 4, 2012
    Assignee: AgaMatrix, Inc.
    Inventors: Joseph Flaherty, Timothy Golnik
  • Patent number: 8251905
    Abstract: A practical measuring device and a measuring method that allow simply measuring average postprandial blood glucose from urinary glucose. The blood glucose measuring device includes a measuring unit that measures postprandial urinary glucose from subject's urine at a predetermined time after meal, a processing unit that calculates average postprandial blood glucose through a period up to the predetermined time after meal, based on the postprandial urinary glucose, a storage unit that stores calibration data including the postprandial urinary glucose and the average postprandial blood glucose in association, and an output unit that outputs data indicating the calculated average postprandial blood glucose. The processing unit calculates the average postprandial blood glucose, based on the postprandial urinary glucose from the urine of the subject who has intaken a desired amount of water or perspired in the period up to the predetermined time after meal, and the calibration data.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: August 28, 2012
    Assignee: Tanita Corporation
    Inventor: Mariko Miyashita
  • Patent number: 8252607
    Abstract: The disclosure provides a simple and effective way of synthesizing robust organic-inorganic hybrid gels and ultra-thin films using vaporization of a gel precursor. The gels are synthesized at relatively low temperature allowing the activity of the immobilized species to be maintained. The disclosure provides robust, synthetic, selective, active and/or passive transport systems in the form of functional biologically active species and mechanisms for forming them. These systems allow selective and passive or active transport of ionic, molecular and biological species through the incorporation of functional biological molecules and biomolecular assemblies in a rigid matrix.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 28, 2012
    Inventors: Gautam Gupta, Gabriel Lopez, Plamen Atanassov
  • Publication number: 20120214245
    Abstract: The invention relates to a simple screening test for neoplasia, a precancerous condition, or cancer of the breast. A method is described whereby a breast cancer marker is detected in breast fluid. In a particular embodiment, the method involves treating samples of breast fluids with an aldehyde detecting reagent without any prewashing. The appearance in breast fluids of a marker that is detected by an aldehyde detecting reagent, such as a Schiff's reagent, correlates very well with the disease status of the breast cancer subjects from which the fluids were obtained. Screening test kits are also provided.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 23, 2012
    Applicant: Atossa Genetics, Inc.
    Inventors: Jiri Jan Krepinsky, Rudolf Furrer, Ka Sing Yeung
  • Patent number: 8241575
    Abstract: A molecularly imprinted polymer sensor device for detecting the presence of a taggant molecular structure in a fluid is disclosed. The molecularly imprinted polymer sensor device comprises a molecularly imprinted crosslinked polymer having a crosslinked core and a plurality of polymer arms attached to the core, wherein the core has molecular sized cavities adapted to selectively receive and bind displacement molecules having the taggant molecular structure and a colorimetric indicator, said displacement molecule being selectively removed from the molecularly imprinted crosslinked polymer and replaced with the taggant molecular structure upon exposure to the fluid containing the taggant molecular structure therein, thereby indicating the presence of the taggant molecular structure in the fluid.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: August 14, 2012
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Andrew F. Mason, Edward W. Ott, Jr.
  • Publication number: 20120177534
    Abstract: A throwable chemiluminescent device comprising a time-delay mechanism, wherein an oxalate component and a peroxide component are contained within the device. Certain embodiments are directed to a chemiluminescent device comprising a time-delay mechanism comprising at least two ampoules and an enclosure for the time-delay mechanism, wherein an oxalate component is contained in one of the at least two ampoules, and a peroxide component is contained in another of the at least two ampoules, and wherein the time-delay mechanism delays the chemiluminescent reaction of the oxalate component and the peroxide component.
    Type: Application
    Filed: December 10, 2011
    Publication date: July 12, 2012
    Inventor: Reuven Ruby Schmerling
  • Patent number: 8211279
    Abstract: Described herein is an apparatus comprising an electrochemical cell that employs a capacitive counter electrode and a faradaic working electrode. The capacitive counter electrode reduces the amount of redox products generated at the counter electrode while enabling the working electrode to generate redox products. The electrochemical cell is useful for controlling the redox products generated and/or the timing of the redox product generation. The electrochemical cell is useful in assay methods, including those using electrochemiluminescence. The electrochemical cell can be combined with additional hardware to form instrumentation for assay methods.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: July 3, 2012
    Assignee: Board of Regents of the University of Texas System
    Inventors: Allen J. Bard, Chong-Yang Liu
  • Patent number: 8197751
    Abstract: An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member, and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: June 12, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hideyuki Noda, Satoshi Ozawa, Masahiro Okanojo, Kenko Uchida
  • Patent number: 8197750
    Abstract: The invention relates to devices and methods for the identification of test tubes in a test tube rack using RFID technology.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: June 12, 2012
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Heinz Trueeb, Armin Birrer, Thomas Brauner
  • Publication number: 20120142112
    Abstract: A senor uses a transduction mechanism of attenuating electroluminescence.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: United States of America, as represented by the Secretary of the Army
    Inventor: Vincent P. Schnee
  • Publication number: 20120114525
    Abstract: Photomultiplier tubes differ in performance between individual products, and deteriorate over time. To appropriately use a nonlinear calibration curve, it is desirable that changes in signal level be strictly equalized. This invention includes means for, prior to sensitivity adjustment of a photomultiplier tube by application of high voltages, measuring a same sample under a plurality of high-voltage conditions, determining, from linear relationships between logarithms of each high voltage and those of signal levels, an optimal voltage for a measuring operation of predetermined order of execution in the plurality of measuring operations, and recording identification information for identifying each linear relationship; the invention assessing a healthiness level of the photomultiplier tube by assessing the linear relationship.
    Type: Application
    Filed: January 13, 2010
    Publication date: May 10, 2012
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Taku Sakazume, Kantaro Suzuki
  • Patent number: 8163241
    Abstract: An optical probe for detecting luminescence emitted by a sample is disclosed. The optical probe includes a parabolic optical waveguide and an outer housing having a detachable component configured to hold a transparent sensor substrate that can be coupled to the optical waveguide. The optical probe also includes a sensing material for detection of at least one specified analyte. An excitation source is configured to excite the sensing material. The optical probe also incorporates a measuring photodetector that detects emitted luminescence.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: April 24, 2012
    Assignee: Dublin City University DCU
    Inventors: Conor Stephen Burke, Thomas Ruckstuhl, John Moore
  • Patent number: 8153442
    Abstract: Methods and reagents are disclosed for conducting assays. Embodiments of the present methods and reagents are concerned with a solid support such as, for example, a particle. The support includes a chemiluminescent composition that includes a metal chelate. The present inventors observed that, when such support such as, e.g., particles, were employed in assays for the determination of an analyte, stability of signal output by the chemiluminescent composition associated with the particle was unacceptably reduced as compared to particles including other chemiluminescent compositions. In accordance with embodiments of the present invention, the stability of signal output from such particles is enhanced by including in a medium that contains the particles a sufficient amount of one or more stabilizing agents, which may be a chelating agent and/or a metal chelate such as, for example, the metal chelate that is associated with the particle.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: April 10, 2012
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Alan R. Craig, Zhu Teng, Carsten Schelp, Jason Snyder, Christine Moran
  • Patent number: 8153062
    Abstract: Electrochemical devices, methods, and systems for detecting and quantifying analytes are disclosed. A chemical detection reagent is locally generated in a test solution by electrochemical reaction of a precursor compound caused to migrate into the test solution from a precursor solution separated from the test solution by a cell separator. This approach provides precise metering of the reagent, via the charge passed, and avoids the need to store a reagent solution that may be chemically unstable. In one embodiment, the starch concentration in a colloidal solution can be measured via spectroscopic detection of a blue complex formed by the interaction of starch with iodine produced, on demand, by electrochemical oxidation of iodide ion. The approach may also be used to characterize certain types of analytes. The invention is amenable to automation and is particularly useful for on-line monitoring of production processes, including the inclusion of feed back loop mechanisms for process control.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 10, 2012
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Chuan-Hua Chen, D. Morgan Tench, Jeffrey F. DeNatale, Frederick M. Discenzo
  • Patent number: 8110145
    Abstract: It is intended to provide a method whereby residual detergent (surfactant) can be conveniently and accurately detected in the step of washing or rinsing dishes or clothes, and a test device usable in examining the rinsed conditions. Namely, a method characterized by comprising bringing a test substance with a composition (test agent) comprising an oxalic acid ester, a fluorescent substance, hydrogen peroxide and a strong acid and thus easily detecting the residual detergent sticking to the surface of the test subject from the chemiluminescence thus caused; and a test device which is most suitable for storing the test agent as described above.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 7, 2012
    Assignee: Lumica Corporation
    Inventor: Shiro Harada
  • Publication number: 20120027642
    Abstract: Described is a luminometer or fluorometer having an optical axis which extends essentially perpendicular to the measuring sample. The detector for the luminometer or the fluorometer is arranged either directly or via a deflection means in the optical axis. An injection device (20) with an injection channel is provided for feeding in the reagents, wherein the injection channel consists of a first section and a second section, arranged at an angle relative to the first section, and is provided with a discharge opening (24c) that points in the direction of the measuring sample.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: Berthold Technologies GmbH & Co. KG
    Inventors: Fritz BERTHOLD, Wilfried Reuter
  • Publication number: 20120021433
    Abstract: This invention is in the field of medical devices. Specifically, the present invention provides portable medical devices that allow real-time detection of analytes from a biological fluid. The methods and devices are particularly useful for providing point-of-care testing for a variety of medical applications. In particular, the medical device reduces interference with an optical signal which is indicative of the presence of an analyte in a bodily sample.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 26, 2012
    Inventors: Ian Gibbons, Michael O'Connell
  • Publication number: 20120021443
    Abstract: Nickel, iron and palladium thin films thermally evaporated onto glass supports are used to demonstrate surface plasmon coupled fluorescence (SPCF) and surface plasmon couple chemiluminescence (SPCC) over a broad wavelength range (400-800 nm) for potential assays or other detection systems. Nickel, iron and palladium thin films used in SPCF and SPCC convert otherwise isotropic emission into highly directional and polarized emission, an attractive concept for surface assays. The emission angles of detected emissions occur over a 10 degree range for tested emitted wavelengths.
    Type: Application
    Filed: February 23, 2010
    Publication date: January 26, 2012
    Inventor: Chris D. Geddes
  • Publication number: 20120014835
    Abstract: An apparatus for detecting spectra in light emanating from chemical or biochemical reactions occurring in at least one reaction vessel (3) of a plurality of reaction vessels is disclosed. Each reaction vessel (3) has a receptacle portion having an emitting area from which light can emanate. The apparatus may include a masking element (5) having an array of apertures (6) through which light from each reaction vessel (3) can escape. A plurality of light waveguides (7) are arranged to guide light from the apertures (6) in the masking element (5) to a light dispersing device (8) for dispersing the light from each waveguide (7) into a dispersed spectrum. A light detecting device (10) detects specific spectra in the dispersed spectra of light substantially simultaneously.
    Type: Application
    Filed: January 8, 2010
    Publication date: January 19, 2012
    Applicant: IT-IS International Limited
    Inventors: James Richard Howell, Benjamin Masterman Webster, Mark Quentin Clark, Richard Alfred Howell
  • Patent number: 8085405
    Abstract: A detecting element used for a detecting device for detecting a target substance in a sample by utilizing plasmon resonance. The detecting element includes a substrate and a plurality of metal members provided on the substrate, the metal member constituting a columnar structure and being oriented in a long axis direction thereof. The detecting element can improve sensitivity of the detecting device for detecting a target substance utilizing plasmon resonance.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: December 27, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventor: Miki Ogawa
  • Publication number: 20110312612
    Abstract: A lab-on-a-chip (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device having probes with a nucleic acid sequence complementary to the target nucleic acid sequence for forming probe-target hybrids, and an electrochemiluminescent (ECL) luminophore, and, electrodes for generating an excited state in the ECL luminophore in which the ECL luminophore emits photons of light, wherein, the electrodes are arranged in pairs, one of the electrodes in each electrode pair being a working electrode which causes oxidation or reduction of the luminophore to generate an excited species that emits a photon, the working electrode being positioned such that the probes are between the photosensor and the working electrode.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi, Geoffrey Richard Facer, Alireza Moini
  • Publication number: 20110312776
    Abstract: A microfluidic device having a supporting substrate, an inlet for receiving a biological sample containing a target nucleic acid sequence, probes that each have a nucleic acid sequence for hybridization with the target nucleic acid sequence to form a probe-target hybrid, a fluorophore and a quencher configured such that the fluorophore emits a fluorescence signal in response to an excitation light and the quencher quenches the fluorescence signal when the probe is not hybridized, but fails to quench the fluorescence signal from the probe-target hybrid, and, a reporter with a fluorophore positioned for exposure to the excitation light simultaneously with the probes, wherein, the reporter always emits the fluorescence signal in response to the excitation light.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110312780
    Abstract: A microfluidic device having a supporting substrate, an inlet for receiving a biological sample containing target nucleic acid sequences, probes that each have a nucleic acid sequence for hybridization with the target nucleic acid sequences to form probe-target hybrids, a fluorophore and a quencher configured such that the fluorophore emits a fluorescence signal in response to an excitation light and the quencher quenches the fluorescence signal when the probe is not hybridized, but fails to quench the fluorescence signal from the probe-target hybrid, and, a control probe with no fluorophore such that the control probe never emits the fluorescence signal in response to the excitation light.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110312540
    Abstract: A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device having electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the ECL probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, calibration probes without an ECL luminophore, and, electrodes for receiving an electrical pulse to excite the ECL luminophores.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Mehdi Azimi, Kia Silverbrook
  • Publication number: 20110312834
    Abstract: A lab-on-a-chip (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device having a supporting substrate, probes with a nucleic acid sequence complementary to the target nucleic acid sequence for forming probe-target hybrids, and a ruthenium organic complex, electrodes for generating an excited state in the ruthenium organic complex in which the ruthenium organic complex emits photons of light, and, CMOS circuitry for applying a voltage across the electrodes.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi, Geoffrey Richard Facer, Alireza Moini
  • Publication number: 20110312728
    Abstract: A microfluidic device having a supporting substrate, a hybridization chamber containing probes having a nucleic acid sequence for hybridization with a target nucleic acid sequence to form probe-target hybrids, the probe-target hybrids being configured to generate a fluorescence signal in response to an excitation light, and, a photodiode with an active area and an optical axis extending normal to the active area and through the hybridization chamber, wherein, the active area is less than 249 microns from the probe-target hybrids.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Alireza Moini, Mehdi Azimi, Kia Silverbrook
  • Publication number: 20110312839
    Abstract: A lab-on-a-chip (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device having probes with a nucleic acid sequence complementary to the target nucleic acid sequence for forming probe-target hybrids, and an electrochemiluminescent (ECL) luminophore, electrodes for generating an excited state in the ECL luminophore in which the ECL luminophore emits photons of light, and, a photosensor for sensing the photons emitted from the ECL luminophore, wherein, the electrodes have at least one working electrode which causes oxidation or reduction of the luminophore to generate an excited species that emits the photons, the working electrode being positioned immediately adjacent the photosensor.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi, Geoffrey Richard Facer, Alireza Moini
  • Publication number: 20110312539
    Abstract: A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device having electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, at least one positive control probe that has the ECL luminophore but not the functional moiety for quenching photon emission, and, electrodes for receiving an electrical pulse to excite the ECL luminophores.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110312810
    Abstract: A single-use test module having an outer casing dimensioned for hand-held portability, the outer casing having an inlet for receiving a biological sample containing a target nucleic acid sequence, probes in the outer casing for hybridization having a nucleic acid sequence for hybridization with a target nucleic acid sequence to form a probe-target hybrid, the probe-target hybrid being configured to generate a fluorescence signal in response to an excitation light, and, a photosensor to detect the fluorescence signal.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Alireza Moini, Mehdi Azimi, Kia Silverbrook
  • Publication number: 20110312565
    Abstract: A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device having electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, electrodes for receiving an electrical pulse to excite the ECL luminophores, hybridization chambers containing the probes for detection of the targets, and a pair of the electrodes, and, at least one negative control chamber containing negative control probes without an ECL luminophore.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Mehdi Azimi, Kia Silverbrook
  • Publication number: 20110312731
    Abstract: A microfluidic device having a supporting substrate, a hybridization chamber containing probes having a nucleic acid sequence for hybridization with a target nucleic acid sequence to form probe-target hybrids and generate a fluorescence signal in response to an excitation light, and, a photodiode with an active area and an optical axis extending normal to the active area and through the hybridization chamber, wherein, the hybridization chamber has a floor surface positioned parallel to the active area of the photodiode, the floor surface having a centroid and the active area being encompassed within a cone having the centroid at its vertex, and a vertex angle less than 173°.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Mehdi Azimi, Kia Silverbrook, Alireza Moini
  • Publication number: 20110312077
    Abstract: A lab-on-a-chip (LOC) device for detecting target nucleic acid sequences in a fluid, the LOC device having hybridization chambers containing electrochemiluminescent (ECL) probes for detecting the target nucleic acid sequences, each of the probes having an ECL luminophore for emitting photons when in an excited state, a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, at least one calibration chamber containing ECL probes designed to be non-complementary to any nucleic acid sequence in the fluid, and, electrodes for receiving an electrical pulse to excite the ECL luminophores.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110312830
    Abstract: A lab-on-a-chip (LOC) device for detecting a target nucleic acid sequence in a sample, the LOC device having probes with a nucleic acid sequence complementary to the target nucleic acid sequence for forming probe-target hybrids, an electrochemiluminescent (ECL) luminophore, and a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, and, electrodes for generating an excited state in the ECL luminophore in which the ECL luminophore emits photons of light, wherein during use, the functional moiety changes proximity to the luminophore upon formation of a probe-target hybrid.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: KIA SILVERBROOK, MEHDI AZIMI, GEOFFREY RICHARD FACER, ALIREZA MOINI
  • Publication number: 20110312816
    Abstract: A test module having an outer casing dimensioned for hand-held portability, the outer casing having an inlet for receiving a biological sample containing a target nucleic acid sequence, probes in the outer casing for hybridization having a nucleic acid sequence for hybridization with a target nucleic acid sequence to form a probe-target hybrid, the probe-target hybrid being configured to generate a fluorescence signal in response to an excitation light, and, an excitation LED for generating the excitation light, the LED positioned in the outer casing for simultaneously illuminating all the probes.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Mehdi Azimi
  • Publication number: 20110312838
    Abstract: A microfluidic device for detecting target molecules in a fluid, the microfluidic device having reagent reservoirs for adding reagents to the fluid prior to detection of the target molecules, probes for reaction with the target molecules to form probe-target hybrids, and an electrochemiluminescent (ECL) luminophore, electrodes for generating an excited state in the ECL luminophore in which the ECL luminophore emits photons of light, and, a photosensor for sensing the photons emitted from the ECL luminophore.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 22, 2011
    Inventors: Kia Silverbrook, Alireza Moini, Mehdi Azimi