For Needle, Syringe, Or Capillary Tube Patents (Class 422/546)
  • Patent number: 11473699
    Abstract: A mechanism for securing tubes in a fixed position is described wherein a body to which a tube is to be fixed has at least one smooth bore hole extending therethrough. A tube has an inner diameter accommodating fluid flow and an outer diameter passing through the smooth bore hole in slip fit relation with the smooth bore of the hole. A threaded hole with helical grooves is parallel to the smooth bore hole and located such that its grooves intersect the diameter of the smooth bore hole. A set screw made of a tougher material than the tube has threads that will seat in the threaded hole in a manner such that advancing the set screw scratches the outer diameter of the tube to a depth wherein the set screw retains the tube in place without deformation of the inner diameter of the tube whereby fluid flow in the tube is not affected by advancement of the set screw while the tube is retained in place by the set screw. The invention can connect tubes in all sorts of patterns with many center-to-center tube distances.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 18, 2022
    Assignee: Biolytic Lab Performance, Inc
    Inventor: Thomas J. Demmitt
  • Patent number: 11167424
    Abstract: A transport tool for transporting a laboratory article using a pipette of a pipetting system and having a plug-in sleeve at a top end, an article holder at a bottom end, and a connecting part which connects the plug-in sleeve to the article holder. The plug-in sleeve has a side sleeve wall and a bottom which surround an interior space of the plug-in sleeve having a cylindrical and conically tapering shape. The plug-in sleeve further has an upward-facing opening for receiving an end of a pipette of an automated pipetting system. The connecting part has a top surface which defines the bottom of the plug-in sleeve, is positioned between the interior space of the plug-in sleeve and the article holder. The article holder has a holding plate which is flat and faces downward away from the plug-in sleeve, and further has a flatly acting magnet on the holding plate.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: November 9, 2021
    Assignee: TECAN TRADING AG
    Inventors: Stefan Buchloh, Thomas Iten, Sara Ferdi, Nico Birkner
  • Publication number: 20150140673
    Abstract: A sampling system includes an analyte sampler that includes an enclosure; a mount disposed in the enclosure; a capillary tube disposed in the mount; and a thermal member disposed in the enclosure and including a first fluid supply member to provide a fluid to an interior of the enclosure. The sampling system also includes a manifold in fluid communication with the analyte sampler. A process for sampling an analyte includes subjecting the capillary tube to a negative pressure; and controlling the temperature of the capillary tube to immobilize the analyte in the capillary tube; providing an analyte to a second end of the capillary tube; and immobilizing the analyte in the capillary tube to sample the analyte.
    Type: Application
    Filed: December 15, 2014
    Publication date: May 21, 2015
    Inventor: Thomas J. Bruno
  • Patent number: 9028780
    Abstract: Described is a compound sample needle for a liquid chromatography system. In one embodiment, the compound sample needle includes a rigid needle having a coupling end with a face and a counterbore. The compound sample needle also includes a flexible tubing having an outer surface and a coupling end disposed in the counterbore of the rigid needle. The coupling end of the flexible tubing has a face adjacent to a base of the counterbore. The coupling ends of the rigid needle and flexible tubing are secured to each other by a weld formed along a circumference of the outer surface and the face of the rigid needle. A rigid sleeve protects the welded joint. The compound sample needle is suitable for injection into the high pressure mobile phase of ultra performance liquid chromatography systems.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: May 12, 2015
    Assignee: Waters Technologies Corporation
    Inventors: John Auclair, James E. Usowicz, Tony A. Lin, Marc Lemelin, Robert A. Jencks, Kenneth R. Plant
  • Patent number: 9011801
    Abstract: The invention provides for fluidic connections to be established between tubes, ports, fluidic components and fluidic devices. The leak-tight connections are formed through controlled, compressive forces and can be used for both low and high pressure applications.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 21, 2015
    Assignee: Corsolutions LLC
    Inventors: Thomas N. Corso, Colleen K. Van Pelt
  • Patent number: 8961906
    Abstract: A fluid connector device is provided. The fluid connector device includes a coupling substrate having a conformal recess, a reconnectable fitting disposed in the recess to provide a first passageway, and a force applying element operatively coupled to the reconnectable fitting, or the coupling substrate, or both the reconnectable fitting and the coupling substrate to at least partially provide a sealing force between the reconnectable fitting and the coupling substrate, wherein at least one of the force applying element, the reconnectable fitting, and the coupling substrate comprises one or more degrees of freedom for self alignment of the reconnectable fitting and the conformal recess.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 24, 2015
    Assignee: General Electric Company
    Inventors: Marko Klaus Baller, Victor Donald Samper, Christian Rensch
  • Patent number: 8940251
    Abstract: A sample liquid supply device includes a container tip into which the sample liquid is introduced, a hollow needle provided at one end of the container tip such that a hollow part thereof communicates with inside of the container tip, and a sealing member that covers an opening from which the sample liquid is introduced, wherein the sealing member has a puncture-sealing property achieved by elastic deformation.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: January 27, 2015
    Assignee: Sony Corporation
    Inventor: Hidetoshi Watanabe
  • Publication number: 20150024481
    Abstract: Devices and system for preparing samples are described. Such devices can comprise fluidic chambers, reservoirs, and movable structures for controlling the movement of samples. The device can also comprise functional elements for performing specific operations.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 22, 2015
    Inventors: Imran R. MALIK, Axel SCHERER
  • Patent number: 8920747
    Abstract: A biosensor manufacturing method including a sheet material forming process and a dicing process. In the sheet material forming process a sheet material with plural biosensor forming sections is formed. Each of the biosensor forming sections includes a first base plate, a second base plate stacked on the first base plate and forming a capillary between the second base plate and the leading end portion of the first base plate for sucking in sample liquid, and a hydrophilic layer formed on the second base plate at least in a region facing the capillary. In the dicing process plural biosensors are obtained by dicing the sheet material with a blade from the first base plate side at the leading end of each of the biosensor forming sections, such that the leading end of the capillary opens onto the leading end face of the first base plate and the second base plate.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 30, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Yoshimitsu Matsuura, Shuzo Kanda
  • Patent number: 8911689
    Abstract: An interfacing cap for a reagent storage vessel is provided. The interfacing cap comprises a partitioning element having a structure corresponding to an opening of the reagent storage vessel, a projection fitting disposed on the partitioning element, a holder element, and a puncturing element coupled to the projection fitting.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: December 16, 2014
    Assignee: General Electric Company
    Inventors: Victor Donald Samper, Christian Rensch, Christoph Boeld, Xavier Franci
  • Patent number: 8906324
    Abstract: An automatic inoculating system for depositing a sample on a substrate in a predetermined pattern. A turret is rotatable about a vertical axis, and an arm retained by the turret is pivotable about a horizontal axis. A stylus retained at a distal portion of the arm sucks up and dispenses the sample, such as by use of a pumping system in fluidic communication with the stylus. A support rotatably retains the substrate. The arm can be raised and lowered, such as by a cylinder on which the arm rests without a retaining mechanical connection therebetween. The arm can thus freely lift off the cylinder as when the stylus contacts the surface of the substrate. The sample can thus be deposited on the substrate in a predetermined pattern by a dispensing from the stylus in combination with rotation of the turret and the substrate and a pivoting of the arm.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: December 9, 2014
    Inventor: Emmanuel Jalenques
  • Patent number: 8900527
    Abstract: A pipetting device is described comprising more than one pipetting unit, wherein said pipetting units are independently movable in Y and Z direction and comprise at least one module arranged in a staggered manner compared to the adjacent pipetting unit.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 2, 2014
    Assignee: Roche Molecular Systems Inc.
    Inventors: Alessandro D'Amore, Urs Knecht, Rolf Schneebeli
  • Publication number: 20140283945
    Abstract: Vials for loading a fluid system are provided. The illustrative vials are configured to minimize air bubbles from being transferred into the fluid system. Certain vial embodiments are provided with filters to allow microbes to pass into the fluidic system, while retaining larger particulate matter.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 25, 2014
    Applicant: BioFire Diagnostics, LLC
    Inventors: David E. Jones, Kirk Max Ririe, Stephanie Anne Thatcher, Jarrett Avery Killpack
  • Publication number: 20140039348
    Abstract: A device includes a pre-sample reservoir, an actuator mechanism, and a diverter. The pre-sample reservoir can be fluidically coupled to a delivery member to receive and isolate a predetermined volume of bodily-fluid withdrawn from a patient. The actuator mechanism is operably coupled to the pre-sample reservoir such that, when actuated, a negative pressure is formed in the pre-sample reservoir that urges the bodily-fluid to flow into the pre-sample reservoir. The diverter can selectively control fluid flow between the delivery member and the pre-sample reservoir. The diverter includes a flow control mechanism that defines a first fluid flow path and a second fluid flow path. The diverter is movable between a first configuration in which the bodily-fluid flows through the first fluid flow path to the pre-sample reservoir, and a second configuration in which the bodily-fluid flows through the second fluid flow path to a sample reservoir coupled to the diverter.
    Type: Application
    Filed: July 29, 2013
    Publication date: February 6, 2014
    Applicant: Magnolia Medical Technologies, Inc.
    Inventors: Gregory J. BULLINGTON, Richard G. Patton, Jay M. MIAZGA, Shan E. GAW
  • Publication number: 20140023568
    Abstract: A bio cartridge includes a reaction chamber disposed within a housing and containing a reagent, a specimen transfer channel providing a transfer path through which a specimen supplied to the housing is transferred into the reaction chamber, a mixing unit mixing the specimen with the reagent, and an air pressure unit providing air pressure to the specimen.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 23, 2014
    Inventors: Jongcheol HONG, Wan Joong KIM, Gun Yong SUNG, Seunghwan KIM
  • Patent number: 8632738
    Abstract: A syringe, defined by a cylinder and by a piston slidingly engaged in the cylinder itself, is actuated after having inserted the cylinder within a gripper and having axially fed the syringe through the gripper so as to move an outer flange of the cylinder into contact with the gripper and/or the piston in a stop position within the cylinder.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Health Robotics S.r.l
    Inventors: Paolo Giribona, Walter Bianco, Michele Minisini, Garcia Gaspar de Viedma Santoro
  • Patent number: 8628723
    Abstract: An apparatus for introducing a specimen into a flow cytometer comprises: a syringe having a hollow barrel containing the specimen, a plunger partially within the barrel and a needle that extends into a volume of a nozzle of the flow cytometer; a one-way port in the nozzle forming a seal against the needle; a mounting platform coupled to both the syringe and to the flow cytometer; and a syringe pump coupled to the plunger, the syringe pump comprising a motor, a drive mechanism coupled to the motor; and a clamping mechanism coupled to the drive mechanism, wherein the motor operates the drive mechanism so as to cause the clamping mechanism to depress the plunger into the barrel.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: January 14, 2014
    Assignee: Beckman Coulter, Inc.
    Inventor: Angela L. Vandergaw
  • Patent number: 8623297
    Abstract: The present invention relates to a device, to a system, and to a method for the preparation and fractioned dispensing of samples of a fluid. The device of the invention comprises a body having formed therein guide means suitable for receiving a sample-taker member and for guiding it in translation through the device, and at least one preparation chamber enabling an aliquot of a fluid sample dispensed into the chamber by a said sample-taker member to be prepared in a stream of a suitable reagent. The guide means pass through the preparation chamber and communicate therewith to enable an aliquot of fluid to be dispensed into the chamber in a determined position of the sample-taker member in the guide means. The preparation chamber has an introduction orifice for introducing at least one reagent into the chamber for mixing the reagent with an aliquot, and at least one dispensing orifice for dispensing the mixture formed by said aliquot and said reagent to recovery and/or analysis means.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Horiba ABX SAS
    Inventors: Roger Le Comte, Guilhem Couderc, Paul Moreno
  • Publication number: 20130337432
    Abstract: In particular, a disposable cartridge is disclosed that is suitable for use with a clinical or diagnostic point-of-care device and capable of performing diagnostic and analytical functions including filtering samples such as plasma from whole blood and running assays and collecting measurements of analytes or biomarkers.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 19, 2013
    Applicant: WELLSTAT DIAGNOSTICS, LLC
    Inventor: Wellstat Diagnostics, LLC
  • Patent number: 8597595
    Abstract: Systems and apparatus for mixing, cooling, and distributing multiphase fluid mixtures within a reactor, wherein reactor internal apparatus of the present invention provides not only improved fluid mixing and distribution to each underlying catalyst bed surface, but also offers other advantages including: decreased mixing tray height; easier maintenance, assembly and disassembly; and decreased amounts of fabrication material. In an embodiment, fluid may be evenly distributed to a catalyst bed from a fluid distribution unit comprising a nozzle tray including a plurality of nozzles, wherein the nozzles include at least one liquid inlet disposed tangentially to an inner surface of the nozzle.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 3, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Zackory S. Akin, Craig R. Boyak, Abdenour Kemoun, Ralph Evan Killen, Krishniah Parimi, Steven Xuqi Song, Steven Alden Souers
  • Publication number: 20130309146
    Abstract: A liquid leakage between a needle and a needle port is prevented. To this end, a guide section, a passage section, and a tapered section are provided in an in-port path of a needle port. The guide section has an inside diameter larger than the outside diameter of a body of a needle. The passage section has an inside diameter smaller than the outside diameter of the body of the needle and larger than the tip diameter of a tapered portion of the needle. The tapered section connects the guide section and the passage section. The taper angle ?2 of the tapered section is set to be larger than the taper angle ?1 of the tapered portion of the needle, and the width w of the tapered section is set to be smaller than half the difference between the outside diameter of the body and the tip diameter of the needle.
    Type: Application
    Filed: April 30, 2013
    Publication date: November 21, 2013
    Applicant: SHIMADZU CORPORATION
    Inventor: Tomoyuki YAMAZAKI
  • Patent number: 8585986
    Abstract: An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: November 19, 2013
    Assignee: Sandia Corporation
    Inventor: Ronald F. Renzi
  • Patent number: 8580210
    Abstract: A sample aspirating apparatus including a pipette which aspirates a sample, wherein the pipette is able to penetrate a cap of a capped container; a cap sensor which detects the cap of the capped container; a driving section which moves the pipette upward and downward; a crash sensor which detects a crash of the pipette with an obstacle; and a controller which controls the driving section to move the pipette, and stop the pipette when the crash sensor detects a crash by the pipette, wherein when aspirating a sample from a container after the cap sensor has detected a cap, the controller controls the driving section to move the pipette downward regardless of the detection by the crash sensor and thereby cause the pipette to penetrate the cap of the container. A sample analyzer which includes the above mentioned sample aspirating apparatus is also disclosed.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 12, 2013
    Assignee: Sysmex Corporation
    Inventors: Hironori Katsumi, Jun Inagaki
  • Patent number: 8569070
    Abstract: A fitting assembly having a nut, a ferrule, and a ferrule tip that may be assembled by an operator. The fitting assembly includes a nut with first and second ends, with the second end adapted to receive the first end of a ferrule, and a ferrule tip with a first end having an externally tapered portion adapted to abut the second end of the ferrule and a second end adapted to be received in a component or fitting of a liquid chromatography system. The nut, ferrule and ferrule tip of the fitting assembly have passageways therethrough for receiving and removably holding tubing.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 29, 2013
    Assignee: IDEX Health & Science LLC
    Inventors: Scott J. Ellis, Eric Beemer, Nathaniel Nienhuis, Craig W. Graham, Troy N. Sanders
  • Patent number: 8550503
    Abstract: A microfluidic connector (1) comprises an enclosure (6, 7), a fluidic inlet port (2) and a fluidic outlet port (3), in the enclosure, in which the inlet and outlet ports (2, 3) are movable with respect to each other, for example, mutual spacing between the inlet and outlet ports (2, 3) is variable. A port (2) is in a fixed part (6) of the enclosure, and another port (3) is in a part (7) of the enclosure which slides with respect to the fixed part. There may be multiple inlet ports (22, 23) and/or multiple outlet ports (24, 25). Also, there may be an auxiliary port (45) for introduction of fluid into the enclosure (47, 48) or removal of fluid from the enclosure.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 8, 2013
    Assignee: Stokes Bio Ltd.
    Inventors: Mark Davies, Tara Dalton
  • Patent number: 8399253
    Abstract: A three-dimensional cell culture method for increasing cell proliferation efficiency by suitably regulating the proliferation-inducing and proliferation-inhibitory signals between cells is provided. The method includes repeatedly performing any one or both of the following processes a) and b) so as to regulate proliferation-inducing and proliferation-inhibitory signals between the cells: a) a process of gradually adding the micro-scaffolds, in which a small amount of the micro-scaffolds are used in an initial stage in order to maintain a suitable distance between the cells, and the amount of the micro-scaffolds is then increased slowly according to cell proliferation rate; and b) a periodic shaking process, in which shaking is performed in order to separate connected cells from each other by a physical force, after the cells are incubated for more than a given period of time.
    Type: Grant
    Filed: April 28, 2007
    Date of Patent: March 19, 2013
    Inventor: Hyunjin Yang
  • Publication number: 20130052100
    Abstract: A sample presentation device for radiation-based analytical equipment comprising a mounting base, a carrier carried by, and adjustable in position, relative to the mounting base, and an arm extending from the carrier and having at its opposite end a terminal member; Each of the carrier and terminal member has a coaxial connector for receiving two opposite end regions of a capillary tube that forms, in use, a reaction cell; A radiant heater, typically an infrared heater, is radially offset from the axis of the coaxial connectors for heating, in use, a capillary tube mounted by way of the coaxial connectors; The carrier and terminal member preferably have heaters associated therewith for heating the flow passages through them; The terminal member preferably has a passage generally coaxial with the connector for receiving a communications conductor carrying a temperature sensor at its end that is operatively located generally centrally within a capillary.
    Type: Application
    Filed: October 24, 2012
    Publication date: February 28, 2013
    Applicant: UNIVERSITY OF CAPE TOWN
    Inventors: Michael Christian Maximilian CLAEYS, Nico Frederik FISCHER
  • Patent number: 8377396
    Abstract: Gripping tool for automatic laboratory machines, with gripping appliances for gripping vessels, an appliance for converting and/or transferring of movements, the power take-off of which is coupled with the gripping appliances in order to drive them, a coupling appliance for detachable connection with a drive appliance of a tool support of an automatic laboratory machine, which is coupled with the drive of the appliance for converting and/or transferring in order to drive it, and a mounting appliance for detachable mounting of the gripping tool on the tool support of the automatic laboratory machine, while the coupling appliance is connected with the drive appliance of the tool support.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: February 19, 2013
    Assignee: Eppendorf AG
    Inventors: Matthias Meinicke, Jens Wilmer
  • Patent number: 8337783
    Abstract: A magnetic connector assembly for microfluidic devices comprises a first magnetic connector with at least one orifice extending therethrough and a second magnetic connector. The first and second connectors are configured to magnetically attract each other. In one aspect, the first magnetic connector is configured to sealingly engage a surface of a microfluidic chip with the second magnetic connector disposed on an opposite side of the microfluidic chip. The first magnetic connector is configured to seal with the microfluidic chip about a channel opening in the microfluidic chip and provide flow communication between the channel opening and the orifice in the first magnetic connector. In at least one other aspect, the first magnetic connector and second magnetic connector each have at least one orifice and are configured to change a flow communication therebetween upon a rotation of the first or second magnetic connector with respect to the other magnetic connector.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 25, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Patent number: 8327725
    Abstract: There is provided a sample collection container, a sample collection apparatus, and a sample collection method used in a supercritical fluid system capable of collecting a multi-constituent sample contained in a supercritical fluid at low cost and high collection efficiency. The pressure of a supercritical fluid containing a sample is reduced to a pressure close to the atmospheric pressure, and the depressurized supercritical fluid is forced to undergo adiabatic expansion to form gas-phase CO2 containing a liquid component in the form of aerosol. The gas-phase CO2 is fractionated for each constituent of the contained sample, transferred to a probe 60 of Liquid Handler, and dispensed into a large number of collection vials 300 under the atmospheric pressure, each of which is provided with a vial cap 100.
    Type: Grant
    Filed: September 26, 2009
    Date of Patent: December 11, 2012
    Assignee: JASCO Corporation
    Inventor: Takeshi Kanomata
  • Patent number: 8277758
    Abstract: In an assembly for actuating a syringe, two gripping devices are designed to receive and withhold a containment cylinder and, respectively, a piston of the syringe, and are defined by respective pairs of jaws for gripping a flange of the containment cylinder and, respectively, of an end head of the piston, the jaws of at least one gripping device being mobile with respect to one another between a gripping position and a release position under the thrust of a corresponding actuation device.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: October 2, 2012
    Assignee: AEA, S.r.l.
    Inventor: Graziano Mattioli
  • Patent number: 8256645
    Abstract: A fluid dispenser is disclosed where a backoff distance is determined and implemented to prevent leakage while dispensing sequentially an accurate, precise amount of fluid substantially independent of the fluid remaining in a syringe-type dispenser. The fluid characteristics of the fluid, e.g. viscosity, surface tension, etc. affect the backoff distance that may be determined heuristically for fluid type, amount of fluid remaining in the syringe and amount to be dispensed. Once the fluid characteristics are known, the dispensing may be accomplished automatically with a processor loading new drive and backoff steps to a motor controller.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: September 4, 2012
    Assignee: Fishman Corporation
    Inventor: W. Scott Beebe
  • Patent number: 8250937
    Abstract: Manifold and probe assembly for use a bioprocessing vessel. The manifold has a chamber which communicates with the interior of the vessel and a plurality of ports which communicate with the chamber. Elongated sensing probes are threadedly connected to the ports with end portions of the probes extending into the chamber. Gaskets having generally annular bodies with conically inclined beveled faces are mounted on the end portions of the probes, with the beveled faces engaging conically inclined surfaces of seats in the ports and the gaskets being axially compressed and radially expanded into sealing engagement with the probes. The seating surfaces have inner and outer sections with different angles of inclination which produce greater radial expansion and tighter sealing with the probes.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: August 28, 2012
    Assignee: ASEPCO
    Inventor: William H. Wynn
  • Patent number: 8133451
    Abstract: A capture and purification apparatus is configured as a stand-alone apparatus or as part of a larger system. The capture and purification apparatus can be configured as a microfluidic cartridge that includes microfluidic circuitry and individually controlled valves. The microfluidic cartridge can be configured to function independently, or can be configured to be coupled to a separate instrument that provides the actuation to perform the capture and purification process. The capture and purification apparatus is configured as a volume-driven system that applies single-direction valves, a single fluid driving device, and fluid lines to control and discretely direct fluid flow within a full-loaded fluidic system. Such control enables various fluid sample processing techniques to be performed including, but not limited to, lysis, thermal cycling, and/or target analyte capture and purification, for example using a combination of ion-exchange chromatography and size-exclusion chromatography (SEC).
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: March 13, 2012
    Assignee: MicroFluidic Systems, Inc.
    Inventor: Bob Yuan
  • Patent number: 8088343
    Abstract: An automatic analyzer includes a wastewater suction unit that causes a suction nozzle to suction a reaction wastewater from each of plural reaction vessels transferred to a disposal position, transfers the plural suction nozzles to a cleaning position to make the suction nozzles suction a cleaning liquid, and clean the suction nozzles. The wastewater suction unit includes a pressure detector that is arranged near the suction nozzle in a pipe that guides a negative pressure for suction to each of the suction nozzles to detect pressure in each of the suction nozzles at time of suctioning of the reaction wastewater, a vessel determination unit that determines whether the reaction vessel is present or not at the disposal position, and a clog determination unit that determines whether each of the suction nozzles is clogged or not based on change in pressure in the suction nozzle and presence/absence of the reaction vessel.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: January 3, 2012
    Assignee: Beckman Coulter, Inc.
    Inventor: Kenichi Kakizaki
  • Patent number: 8029747
    Abstract: Pressure equalizing device comprising a fluid container for attachment to a receptacle such as a vial to permit pressure equalization between the fluid container and the receptacle. The pressure equalizing device comprises a flow channel that is arranged to provide fluid communication into or out of the fluid container when the pressure equalizing device is attached to the receptacle. The pressure equalizing device also comprises a fluid inlet that contains a one-way valve that permits fluid to flow into the fluid container via said fluid inlet and that prevents fluid from flowing out of the fluid container via said fluid inlet and filter-receiving means that are arranged to permit fluid flowing into or out of the fluid container to be filtered when the filter-receiving means comprises a filter.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: October 4, 2011
    Assignee: Carmel Pharma AB
    Inventor: Elisabet Helmerson
  • Patent number: 7993608
    Abstract: Fluid injection port. An elastomeric injection nipple is supported within a compression fitting and the injection nipple includes a slit. A first via is provided that connects the slit in the nipple to a flow channel leading into a fluid reservoir. A venting channel is provided in fluid communication with the fluid reservoir and also in fluid communication with a second via. When a pipette is inserted into the slit in the injection nipple, the nipple deforms allowing the second via to be in fluid communication with space on either side of the pipette tip whereby air can be discharged.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: August 9, 2011
    Assignee: Massachusetts Institute of Technology
    Inventor: Harry Lee
  • Patent number: 7951597
    Abstract: The present invention is a pressurized fluid sample injector system consisting of a sample needle, multiport valve, sample loop, metering syringe and a pressure assist pump. The speed of sample transport into the sample loop is increased by pressurizing the fluid in the system and metering the sample into the sample loop. The elevated system pressure allows the fluids to be moved faster than the vapor pressure would normally allow in a system at ambient pressure.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: May 31, 2011
    Assignee: Waters Technologies Corporation
    Inventors: James E. Usowicz, Theodore C. Ciolkosz, Russell Keene, Daniel J. McCormick
  • Patent number: 6514771
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: February 4, 2003
    Assignee: Bioarray Solutions
    Inventor: Michael Seul