Flame Ionization Detector Patents (Class 422/54)
  • Publication number: 20100172796
    Abstract: A metal hydride storage system for a portable intrinsically safe (IS), flame ionization detector (FID) device includes a portable intrinsically safe FID device and a metal hydride storage vessel is coupled to the FID device configured to store a predetermined amount of compressed hydrogen at a predetermined low pressure and deliver the hydrogen gas to the FID device.
    Type: Application
    Filed: November 19, 2009
    Publication date: July 8, 2010
    Inventors: James Norgaard, Gary Richard, Joseph A. Rebeiro
  • Patent number: 7749436
    Abstract: As previous processing of measurement in which gas to be measured containing, as gas components, carbon dioxide 13CO2 and carbon dioxide 12CO2, is introduced into a cell, and in which the intensities of transmitted lights having wavelengths suitable for measurement of the respective gas components, are measured and then data-processed to measure the concentrations of the gas components, the air having a predetermined volume Va is sucked by a gas injection device 21, a gas exhaust valve V6 of a cell 11 is closed and the air stored in the gas injection device 21 is transferred to the cell 11 filled with the air at an atmospheric pressure, thereby to pressurize the cell inside. The pressure thus pressurized is measured as P. The cell volume Vc is subtracted from the product obtained by multiplying the sum.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: July 6, 2010
    Assignee: Otsuka Pharmaceutical Co., Ltd.
    Inventors: Masaaki Mori, Yasuhiro Kubo, Yasushi Zasu, Masayuki Tani, Tamotsu Hamao
  • Patent number: 7736908
    Abstract: The invention relates to a method and apparatus for providing a reactor having a heater, a passage for transporting a reactant, and a chamber containing a gas sample and being coupled to the passage for receiving the reactant and mixing the reactant with the gas sample. The reactor further includes a connector leading from the chamber to the heater for transporting a mixture of the reactant and gas sample, and wherein the heater heats the mixture of the reactant and gas sample.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: June 15, 2010
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Otto J. Prohaska, Avinash Dalmia, David Clark
  • Patent number: 7377150
    Abstract: An analyzer includes a reforming unit which reforms fuel containing an organic compound which contains carbon and hydrogen into a reformed gas containing hydrogen, a flame ionization detector which is connected to the reforming unit, and detects an ion generated by combusting the reformed gas supplied from the reforming unit and a sample gas, or ionizing a sample gas by reaction with the reformed gas supplied from the reforming unit, and outputs an output signal representing the ionic amount, and an analysis controller which analyzes the output signal from the flame ionization detector, and provides data capable of identifying a component contained in the sample gas.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: May 27, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fuminobu Tezuka, Yoshiyuki Isozaki, Yasuko Noritomi
  • Patent number: 7354552
    Abstract: A field flame ionisation gas chromatograph for the analysis of a hydrocarbon gas mixture found in particular in mud from oil drilling and sampled by a gas carrier, which is characterised by the fact that it includes a first and a second analysis unit working in parallel simultaneously, the first analysis unit being dedicated exclusively to the analysis of methane and ethane.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: April 8, 2008
    Assignee: Geolog S.p.A.
    Inventor: Carlo Bezzola
  • Patent number: 7332326
    Abstract: This invention relates to methods and apparatus for performing microanalytic and microsynthetic analyses and procedures. The invention provides a microsystem platform and a micromanipulation device for manipulating the platform that utilizes the centripetal force resulting from rotation of the platform to motivate fluid movement through microchannels. The microsystem platforms of the invention are provided having arrays of thermal control regions, wherein fluid applied to the platform can be placed at a temperature and maintained at that temperature for a time that is dependent on the path length of the channel in the region, the cross-section dimension of the channel, and the rotational speed of the platform. Methods specific for the apparatus of the invention for performing any of a wide variety of microanalytical or microsynthetic processes are provided.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: February 19, 2008
    Assignee: Tecan Trading AG
    Inventors: Gregory J. Kellogg, Bruce L. Carvalho, Norman F. Sheppard, Jr., Kevin E. Noonan
  • Patent number: 7264775
    Abstract: An igniter assembly for a pulsed flame photometric detector having a filament comprising a resistive heating wire between about 0.08 millimeter and about 0.40 millimeter in diameter wound into a coil having an inner diameter between about 0.40 millimeter and about 3.2 millimeters. The filament has an applied protective coating of an alloy of gold and palladium. The filament is detachably connected to a cable and connector assembly that connects the filament to a source of power in the pulsed flame photometric detector.
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: September 4, 2007
    Assignee: Midwest Research Institute, Inc.
    Inventors: Keith D. Wilson, Stephen B. Cummins, Douglas C. Stewart
  • Patent number: 7172730
    Abstract: A thermal sensor has a substrate defining a reaction chamber. The reaction chamber has an inlet for conducting sample into the reaction chamber, a reaction surface and an orifice adjacent the reaction surface defining an outlet from the reaction chamber. The reaction surface is coated with a sorbant for binding agents in the sample. A heat transducer in the substrate and in proximity to the reaction surface is configured for heating the reaction surface.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: February 6, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Steven E. Carpenter
  • Patent number: 7150780
    Abstract: An electrostatic air cleaning device includes an array of electrodes. The electrodes include corona electrodes connected to a suitable source of high voltage so as to generate a corona discharge. Laterally displaced collecting electrodes include one or more bulges that have aerodynamic frontal “upwind” surfaces and airflow disrupting tailing edges downwind that create quite zones for the collection of particulates removed from the air. The bulges may be formed as rounded leading edges on the collecting electrodes and/or as ramped surfaces located, for example, along a midsection of the electrodes. Repelling electrodes positioned between pairs of the collecting electrodes may include similar bulges such as cylindrical or semi-cylindrical leading and/or trailing edges.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: December 19, 2006
    Assignee: Kronos Advanced Technology, Inc.
    Inventors: Igor A. Krichtafovitch, Vladimir L. Gorobets
  • Patent number: 7141211
    Abstract: In order to determine the total sulfur content of a sample (1), the sample is uniformly combusted with a flame (8). The combustion product sulfur dioxide is fed to a gas chromatograph (15) in which it is separated from other combustion products (9) and is then fed to a detector (17), which is situated downstream and which is provided for determining sulfur dioxide concentration. The combustion of the sample (1) is preferably effected in a flame ionization detector (19), with whose measurement signal (21) the detector signal (20) generated by the detector (17) is freed from signal contents based on non-uniformities of the combustion process.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: November 28, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Friedhelm Mueller, Udo Offermanns
  • Patent number: 6958245
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled elektrokinetic assembly of particles near surfaces relies on the combination of three functional elements, the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: October 25, 2005
    Assignee: Bioarray Solutions Ltd.
    Inventors: Michael Seul, Alice X. Li
  • Patent number: 6932941
    Abstract: The invention relates to a method and apparatus for providing a reactor having a heater, a passage for transporting a reactant, and a chamber containing a gas sample and being coupled to the passage for receiving the reactant and mixing the reactant with the gas sample. The reactor further includes a connector leading from the chamber to the heater for transporting a mixture of the reactant and gas sample, and wherein the heater heats the mixture of the reactant and gas sample.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: August 23, 2005
    Assignee: PerkinElmer Instruments LLC
    Inventors: Otto J. Prohaska, Avinash Dalmia, David Clark
  • Publication number: 20040266018
    Abstract: A hydrogen-flame photometric analyzer for a thin-layer chromatograph, comprising
    Type: Application
    Filed: July 19, 2004
    Publication date: December 30, 2004
    Applicant: IATRON LABORATORIES INC.
    Inventors: Minoru Ogasawara, Kyoko Tsuruta
  • Publication number: 20040234414
    Abstract: A field flame ionisation gas chromatograph for the analysis of a hydrocarbon gas mixture found in particular in mud from oil drilling and sampled by a gas carrier, which is characterised by the fact that it includes a first and a second analysis unit working in parallel simultaneously, the first analysis unit being dedicated exclusively to the analysis of methane and ethane.
    Type: Application
    Filed: December 22, 2003
    Publication date: November 25, 2004
    Inventor: Carlo Bezzola
  • Publication number: 20040178915
    Abstract: The invention relates to a flame-monitoring device in which an a.c. input voltage (U1) is limited to a voltage limit (U2) by means of a voltage limiter (4). Said voltage limit (U2) is applied to a flame sensing device (7) which operates by means of the rectifying effect of a flame, and through which a current (i) flows, especially when a flame (6) is present. An asymmetric voltage limit (U2) can be defined by said voltage limiter (4), said limit being then applied to the sensing device (7).
    Type: Application
    Filed: November 6, 2003
    Publication date: September 16, 2004
    Inventors: Klaus Bott, Alexander Diebold, Jurgen Hoffmann, Reiner Kind
  • Patent number: 6780378
    Abstract: A method and apparatus for measuring the concentration of at least one gaseous component and/or vaporous component of a gaseous mixture in which a controlled sensor flame is introduced into the gaseous mixture and at least one narrow spectral band in the controlled sensor flame is optically measured. The concentration of the gaseous component using a result obtained from the optical measuring of the at least one narrow spectral band is then calculated. The method of this invention is particularly suitable for substantially real-time control of combustion processes.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: August 24, 2004
    Assignee: Gas Technology Institute
    Inventors: Hamid A. Abbasi, David M. Rue
  • Publication number: 20040110306
    Abstract: A method for measuring volatile organic compounds (VOCs) of a material produced in a process system is disclosed. The method involves an enclosed bag into which a sample of material is placed, after which the bag is stored at a predetermined temperature such that the contents reach equilibrium. The storage temperature is the mean exit temperature of the effluent from the process system for which a VOC measurement is required. Samples from the headspace in the bag are inputted into a flame ionization detector to provide the VOC level. A kit for using the method is also disclosed.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 10, 2004
    Inventor: Wayne Edward Beimesch
  • Patent number: 6709632
    Abstract: An ICP analyzer has a nebulizer for nebulizing a sample fluid for the purpose of analyzing microscopic impurities within the sample fluid, a plasma torch for introducing nebulized spray into a plasma, and a spray chamber disposed between the nebulizer and the plasma torch for separating spray comprised of microscopic particles from the nebulized spray prior to introduction thereof into the plasma torch. A heating section is provided at a central portion of the spray chamber and a cooling section is provided at a peripheral section of the spray chamber, and the spray is passed between the heating section and the cooling section to improve the efficiency sample introduction into the plasma to enable highly sensitive analysis by suppressing the proportion of a solvent component that reaches the plasma torch.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: March 23, 2004
    Assignee: SII NanoTechnology Inc.
    Inventors: Yoshitomi Nakagawa, Yasuyuki Takagi
  • Publication number: 20030133836
    Abstract: In order to determine the total sulfur content of a sample (1), the sample is uniformly combusted with a flame (8). The combustion product sulfur dioxide is fed to a gas chromatograph (15) in which it is separated from other combustion products (9) and is then fed to a detector (17), which is situated downstream and which is provided for determining sulfur dioxide concentration. The combustion of the sample (1) is preferably effected in a flame ionization detector (19), with whose measurement signal (21) the detector signal (20) generated by the detector (17) is freed from signal contents based on non-uniformities of the combustion process.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 17, 2003
    Applicant: SIEMENS AG
    Inventors: Friedhelm Mueller, Udo Offermanns
  • Patent number: 6548263
    Abstract: The present invention describes novel methods for making a substrate for selective cell patterning, and the substrates themselves, wherein the method comprises contacting reactive hydroxyl groups on the surface of a substrate with a hydroxyl-reactive bifunctional molecule to form a monolayer, and using stencils to deposit cell repulsive or cell adhesive moieties in controlled locations on the cell culture substrate. Methods comprising selective differentiation of stem cells to create tissue specific and organ-specific cell substrates, as well as the cell substrates themselves are also provided.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: April 15, 2003
    Assignee: Cellomics, Inc.
    Inventors: Ravi Kapur, Terri Adams
  • Patent number: 6511850
    Abstract: A self-adjusting, free-flowing pneumatic nebulizer interface is described for coupling fluid phase separation apparatus such as capillary electrophoresis apparatus or fluid-phase analyte delivery apparatus such as flow-injection analysis apparatus to gas phase, post-separation detection apparatus such as mass spectrometers, chemiluminescence detectors, or other similar gas phase detection apparatus. The interface combines the analytes with only the needed amount of sheath fluid to produce a combined flow whose magnitude automatically matches the self-aspiration rate of the pneumatic nebulizer interface, and which is combined with a gas flow to produce an aerosol. The resulting aerosol can then be either deposited directly on a surface, forwarded directly to a detection system or forwarded first to a conversion apparatus such as an oxidizer and the oxidized sample components are then forwarded to a detector.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: January 28, 2003
    Assignee: The Texas A&M University System
    Inventors: Gyula Vigh, Alex D. Sokolowski
  • Publication number: 20030007889
    Abstract: A combustion cell for flame ionization detectors consists of a housing having an interior defining a combustion chamber that is in communication with a source of an oxygen containing gas. Two or more burner nozzles are located in the combustion chamber and each of the burner nozzles communicate with a common source of a sample gas. One or more collectors are disposed in the for the sensing of a electrical current created by the combustion and ionization of a sought for substance. In operation two or more burner nozzles are used for combustion of the sample/fuel mixture to enhance the sensitivity and linearity of the output signal.
    Type: Application
    Filed: May 24, 2001
    Publication date: January 9, 2003
    Inventors: Po Chien, Stephen Stephanos
  • Publication number: 20030003590
    Abstract: A method and apparatus for measuring the concentration of at least one gaseous component and/or vaporous component of a gaseous mixture in which a controlled sensor flame is introduced into the gaseous mixture and at least one narrow spectral band in the controlled sensor flame is optically measured. The concentration of the gaseous component using a result obtained from the optical measuring of the at least one narrow spectral band is then calculated. The method of this invention is particularly suitable for substantially real-time control of combustion processes.
    Type: Application
    Filed: June 28, 2001
    Publication date: January 2, 2003
    Inventors: Hamid A. Abbasi, David M. Rue
  • Patent number: 6429020
    Abstract: A sensor for detecting the flame occurring during a flashback condition in the fuel nozzle of a lean premix combustion system is presented. The sensor comprises an electrically isolated flashback detection electrode and a guard electrode, both of which generate electrical fields extending to the walls of the combustion chamber and to the walls of the fuel nozzle. The sensor is positioned on the fuel nozzle center body at a location proximate the entrance to the combustion chamber of the gas turbine combustion system. The sensor provides 360° detection of a flashback inside the fuel nozzle, by detecting the current conducted by the flame within a time frame that will prevent damage to the gas turbine combustion system caused by the flashback condition.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: August 6, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Jimmy Dean Thornton, George Alan Richards, Douglas L. Straub, Eric Arnold Liese, John Lee Trader, Jr., George Edward Fasching
  • Patent number: 6378355
    Abstract: A combustible gas sensor diode including a SiC semiconductor substrate, on top of which an AlN layer and a catalytic metal “gate” electrode are deposited is disclosed. The combustible gas sensor diode can be operated in either a D.C. forward conduction mode or an A.C. reverse bias mode. Methods of detecting combustibles in both D.C. and A.C. modes are further disclosed.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: April 30, 2002
    Assignee: Ford Global Technologies, Inc.
    Inventors: Amer Mohammad Khaled Samman, Samuel Admassu Gebremariam, Lajos Rimai
  • Publication number: 20020021984
    Abstract: A device for methane-free hydrocarbon measurement in combustion exhaust gases using the flame ionization technique. In order to refine the device, in such a way that optimum oxidation is possible even when the composition of the gas to be measured experiences fluctuations and, in addition, equipment outlay is minimized, extra oxygen and/or extra hydrogen is supplied to the gas to be measured before the oxidation catalysis.
    Type: Application
    Filed: April 18, 2001
    Publication date: February 21, 2002
    Inventor: Armin Kroneisen
  • Publication number: 20020001540
    Abstract: In an ICP analyzer, a spray chamber is provided to improve the efficiency of introducing a sample fluid into a plasma, and that is capable of performing analysis with high sensitivity by suppressing the proportion of a solvent component that reaches a plasma torch.
    Type: Application
    Filed: May 18, 2001
    Publication date: January 3, 2002
    Inventors: Yoshitomo Nakagawa, Yasuyuki Takagi
  • Publication number: 20010051107
    Abstract: A regulating device (15) for a burner regulates the air-gas ratio by way of an ionization electrode (16). In the event of dynamic changes in output preliminary control is implemented in accordance with the invention with two or more stored characteristics.
    Type: Application
    Filed: May 7, 2001
    Publication date: December 13, 2001
    Applicant: Siemens Building Technologies AG
    Inventor: Rainer Lochschmied
  • Patent number: 6251691
    Abstract: A method and apparatus for the manipulation of colloidal particles and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relies on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and the manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: June 26, 2001
    Assignee: Bioarray Solutions, LLC
    Inventor: Michael Seul
  • Patent number: 6238622
    Abstract: A flame ionization detector burner, includes a housing having a generally cylindrical flame cavity therein extending along a generally longitudinal axis of the housing and a housing exterior with intake passageways communicating between the housing exterior and the flame cavity for passing fuel, air and sample flows into the flame cavity and an exhaust passage communicating between the housing exterior and the flame cavity for passing exhaust gasses out of the flame cavity. A burner carried in the housing cavity receiving the fuel, air, and sample flow generates a flame to ionize the sample. An ion collector plate spaced away from the burner carried in the time cavity collects sample ions and provides an electrical output representative of the sample ions to the housing exterior via an electrical feedthrough between the flame cavity and the housing exterior. The housing includes at least two cylindrical sidewalls removably joined together along the general longitudinal axis of the housing.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: May 29, 2001
    Assignee: Rosemount Analytical Inc.
    Inventor: Shahram M. Salimian
  • Patent number: 6096178
    Abstract: The invention provides a water electrolyzer device for generating a premixed hydrogen and oxygen gas mixture and for directing said gas mixture into a flame ionization detector, the device including a water container for performing water electrolysis; an electrode for passing electrolysis current in the water; and a water mist and vapor pressure management system for the elimination of water mist and reduction of the water relative humidity below the saturation point, the system being located between the water electrolyzer and the flame ionization detector. A method based on water electrolysis for the provision of a combustible gas mixture for the operation of a flame ionization detector is also provided.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: August 1, 2000
    Assignee: Aviv Amirav
    Inventors: Aviv Amirav, Nitzan Tzanani
  • Patent number: 5958777
    Abstract: A device for determining at least one petroleum characteristic of a geologic sediment sample placed in a boat, said device including a first heater heating said sample in a non-oxidizing atmosphere, a measuring component determining hydrocarbon-containing products released after feeding the sample into said first heater, a second subsequent heater heating said sample in an oxidizing atmosphere, a measuring component determining the amount of CO.sub.2 contained in effluents discharged from the two heaters, said CO.sub.2 measuring means include a cell for measuring continuously CO.sub.2 throughout heating of the first and second heaters and a measuring component determining the amount of CO contained in the effluents discharged from the two heaters, and thereby allowing determination of said petroleum characteristic.
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: September 28, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Jean Espitalie, Francois Marquis
  • Patent number: 5922286
    Abstract: A device for delivering one of a plurality of gases to an apparatus includes at least two valves. Each valve includes a first conduit permanently connected by one end thereof to an associated sampling line and, by another end thereof, to an associated purge line. Each valve includes a second conduit and an actuator which can be switched between bringing the first conduit into communication with the second conduit and a position for isolating the first conduit from the second conduit. At least the second conduit is free of flow-stagnation volumes. The second conduits of the valves are placed in series in a common gas delivery line for delivering gas to the apparatus. The end of the common gas delivery line opposite the apparatus emerges in an associated purge line. Each purge line passes through an element for creating a pressure drop. A use of the device is as a feed for trace impurities analyzer an atmospheric pressure ionization mass spectrometer or a particles analyzer.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: July 13, 1999
    Assignee: L'Air Liquide, Societe Anonyme Pour L'Atude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Jean-Marc Girard, Alain Mail, Yves Marot
  • Patent number: 5853664
    Abstract: Method for the analysis of one or more analytes present in a sample carried in a first fluid. The first fluid is combined with a first detector fluid and a second detector fluid to provide a fluid mixture which flows across the surface of an igniter. The analytes are ionized by means of an ionization process. The ion current is collected and measured at a collector electrode adjacent to the igniter. The flow of at least one of the first detector fluid and second detector fluid is modulated during an ignition sequence according to predetermined criteria so as to facilitate flame ignition.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: December 29, 1998
    Assignee: Hewlett-Packard Company
    Inventor: Paul B. Welsh
  • Patent number: 5834630
    Abstract: A flash point measuring apparatus including a sample vessel 11 made of an electrically conductive material, a heating device 17 for heating a sample S contained in the sample vessel 11, an igniting heat source 13 arranged above the sample vessel and made of an electrically conductive material, a temperature detecting device 12 for detecting a temperature of the sample S contained in the sample vessel 11, and a current amplifier 15 connected to the sample vessel 11 serving as a cathode and the igniting heat source 13 serving as an anode. Each time a temperature of the sample S is increased by 2.degree. C., the igniting heat source is moved in a horizontal plane above the sample surface at a predetermined speed. When a mixture of a vapor of the sample S and an air is ignited, a flame ion current flows between the sample vessel 11 and the igniting heat source 13. A flash point of the sample S is measured as a temperature of the sample at which the flame ion current is detected by the current amplifier 15.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: November 10, 1998
    Assignee: Tanaka Scientific Limited
    Inventor: Yoshiaki Fukushi
  • Patent number: 5811308
    Abstract: The present invention relates to a method for determining at least one petroleum characteristic of a geologic sediment sample heated in a non-oxidizing atmosphere and an oxidizing atmosphere. The sample is heated to a first temperature value below 200.degree. C. for a predetermined period of time and then to a second temperature value ranging between 600 and 850.degree. C. according to a temperature gradient between 0.2.degree. C. and 50.degree. C./min. Carbon dioxide and carbon monoxide are continuously measured during the temperature stages in order to determine at least one petroleum characteristic, wherein said petroleum characteristic comprises a quantity of organic oxygen, inorganic oxygen, total organic carbon, or inorganic carbon.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: September 22, 1998
    Assignee: Institut Francais Du Petrole
    Inventors: Jean Espitalie, Francois Marquis
  • Patent number: 5786225
    Abstract: A method of evaluating at least on type of pollution characteristic in a soil sample contaminated by hydrocarbon compounds, a method wherein the soil sample is first heated in a non-oxidizing atmosphere, then in an oxidizing atmosphere. The method comprises several temperature rise stages from which at least five quantities Q.sub.0, Q.sub.1, Q.sub.2, Q.sub.3 and Q.sub.4 are measured, wherein the quantities represent concentrations of hydrocarbon compounds in the soil sample. At least one type of pollution characteristic of the sample is determined from quantities Q.sub.0, Q.sub.1, Q.sub.2, Q.sub.3 and Q.sub.4.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: July 28, 1998
    Assignee: Institut Francais du Petrole
    Inventors: Eric Lafargue, Jean Ducreux, Fran.cedilla.ois Marquis, Daniel Pillot
  • Patent number: 5723091
    Abstract: Method and apparatus for the analysis of one or more analytes present in a sample carried in a first fluid. The first fluid is combined with a first detector fluid and a second detector fluid to provide a fluid mixture which flows across the surface of an igniter. The analytes are ionized by means of an ionization process. The ion current is collected and measured at a collector electrode adjacent to the igniter. The flow of at least one of the first detector fluid and second detector fluid is modulated during an ignition sequence according to predetermined criteria so as to facilitate flame ignition.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: March 3, 1998
    Assignee: Hewlett-Packard Co.
    Inventor: Paul B. Welsh
  • Patent number: 5665604
    Abstract: A halogenated hydrocarbon (HHC) detector is formed from a silent discharge (also called a dielectric barrier discharge) plasma generator. A silent discharge plasma device receives a gas sample that may contain one or more HHCs and produces free radicals and excited electrons for oxidizing the HHCs in the gas sample to produce water, carbon dioxide, and an acid including halogens in the HHCs. A detector is used to sensitively detect the presence of the acid. A conductivity cell detector combines the oxidation products with a solvent where dissociation of the acid increases the conductivity of the solvent. The conductivity cell output signal is then functionally related to the presence of HHCs in the gas sample. Other detectors include electrochemical cells, infrared spectrometers, and negative ion mobility spectrometers.
    Type: Grant
    Filed: August 18, 1995
    Date of Patent: September 9, 1997
    Assignee: The Regents of the University of California, Office of Technology Transfer
    Inventors: Matthew Monagle, John J. Coogan
  • Patent number: 5587128
    Abstract: Disclosed are devices for amplifying a preselected polynucleotide in a sample by conducting a polynucleotide amplification reaction. The devices are provided with a substrate microfabricated to include a polynucleotide amplification reaction chamber, having at least one cross-sectional dimension of about 0.1 to 1000 .mu.m. The device also includes at least one port in fluid communication with the reaction chamber, for introducing a sample to the chamber, for venting the chamber when necessary, and, optionally, for removing products or waste material from the device. The reaction chamber may be provided with reagents required for amplification of a preselected polynucleotide. The device also may include means for thermally regulating the contents of the reaction chamber, to amplify a preselected polynucleotide. Preferably, the reaction chamber is fabricated with a high surface to volume ratio, to facilitate thermal regulation.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: December 24, 1996
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Peter Wilding, Larry J. Kricka
  • Patent number: 5578271
    Abstract: A photoionization detector (PID) and an improved halogen specific detector are disclosed, for direct connection of the PID outlet to the halogen specific detector inlet. The tandem detector is used for detection of volatile organic compounds and the like. A jet assembly and seal between the PID and halogen specific detector provide a leak free and upswept dead volume-free connection between the two detectors.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: November 26, 1996
    Assignee: O.I. Corporation
    Inventors: Richard K. Simon, Michael L. Duffy, Michael J. Tanner, Mathias N. Barringer, Nathan C. Rawls
  • Patent number: 5521098
    Abstract: Method and apparatus for the thermionic ionization detection of one or more particular constituent components of a sample that is present in a fluid mixture. The fluid mixture flows across the interior surface of a central bore in a heated and appropriately sensitized "flow-through" thermionic source. The constituent components are ionized by an ionization process in which electrical charge is transferred from the thermionic source and converted into gas phase ion species. The current of gaseous ions is collected and measured at a collector electrode adjacent to the thermionic source.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: May 28, 1996
    Assignee: Hewlett-Packard Company
    Inventors: Bruce W. Hermann, Richard P. White
  • Patent number: 5432095
    Abstract: A method of detecting a concentration of contaminants in an air sample. The method includes the steps of combining a first portion of the air sample with a fuel to produce a sample/fuel mixture, igniting the sample/fuel mixture in a combustion chamber to produce a flame, and supplying a second portion of the air sample to the combustion chamber so that at least some of the contaminants contained in the second portion are ionized by the flame.
    Type: Grant
    Filed: September 23, 1993
    Date of Patent: July 11, 1995
    Inventor: Kenneth E. Forsberg
  • Patent number: 5356594
    Abstract: A portable (handheld) volatile organic compound monitoring system for monitoring, for fugitive emissions, a device that includes a coded identification tag. The system includes a housing, a tag reader, analysis chamber structure, a sample probe coupled to the analysis chamber, and pump structure for drawing a gas sample to be analyzed through the sample probe into the analysis chamber. Ionization apparatus is coupled to the analysis chamber for ionizing a gas sample drawn into the analysis chamber from the device being monitored, and a sensor responsive to ionized gas in the chamber produces an output signal as a function of an ionization characteristic of the ionized gas. First storage stores a plurality of response factors as a function of various types of volatile organic compounds to be monitored, second storage stores tag information read by the tag reader, and circuitry responsive to tag information stored in the second storage selects a response factor from the first storage.
    Type: Grant
    Filed: March 3, 1992
    Date of Patent: October 18, 1994
    Assignee: Thermo Environmental Instruments Inc.
    Inventors: Edward M. Neel, John F. Dwinell, Michael T. Nemergut, III
  • Patent number: 5298223
    Abstract: An ionization fire detector of the type including a measuring chamber and a reference chamber having a common electrode which is connected to the gate terminal of a field-effect transistor by a profile piece of conductive caoutchouc having one end contacting the gate terminal and another end contacting the common electrode.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: March 29, 1994
    Assignee: Esser Sicherheitstechnik GmbH
    Inventors: Horst Berger, Michael Pastors, Mario Pussin, Heiner Politze, Georg Pollmann
  • Patent number: 5221517
    Abstract: A methane analyzer system having a cutter for preparing a sample gas prior to submission to a hydrogen flame ionization detector includes a source dilution gas that is connected to the hydrogen flame ionization detector, and a flow restrictor line for directing a portion of the dilution gas to the cutter for mixing with the sample gas prior to introduction into the ionization detector. A source of fuel, such as hydrogen, which is connected to the ionization detector, is also metered in measured quantities to the cutter to stabilize the oxidation of the sample gas.
    Type: Grant
    Filed: November 10, 1992
    Date of Patent: June 22, 1993
    Assignee: Horiba, Ltd.
    Inventor: Kenji Takeda
  • Patent number: 5116764
    Abstract: A dual-column, dual-detector gas detector and analyzer employs both a photo-ionization detector and a flame-ionization detector. In a survey mode, samples of ambient air are driven through both detectors, and the outputs of both detectors are used to determine the presence of one or more gasses. In analysis mode, fixed-volume samples of ambient air are driven through two elution columns having different properties. The output of each elution column is fed to one of the detectors. The arrival times of gas peaks at the two detectors are employed to develop two lists of candidate gasses. The lists are cross-checked for the presence of each candidate on both lists. Candidates identified from their presence on both lists are identified. A further check attempts to identify candidates which are identifiable from their presence on one of the lists, and not on the other. Components identified in this way are added to the final list.
    Type: Grant
    Filed: July 26, 1988
    Date of Patent: May 26, 1992
    Inventors: Raymond Annino, Michael L. Bartlett, Edwin L. Karas, Dale E. Lueck, John L. Middleton, Richard Villalobos
  • Patent number: 5073753
    Abstract: A flame ionization detector comprises a housing forming a flame chamber for burning a mixture of hydrogen, oxidant and a sample gas. The flame chamber includes: a nozzle in which the sample gas and hydrogen are intimately mixed prior to injection, an igniter for igniting the gas emitted from the nozzle, inlets for hydrogen and oxidant, and an exhaust outlet through which the burnt gases are removed. A collector electrode is electrically insulated from the housing of the flame chamber. The nozzle and flame chamber housing are electrically grounded, and the collector electrode is maintained at a predetermined potential relative to ground. A pre-chamber is disposed adjacent to the flame chamber to provide a substantially constant pressure input of the sample gas to the nozzle.
    Type: Grant
    Filed: February 1, 1990
    Date of Patent: December 17, 1991
    Assignee: Cambustion, Limited
    Inventors: Nicholas Collings, Steven Dinsdale, Jonathan Willey
  • Patent number: 4999162
    Abstract: A flame detector comprising a ceramic flame jet for use in a high temperature gas chromatography system is disclosed. The interior volume of the flame jet is fabricated of a highly inert ceramic material so that sample eluting from the end of a gas chromatography column located within the interior volume of the flame jet does not contact any metallic surface en route to the flame. By avoiding sample contact with metallic surfaces, interferences which are prone to occur at high temperature, such as peak tailing, are avoided. In a further aspect the flame detector is treated with a silylating reagent to further passivate the surfaces which may affect the sample.
    Type: Grant
    Filed: August 26, 1988
    Date of Patent: March 12, 1991
    Assignee: Varian Associates, Inc.
    Inventors: Gregory J. Wells, John R. Berg
  • Patent number: 4981652
    Abstract: An apparatus for continuously measuring the hydrocarbon concentration in a gas flow includes at least one flame ionization detector with a combustion chamber housing electrodes between which a current flows due to ionization in the area of a burner flame. The combustion chamber of the flame ionization detector is connected to a suction pump in form of a venturi tube for applying an underpressure in the combustion chamber so as to allow especially sample gas but also burner gas and oxidizer to be drawn into the combustion chamber.
    Type: Grant
    Filed: March 10, 1989
    Date of Patent: January 1, 1991
    Assignee: Ratfisch Instrument
    Inventor: Werner Ratfisch