Steam Reformer Patents (Class 422/629)
  • Patent number: 8197563
    Abstract: A fuel reformer, includes: a reformer burner, which generates a flame in a reforming pipe disposed to surround at least the flame of the reformer burner, the reforming pipe being filled with a reforming catalyst and having corrugated portions on a surface facing the reformer burner and a bottom surface of the reforming pipe disposed adjacent to the flame in which a flame blocking member is disposed between the flame of the reformer burner and the reforming pipe to isolate the flame of the reformer burner from the reforming pipe.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: June 12, 2012
    Assignees: Samsung Electronics Co., Ltd., Samsung SDI Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Kang-hao Lee
  • Publication number: 20120142789
    Abstract: A catalytic reaction module for performing am endothermic reaction, such as steam reforming, including separator blocks. Each reactor defining a multiplicity of first and second flow channels arranged alternately within the block to ensure thermal contact between the first and second flow channels. The reactor blocks may be arranged and connected for series flow of a combustible gas mixture in the first flow channels. The reactor blocks may be arranged and connected for a gas mixture to undergo endothermic reaction in the second flow channels. Catalyst elements are provided within the flow channels and the catalyst may vary between the blocks or within a block. The catalyst may vary in chemical composition, in catalyst loading, or in active catalyst material.
    Type: Application
    Filed: August 6, 2010
    Publication date: June 7, 2012
    Applicant: Compact GTL plc
    Inventors: Ross Alexander Morgan, Robert Peat, Tuan Quoc Ly
  • Patent number: 8187560
    Abstract: Steam, partial oxidation and pyrolytic fuel reformers (14 or 90) with rotating cylindrical surfaces (18, 24 or 92, 96) that generate Taylor Vortex Flows (28 or 98) and Circular Couette Flows (58, 99) for extracting hydrogen from hydrocarbon fuels such as methane (CH4), methanol (CH3OH), ethanol (C2H5OH), propane (C3H8), butane (C4H10), octane (C8H18), kerosene (C12H26) and gasoline and hydrogen-containing fuels such as ammonia (NH3) and sodium borohydride (NaBH4) are disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 29, 2012
    Assignee: Global Energy Science, LLC
    Inventor: Halbert Fischel
  • Patent number: 8178062
    Abstract: In a reforming apparatus, for use in a fuel cell, for reforming a raw fuel into a hydrogen-rich reformed gas, a reformer generates the reformed gas from the raw fuel. A shift reactor reduces carbon monoxide contained in the reformed gas through a shift reaction. A selective oxidation unit reduces the carbon monoxide contained in the reformed gas that has passed through the shift reactor by performing selective oxidation on the carbon monoxide. A reforming reaction tube houses linearly the reformer, the shift reactor and the selective oxidation unit in this order. A combustion means produces combustion exhaust gas by combusting the raw fuel. An outer casing is placed around the reforming reaction tube, and the outer casing has a larger diameter than that of the reforming reaction tube. A heated flow passage through which the combustion exhaust gas passes to heat the reforming reaction tube is formed between the reforming reaction tube and the outer casing.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 15, 2012
    Assignees: Sanyo Electric Co., Ltd., Nippon Oil Corporation
    Inventors: Akira Fuju, Masataka Kadowaki, Kazumi Kobayashi, Kazuaki Nakajima, Yasushi Sato, Ken Samura
  • Publication number: 20120114537
    Abstract: A reformer includes a heating unit and a reforming unit. The heating unit receives oxidation fuel and generates heat using an oxidation reaction. The reforming unit includes a first reaction part formed around the heating units and performing a reforming reaction; a second reaction part formed around the first reaction part and reducing carbon monoxide; and a mixing-reaction part connecting the outlet end of the first reaction part with an inlet of the second reaction part such that fluid can flow therebetween, and performing simultaneously a reforming reaction and a reduction reaction of carbon monoxide. The mixing-reaction part includes a mixed catalyst layer that can simultaneously perform reforming and reducing carbon monoxide, such that it is possible to increase the generation amount of hydrogen and reduce the generation amount of carbon monoxide.
    Type: Application
    Filed: July 15, 2011
    Publication date: May 10, 2012
    Inventor: In-Hyuk Son
  • Patent number: 8173083
    Abstract: A compact catalytic reactor defines a multiplicity of first and second flow channels arranged alternately in the reactor, for carrying first and second fluids, respectively, wherein at least the first fluids undergo a chemical reaction. Each first flow channel containing a removable gas-permeable catalyst structure (20) incorporating a metal substrate, the catalyst structure defining flow paths therethrough, with catalytic material on at least some surfaces of each such path. The catalyst structure also incorporates a multiplicity of projecting resilient lugs (22) which support the catalyst structure (20) spaced away from at least one adjacent wall of the channel (17).
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: May 8, 2012
    Assignee: CompactGTL plc
    Inventor: Michael Joseph Bowe
  • Patent number: 8173082
    Abstract: A fuel processing system for heavier sulfur-laden hydrocarbon fuels, such as JP-8 and diesel fuels, having a fuel processor in which the sulfur-laden hydrocarbon fuels are reformed using steam reforming, an integrated desulfurization/methanation unit, and a solid oxide fuel cell. The heart of the system is the desulfurization/methanation unit which has a first reactor vessel and a second reactor vessel disposed within the first reactor vessel, forming an enclosed reaction space between the first reactor vessel and the second reactor vessel. A methanation catalyst is provided in the enclosed reaction space or the second reactor vessel. A desulfurization material is provided in the other of the enclosed reaction space and the second reactor vessel. During the normal course of operation, the desulfurization material will reach a saturation point at which it is no longer able to adsorb the sulfur-containing compounds.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: May 8, 2012
    Assignee: Gas Technology Institute
    Inventors: James Wangerow, Andy Hill, Chakravarthy Sishtla, Michael Onischak
  • Patent number: 8152872
    Abstract: The thermal reformer system (1) is provided that compromises a planar assembly including a reformer zone (5), a combustion zone (6), and various inlet and outlet manifolds with associated fluid flow passages (11, 20). The reformer system further compromises an inlet combustion fluid flow passage (31) connecting an inlet combustion fluid manifold (30) and the combustion zone (6), and an outlet combustion fluid flow passage (41) connecting the combustion zone (6) and the outlet combustion fluid manifold (40). In the thermal reformer system the heat transfer and recuperation from outlet fluid flows is efficiently transferred to inlet fluid flows, in order to minimize heat loss and insulation requirements.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: April 10, 2012
    Assignee: Intelligent Energy, Inc.
    Inventors: Richard Root Woods, Brook F. Porter, Rahul Iyer, Leonard M. Weschta
  • Publication number: 20120058028
    Abstract: Methane reacts with steam generating carbon monoxide and hydrogen in a first catalytic reactor; the resulting gas mixture undergoes Fischer-Tropsch synthesis in a second catalytic reactor. In the steam/methane reforming, the gas mixture passes through a narrow channel having mean and exit temperatures both in the range of 750° C. to 900° C., residence time less than 0.5 second, and the channel containing a catalyst, so that only reactions having comparatively rapid kinetics will occur. Heat is provided by combustion of methane in adjacent channels. The ratio of steam to methane may be about 1.5. Almost all methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After Fischer-Tropsch synthesis, the remaining hydrogen may be fed back to the combustion channels. The steam for the reforming step may be generated from water generated by the chemical reactions, by condensing products from Fischer-Tropsch synthesis and by condensing water vapor generated in combustion.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 8, 2012
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell, Jason Andrew Maude, John William Stairmand, Ian Frederick Zimmerman
  • Patent number: 8119076
    Abstract: In one aspect, the inventive process comprises a process for pyrolyzing a hydrocarbon feedstock containing nonvolatiles in a regenerative pyrolysis reactor system. The inventive process comprises: (a) heating the nonvolatile-containing hydrocarbon feedstock upstream of a regenerative pyrolysis reactor system to a temperature sufficient to form a vapor phase that is essentially free of nonvolatiles and a liquid phase containing the nonvolatiles; (b) separating said vapor phase from said liquid phase; (c) feeding the separated vapor phase to the pyrolysis reactor system; and (d) converting the separated vapor phase in said pyrolysis reactor system to form a pyrolysis product.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: February 21, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, James N. McCoy, Judith Hey, legal representative, Frank Hershkowitz
  • Patent number: 8101141
    Abstract: A unified fuel processing reactor for a solid oxide fuel cell can reform hydrocarbon-based fuel into hydrogen-rich gas, remove a sulfur component, and convert non-converted fuel and a low carbon (C2˜C5) hydrocarbon compound into hydrogen and methane in a single reactor. The reactor comprises a primary-reformer which reforms a hydrocarbon-base fuel and generates hydrogen-rich reformed gas, a desulfurizer which removes a sulfur component from the reformed gas, and a post-reformer which selectively decomposes a low carbon (C2˜C5) hydrocarbon in the desulfurized reformed gas into hydrogen and methane. The primary-reformer, desulfurizer and post-reformer are in the unified reactor and isolated, except for a fluid passage, from each other by internal partition walls. The primary-reformer is disposed at a center portion of the reactor. The post-reformer and the desulfurizer are concentrically disposed outside of the primary-reformer.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: January 24, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Joongmyeon Bae, Sangho Yoon, Sunyoung Kim
  • Patent number: 8038968
    Abstract: Embodiments are disclosed that relate to increasing a temperature in a low temperature zone in a steam reforming reactor via a radiative heating shunt. For example, one disclosed embodiment provides a steam reforming reactor comprising a reaction chamber having an interior surface, a packing material located within the reaction chamber, and a radiative heating shunt extending from the interior surface into the reaction chamber. The radiative heating shunt comprises a porous partition enclosing a sub-volume of the reaction chamber bounded by the porous partition and a portion of the interior surface, the sub-volume being at least partly free of packing material such that radiative heat has a path from the interior surface to a distal portion of the porous partition that is unobstructed by packing material.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: October 18, 2011
    Assignee: ClearEdge Power, Inc.
    Inventors: Bob Sorensen, Craig E. Evans, Brian Sonnichsen
  • Publication number: 20110229382
    Abstract: In an embodiment, a system includes a methanation section generally including a fuel inlet configured to receive a first fuel, a fuel outlet configured to output methane, and a first fuel path configured to route a first flow of the first fuel from the fuel inlet to the fuel outlet. The first fuel path includes a first methanator configured to generate the methane from the first fuel in an exothermic methanation region. The system also includes a second fuel path configured to route a second flow of a second fuel without conversion to methane. The second fuel path is also configured to receive heat from the exothermic methanation region.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Arnaldo Frydman, Omprakash Mall, Saumar Jyoti Hazarika, Jinmesh Pranav Majmudar
  • Patent number: 8021633
    Abstract: Methane is reacted with steam, to generate carbon monoxide and hydrogen in a first catalytic reactor (14); the resulting gas mixture can then be used to perform Fisher-Tropsch synthesis in a second catalytic reactor (26). In performing the steam/methane reforming, the gas mixture is passed through a narrow channel in which the mean temperature and exit temperature are both in the range 750° C. to 900° C. the residence time being less than 0.5 second, and the channel containing a catalyst, so that only those reactions that have comparatively rapid kinetics will occur. The heat is provided by combustion of methane in adjacent channels (17). The ratio of steam to methane should preferably be 1.4 to 1.6, for example about 1.5. Almost all the methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After performing Fischer-Tropsch synthesis, the remaining hydrogen is preferably fed back (34) to the combustion channels (17).
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: September 20, 2011
    Assignee: CompactGTL plc
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell, Jason Andrew Maude, John William Stairmand, Ian Frederick Zimmerman
  • Publication number: 20110194998
    Abstract: Disclosed herein is a hydrogen generator for producing hydrogen by the steam-reforming reaction of hydrocarbons, in which a pressure loss induction structure for artificially reducing the pressure of exhaust gas is provided between a combustion unit and an exhaust gas discharge pipe, thus improving the uneven distribution of exhaust gas.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 11, 2011
    Inventors: Young Dae KIM, Jae Suk Choi, Jin Sik Yang, Myung Jun Kim
  • Patent number: 7988751
    Abstract: A method for controlling the purity of hydrogen in a reforming apparatus is described where in the apparatus includes a fuel processor, a purification unit and a system controller. The controller determines a calculated flow of reformate from the fuel processor and operates the purification unit based on the calculated flow. The calculated flow is derived from a process model of the fuel processor and known feed(s) to the fuel processor. The calculated flow of reformate is used to control the flow of reformate to adsorbent beds within the purification unit and can be used to control other materials flows within the apparatus. Means for reducing fluctuations in the pressure and/or flow rate of reformate flowing from the fuel processor to the purification unit are also disclosed. The purity of the hydrogen produced can be maintained by adjusting the operation of the purification unit in response to changes in reformate composition, pressure and/or flow rate.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: August 2, 2011
    Assignee: Texaco Inc.
    Inventors: W. Spencer Wheat, Hongqiao Sun, Bhaskar Balasubramanian, Vesna R. Mirkovic
  • Publication number: 20110097251
    Abstract: Disclosed herein is a hydrogen generating apparatus for producing hydrogen from a hydrocarbon feed through a steam reforming reaction, in which a pressure drop device is installed between a feed distributor and each of reactor tubes in order to prevent the feed from being unevenly distributed to the reactor tubes. In the hydrogen generating apparatus, the pressure drop device for artificially dropping the supply pressure of the feed is installed between the feed distributor and each of the reactor tubes which are concentrically arranged with respect to a heat source. Accordingly, if the feed is unevenly distributed, the pressure drop device can suppress an abnormal temperature rise in some of the reactor tubes to induce the smooth production of hydrogen and to greatly improve the operational safety of the hydrogen generating apparatus.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 28, 2011
    Inventors: Jin Hwan Bang, Young Dae Kim, Myung Jun Kim
  • Publication number: 20110031162
    Abstract: A method and apparatus for producing a treated hydrocarbon containing stream for use as a feed to a hydrogen plant having a steam methane reformer in which an untreated hydrocarbon containing stream is introduced into two reaction stages connected in series to hydrogenate olefins and to convert organic sulfur species to hydrogen sulfide. The second of the two stages can also be operated in a pre-reforming mode to generate additional hydrogen through introduction of the oxygen and steam into such stage. A sulfur tolerant catalyst is used in both stages to promote hydrogenation and oxidation reactions. Sulfur is removed between stages by adsorption of the hydrogen sulfide to prevent deactivation of the catalyst in the second of the stages that would otherwise occur during operation of the second reaction stage in a pre-reforming mode of operation.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Inventors: Raymond Francis Drnevich, Vasilis Papavassiliou, Troy M. Raybold, Perry Raymond Pacouloute