With Down-flow Fixed Bed Patents (Class 422/632)
  • Patent number: 10968405
    Abstract: A catalyst system has been designed that disrupts the sedimentation process. The catalyst system achieves this by saturating key feed components before the feed components are stripped into their incompatible aromatic cores. The efficacy of this disruptive catalyst system is particularly evident in a hydrocracker configuration that runs in two-stage-recycle operation. The catalyst is a self-supported multi-metallic catalyst prepared from a precursor in the hydroxide form, and the catalyst must be toward the top level of the second stage of the two-stage system.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: April 6, 2021
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodoras Ludovicus Michael Maesen, Derek Blackwell, Viorel Duma, Varut Komalarajun, Alexander E. Kuperman, Hyunuk Ryu, Horacio Trevino, Alex Yoon, Ujjal Mukherjee
  • Patent number: 10010843
    Abstract: Device for the mixing and distribution of fluids for a catalytic reactor with a downward flow, said device comprising a collection zone (A), a mixing zone (B) and a distribution zone (C) comprising a distribution plate (12) comprising at least one first zone (C1) supporting a plurality of chimneys (13) and a second zone (C2); said mixing zone (B) is comprised in an annular enclosure (15) situated in the distribution zone (C), said mixing (B) and distribution (C) zones being delimited by at least one annular wall (16) comprising at least one lateral passage section (17a, 17b) suitable for the passage of the fluids from said mixing zone (B) to the first zone (C1) of said distribution zone (C), and the second zone (C2) comprises a plurality of openings (18) suitable for the partial passage of the fluids out of the distribution zone (C).
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 3, 2018
    Assignee: IFP Energies Nouvelles
    Inventors: Philippe Beard, Frederic Bazer-Bachi, Cecile Plais, Frederic Augier, Yacine Haroun
  • Publication number: 20150139869
    Abstract: The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventors: Yuon Chiu, Haluk Kopkalli, Richard Durick Horwath
  • Patent number: 9023297
    Abstract: A plant for preparing monosilane (SiH4) by catalytic disproportionation of trichlorosilane (SiHCl3) includes a reaction column having a feed line for trichlorosilane and a discharge line for silicon tetrachloride (SiCl4) formed, and at least one condenser via which monosilane produced can be discharged from the reaction column, wherein the reaction column has at least two reactive/distillative reaction regions operated at different temperatures and containing different catalytically active solids, at least one of the reaction regions containing a catalytically active solid based on vinylpyridine, and at least one of the reaction regions containing a catalytically active solid based on styrene.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: May 5, 2015
    Assignee: Schmid Silicon Technology GmbH
    Inventors: Adolf Petrik, Christian Schmid, Jochem Hahn
  • Patent number: 9023299
    Abstract: A liquid/gas reactor includes a bulk catalyst bed and means for supplying fresh feed and recycled at least partially converted liquid product stream to the bulk catalyst bed. The reactor also includes means for collecting an at least partially converted liquid product stream from the bulk catalyst bed and recycling at least a portion thereto. A minor catalyst bed extends substantially vertically through the bulk catalyst bed. Means for supplying recycled at least partially converted product stream only to the minor catalyst bed is also provided. A separating wall is disposed between the bulk catalyst bed and the minor catalyst bed.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 5, 2015
    Assignee: Davy Process Technology Limited
    Inventors: Edward Adrian Lord, Arthur James Reason
  • Patent number: 9011790
    Abstract: A reactor for carrying out a three-phase reaction of a liquid phase, a gaseous phase, and a catalyst over a fixed catalyst bed is disclosed. The liquid and gaseous phases are passed through the reactor via a mixing and distribution device positioned over the fixed catalyst bed. The mixing and distribution device includes a trough distributor for the liquid phase, having trough-shaped channels, outlet tubes in the trough-shaped channels for the liquid phase, a distributor plate below the trough distributor, and vertical nozzles, having one or more openings for the gaseous phase and one or more openings, arranged below the openings for the gaseous phase. For entry of the liquid phase, the nozzles are installed so that, at a predetermined liquid feed rate, the surface of the liquid on the distributor plate is below the openings for the gaseous phase and above the openings for the liquid phase.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Stefan Iselborn, Andreas Daiss, Reiner Geier, Marcus Bechtel, Michael Wille, Benjamin Hepfer, John Sauter
  • Patent number: 8940253
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a second hydrocarbon stream in a hydrocracking unit. The hydrocracking unit and the hydrotreating unit may share the same recycle gas compressor. A make-up hydrogen stream may also be compressed in the recycle gas compressor. The second hydrocarbon stream may be a diesel stream from the hydrotreating unit. The diesel stream may be a diesel and heavier stream from a bottom of a hydrotreating fractionation column.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff
  • Publication number: 20140346086
    Abstract: The invention relates to a device and method for distributing a liquid and gas in a multiple-bed downflow reactor, such as a hydrocarbon processing reactor, like a hydrocracker. The device comprises respectively the method uses a distributor device comprising a substantially horizontal collecting tray provided with a central gas passage. Gas passing in downward direction through the central gas passage is forced into a swirling motion by a swirler. This swirling motion has a swirl direction around a vertical swirl axis so that the gas leaves the central gas passage as a swirl. At a location above the collecting tray, a quench fluid is ejected into gas in an ejection direction, which is, viewed in a horizontal plane, at least partly opposite to the swirl direction.
    Type: Application
    Filed: December 20, 2012
    Publication date: November 27, 2014
    Inventors: Sujatha Degaleesan, Charles Eduard Dammis Ouwerkerk, Benoît Witkamp, Rachel Anna Worthen
  • Patent number: 8882863
    Abstract: A fuel reformulation system for an engine comprising an annular body for a flow of fluids therethrough connected to the engine, a source of fuel for flowing through at least a portion of the annular body, and a catalytic member connected to the annular body for the flow of any fluids thereacross from the annular body.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: November 11, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: Dean Modroukas, Jason S. Tyll, John C. Leylegian, Florin Girlea, Richard Perlman
  • Publication number: 20140221719
    Abstract: The present disclosure provides a premixer for at least two gases, comprising: a tabular body having a closed end and an opposite, open end; a first flow passage for receiving a first gas, the first flow passage axially extending through the closed end into the tabular body in a sealable manner; a conical tube arranged in the tabular body, wherein a small end of the conical tube communicates with the first flow passage, and a large end of the conical tube extends toward the open end with an edge thereof being fixed to an inner wall of the tabular body, thereby defining a sealed distribution chamber between the tabular body and the conical tube; and a second flow passage arranged on a side portion of the tabular body for receiving a second gas, wherein the second flow passage communicates with the distribution chamber, so that the second gas can be introduced into said conical tube via the distribution chamber in a substantially radial manner.
    Type: Application
    Filed: January 27, 2014
    Publication date: August 7, 2014
    Applicants: Shanghai Research Institute of Petrochemical Technology, SINOPEC, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Weimin YANG, Wenjie LIU, Yunqun HUANG, Yi GUO, Depan SHI
  • Patent number: 8721996
    Abstract: A shell which encloses an interior and has at least one first orifice for feeding at least one gas stream into the interior and at least one second orifice for withdrawing a gas stream fed to the interior beforehand via the at least one first orifice from the interior, the surface of the shell, on its side in contact with the interior, being manufactured at least partly, in a layer thickness of at least 1 mm, from a steel which has a specific elemental composition, and in the interior, a process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated is carried out in a reactor which is manufactured from the steel on its side in contact with the reaction gas.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: May 13, 2014
    Assignee: BASF SE
    Inventors: Claus Hechler, Wilhelm Ruppel, Goetz-Peter Schindler, Catharina Klanner, Hans-Juergen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Mueller-Engel
  • Patent number: 8697015
    Abstract: Systems, apparatus, and methods for distributing a mixed phase fluid to a monolith catalyst bed within a reactor, wherein a mixed phase fluid may be generated by a nozzle tray comprising a plurality of nozzles, the mixed phase fluid may be distributed by the nozzles to a mixed phase distributor system, and the mixed phase fluid may be further distributed by the mixed phase distributor system to a plurality of monolith channels within the reactor.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Krishniah Parimi, Steven Xuqi Song, Moinuddin Ahmed, Thien Duyen Thi Nguyen
  • Publication number: 20140018593
    Abstract: In the production of low-molecular olefins, in particular of ethylene and propylene, an educt stream (O) containing at least one oxygenate and an educt stream (C) containing at least one C4+ olefin are simultaneously converted in at least one identical reactor on an identical catalyst to obtain a product mixture (P) comprising low-molecular olefins and gasoline hydrocarbons. The ratio (V) of oxygenates in the educt stream (O) to C4+ olefins in the educt stream (C) here is 0.05 to 0.
    Type: Application
    Filed: February 7, 2012
    Publication date: January 16, 2014
    Applicant: LURGI GMBH
    Inventors: Gerhard Birke, Hermann Bach
  • Patent number: 8409521
    Abstract: A tubular reactor for producing a product mixture in a tubular reactor where the tubular reactor comprises an internal catalytic insert with cup-shaped structures having orifices for forming fluid jets for impinging the fluid on the tube wall. Jet impingement is used to improve heat transfer between the fluid in the tube and the tube wall in a non-adiabatic reactor. The tubular reactor and method may be used for endothermic reactions such as steam methane reforming and for exothermic reactions such as methanation.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: April 2, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Bo Jin, Robert Roger Broekhuis, Xiaoyi He, Shankar Nataraj, William Robert Licht, Diwakar Garg
  • Patent number: 8388840
    Abstract: Device for stiffening the plates of a multi-stage column with a diameter of more than 2 meters, whereby each plate supports a particle bed and the flow of at least one fluid passes through it from top to bottom, whereby said device consists of a number of beams that are located under the plate in question, each beam having a lower surface that is shaped like a triangle.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: March 5, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Frederic Augier, Denis Darmancier, Gerard Hotier
  • Patent number: 8383054
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 26, 2013
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 8377156
    Abstract: The present subject matter is directed to a method for operating a fuel reformer. The method may generally include directing a fluid stream around a reactor assembly of the fuel reformer to cool the reactor assembly, and mixing a heated reformate stream produced by the reactor assembly with the fluid stream to cool the heated reformate stream.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Publication number: 20130012745
    Abstract: The invention relates to method for producing hydrocarbon components comprising isoparaffins from feedstock of biological origin comprising linear unsaturated fatty acids to produce diesel fuel components comprising the steps of a) converting at least part of linear unsaturated fatty acids comprised in the feedstock to corresponding branched fatty acids, and b) hydrodeoxygenating the said branched fatty acids and remaining linear fatty acids to corresponding isoparaffins and n-paraffins. The invention further relates to an arrangement for implementing the method of the invention.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: UPM-Kymmene Corporation
    Inventors: Pekka KNUUTTILA, Jaakko NOUSIAINEN
  • Patent number: 8252251
    Abstract: The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 28, 2012
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Patent number: 8133458
    Abstract: A reactor for converting methane, ammonia and oxygen and alkaline or alkaline earth hydroxides into alkaline or alkaline earth cyanides by two-stage reactions comprising a first stage with a gas inlet, wherein the first stage is formed by a cone with distribution plates providing an even gas distribution over the catalyst material wherein the distribution plates are located between the gas inlet of the reactor and catalyst material and the distribution plates being perforated with a number of holes, with the distribution plates spaced from each other in the flow direction of the gas, the first distribution plate(s) functioning mainly to distribute the gas, whereas the last distribution plate works as a heat radiation shield and as a distribution plate facing the catalyst material, and wherein the catalyst material is present in the form of catalyst gauze fixed by catalyst weights.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: March 13, 2012
    Assignee: EICPROC AS
    Inventor: Erik Fareid
  • Patent number: 8124035
    Abstract: Continuous processes for monoalkylating aromatic compound with an aliphatic feedstock comprising aliphatic olefin of 8 to 18 carbon atoms per molecule are effected using at least 3 reaction zones in series, each containing solid alkylation catalyst with effluent cooling between reaction zones, each of which reaction zones is supplied a portion of the fresh aliphatic feedstock, such that the Reaction Zone Delta T in each reaction zone is less than about 15° C. The overall aromatic compound to olefin molar ratio is less than about 20:1. The alkylation product has desirable linearity and low amounts of dimers, dealkylated compounds and diaryl compounds even though a low aromatic compound to olefin molar ratio is used.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventor: Mark G. Riley
  • Patent number: 8057749
    Abstract: A device for carrying out exothermal chemical reactions wherein a gas phase is guided across a fixed bed and allowed to react, comprising a housing and an exchangeable unit wherein the reaction takes place.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: November 15, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Achim Fischer, Harald Heinzel, Christoph Weckbecker, Klaus Huthmacher
  • Patent number: 8052945
    Abstract: In an oligomerization apparatus comprising at least two oligomerization reactors, at least portions of product streams from two reactors are separated in the same separator vessel; a liquid product stream from the first oligomerization reactor is fed to a fractionation column and a side cut from the fractionation column feeds the second oligomerization reactor.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 8, 2011
    Assignee: UOP LLC
    Inventors: Bipin V. Vora, Charles P. Luebke, Jill M. Meister, Michael A. Schultz, Dale J. Shields
  • Patent number: 8029748
    Abstract: The invention provides methods, apparatus and chemical systems for making vinyl acetate from ethylene, oxygen, and acetic acid.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: October 4, 2011
    Assignees: Velocys, Inc, Celanese International Corporation
    Inventors: Terry Mazanec, Victor J. Johnston, Michael Huckman, Sean P. Fitzgerald, James A. Foster, Daniel Lindley, Anna Lee Tonkovich, Francis P. Daly, Leslie Wade, Tony Hammock, Thomas Yuschak, Bin Yang, Kai Jarosch
  • Publication number: 20110079541
    Abstract: A method and apparatus for hydrocracking an oil feedstock to produce a light oil stream without build-up of heavy polynuclear aromatic (HPNA) hydrocarbons in the recycle stream is provided. The method includes the steps of (1) hydrocracking the oil feedstock with a hydrotreating catalyst in a first reactor to produce an effluent stream; (2) fractionating the effluent stream into first, second and third product streams, wherein the first product stream includes C1-C4, naphtha and diesel boiling in the range of 36-370° C., the second product stream includes hydrocarbon components with an initial nominal boiling point of 370° C. and a final boiling point ranging from 420-480° C., and the third product stream that includes HPNA hydrocarbons and other hydrocarbons boiling above about 420° C. to about 480° C.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Inventor: Omer Refa KOSEOGLU
  • Publication number: 20110076207
    Abstract: A process for monitoring the condition of a guard bed catalyst material used in an adiabatic reactor to thereby protect a primary reaction catalyst and, in particular, the present invention is intended to be applied to a guard bed used prior to the heterogeneous catalyzed esterification of free fatty acids with low molecular weight monohydric alcohols, especially methanol, to produce fatty acid alkyl esters for biodiesel production.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Applicant: LANXESS SYBRON CHEMICALS INC.
    Inventors: Anthony Tirio, George Dimotsis