Liquid Chromatography Patents (Class 422/70)
  • Patent number: 11639919
    Abstract: An adapter for use in monitoring the deterioration of an oil insulated transformer due to pyrolysis that allows for an alarm to be generated at the desired ppm values is provided. The adapter is configured to sample the headspace of the main transformer tank as well as the adjacent compartments of a transformer and pass it over a common sensor to check for gases indicative of pyrolysis. During this constant monitoring process, the device will alert the end user when there is an increase in monitors gases. This will allow the owner to take the transformer off line and perform other diagnostic tests to determine the extent of damage to the equipment.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: May 2, 2023
    Assignee: Dynamic Ratings Pty. Ltd.
    Inventor: Christopher M. Rutledge
  • Patent number: 11635413
    Abstract: The invention provides a liquid chromatograph mass spectrometer which prevents contamination of a pump and a column and can perform mass calibration without adding a complicated mechanism. This liquid chromatograph mass spectrometer includes a liquid chromatograph including a liquid feed pump configured to feed a mobile phase solvent, a mass spectrometer configured to analyze a mass of a sample, and a standard sample container configured to be connected in series with the liquid chromatograph and the mass spectrometer in a flow path that connects the liquid chromatograph and the mass spectrometer and configured to house a standard sample for mass calibration.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: April 25, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Yuka Sumigama, Yuichiro Hashimoto
  • Patent number: 11617968
    Abstract: The present invention relates to a flow-through device comprising at least one separation column wherein a first packing component, which comprises particles of alumina and/or silica, and a second packing component, which comprises a powder of one or more hygroscopic salts are provided. The two packing components may be blended or layered in the device, which may comprise a single tube or a plurality of tubes arranged in a plate format, such as the wells of a multiwall plate or tubes in a rack. In addition, the invention relates to a method for removing one or more matrix components, such as pigments, from a biological sample, by passing said sample across a first packing component, which comprises particles of alumina and/or silica, and a second packing component, which comprises a powder of one or more hygroscopic salts.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: April 4, 2023
    Assignee: Biotage AB
    Inventors: Geoff Davies, Adam Senior, Lee Williams, Rhys Jones
  • Patent number: 11525813
    Abstract: A container assembly for use with a high-pressure liquid chromatography (HPLC) instrument is disclosed, in which the container assembly, when coupled to a source of pressurized gas, provides fluid medium to the HPLC instrument at positive pressure. The container assembly has an external exterior container shell, an internal fluid container for holding fluid medium, an interstitial volume between the external exterior container shell and the internal fluid container, a port for fluidly connecting the volume to a pressurized gas source, and a port for fluidly connecting the internal fluid container to the HPLC instrument. As a pressurized gas in the interstitial volume increases, fluid medium flows out of the port connected to the internal fluid bag and container assembly at a positive pressure. A system incorporating the container assembly, and method of use of the same, are also disclosed.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 13, 2022
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Nathan Wrench, William Mainwaring-Burton, Chris Butcher, Nick Harrison
  • Patent number: 11478789
    Abstract: This disclosure describes single-use test cartridges, cell analyzer apparatus, and methods for automatically performing microscopic cell analysis tasks, such as counting blood cells in biological samples. A small unmeasured quantity of a biological sample such as whole blood is placed in the disposable test cartridge which is then inserted into the cell analyzer. The analyzer isolates a precise volume of the biological sample, mixes it with self-contained reagents and transfers the entire volume to an imaging chamber. The geometry of the imaging chamber is chosen to maintain the uniformity of the mixture, and to prevent cells from crowding or clumping, when it is transferred into the imaging chamber. Images of essentially all of the cellular components within the imaging chamber are analyzed to obtain counts per unit volume.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 25, 2022
    Assignee: Medica Corporation
    Inventors: Ronald Jones, Adrian Gropper, Robert Hagopian, Charles Rogers, Thomas Vitella, Donald Barry, Jr., Dirk Osterloh, Chen Yi, Tyler Cote
  • Patent number: 11417508
    Abstract: A system for sampling a liquid includes a sample fluid conduit including a membrane having pores. The membrane prevents the passage of the sample liquid through the pores at a first pressure of the sample liquid in the sample fluid conduit. A surface sampling capture probe has a distal end. The capture probe includes a solvent supply conduit and a solvent exhaust conduit. A solvent composition flowing at the distal end of the capture probe establishes a liquid junction with the membrane and establishes a second pressure within the liquid junction at the membrane. The second pressure is lower than the first pressure. Sample liquid will be drawn through the pores of the membrane by the second pressure at the liquid junction. A method for sampling a liquid and for performing chemical analysis on a liquid are also disclosed.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: August 16, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: John F. Cahill, Vilmos Kertesz, Scott T. Retterer
  • Patent number: 11237137
    Abstract: A column-conditioning enclosure includes a column chamber adapted to hold one or more chromatography separation columns. A duct system provides an airflow path around the column chamber such that the one or more chromatography separation columns held within the column chamber are isolated from the airflow path. An air mover disposed in the airflow path generates a flow of air within the duct system. A heat exchanger system disposed in the airflow path near the air to exchange heat with the air as the air flows past the heat exchanger system. The air circulates through the duct system around the column chamber, convectively exchanging heat with the column chamber to produce a thermally conditioned environment for the one or more chromatography separation columns held within the column chamber.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: February 1, 2022
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Joshua A. Shreve, Kurt D. Joudrey
  • Patent number: 11041833
    Abstract: A flow-through vial includes: a columnar internal space for containing a liquid; a liquid introduction part provided in a lower portion of a side surface for guiding the liquid to the internal space in a direction oblique to a radial direction in a horizontal cross section of the internal space; a liquid discharge part provided in an upper portion of the side surface for guiding the liquid in the internal space to outside; and an upper surface sealing member for sealing an upper surface of the internal space, the upper surface sealing member being made of an elastic material which can be penetrated by a needle descending from above.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 22, 2021
    Assignee: Shimadzu Corporation
    Inventor: Taichi Tomono
  • Patent number: 10690255
    Abstract: A major challenge for the general use of “lab-on-a-chip” (LOAC) systems and point-of-care (POC) devices has been the generally complex and need for sophisticated peripheral equipment, such that it is more difficult than anticipated to implement low cost, robust and portable LOAC/POC solutions. It would be beneficial for chemical, medical, healthcare, and environmental applications to provide designs for inexpensive LOAC/POC solutions compatible with miniaturization and mass production, and are potentially portable, using compact possibly hand-held instruments, using reusable or disposable detectors. Embodiments of the invention address improved circuit elements for self-powered self-regulating microfluidic circuits including programmable retention valves, programmable trigger valves, enhanced capillary pumps, and flow resonators.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: June 23, 2020
    Assignee: THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY
    Inventors: David Juncker, Hosseinali Safavieh
  • Patent number: 10692253
    Abstract: Implementations generally relate to using a nested pixel map to optimize chart rendering in a graphical user interface. In some implementations, a method includes generating a first pixel map for a chart, wherein the first pixel map is a first data structure that includes a first group of first data elements, wherein each first data element corresponds to a pixel of a plurality of pixels used to render the chart. The method further includes generating at least one secondary pixel map for the chart. The method further includes determining one or more obscurity states of one or more markers of the chart based on one or more of the first pixel map and the at least one secondary pixel map. The method further includes rendering one or more of the markers in the chart based on the obscurity state of each of the one or more markers.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: June 23, 2020
    Assignee: Oracle International Corporation
    Inventors: Pangus Ho, Hugh Zhang, Prashant Singh
  • Patent number: 10648955
    Abstract: A method of detecting an analyte by: providing a derivatizing agent that is reactive with the analyte; delivering the derivatizing agent into a chamber; delivering a sample of a gas suspected of containing the analyte into the chamber before or after delivering the derivatizing agent, while the chamber is maintained at a temperature that retains the derivatizing agent and any analyte and that allows reaction between the derivatizing agent and any analyte in the chamber to form a derivatized analyte; warming the chamber to cause evaporation of any derivatized analyte; and delivering the derivatized analyte in the chamber into a gas chromatograph column.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 12, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lauryn E. DeGreeff, Christopher J. Katilie
  • Patent number: 10643829
    Abstract: A pseudo internal standard method, device and application for mass spectrometry quantitative analysis is disclosed.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: May 5, 2020
    Assignee: GUANGDONG LIANJIE BIOTECHNOLOGY CO., LTD.
    Inventor: Janshon Zhu
  • Patent number: 10618045
    Abstract: A fluidic device incorporating a substrate, at least one bulk acoustic wave (BAW) resonator structure, and a fluidic channel bound at least in part by the at least one BAW resonator structure. The fluidic device further includes at least one fluidic via defined through at least a portion of the substrate, thereby permitting fluidic connections and electrical connections to be provided on opposing upper and lower surfaces of the fluidic device. The at least one BAW resonator structure may include a piezoelectric material comprising a c-axis having an orientation distribution that is predominantly non-parallel to normal of a face of the substrate, and may be overlaid with a functionalization material (e.g., a specific binding material overlying a self-assembled monolayer) to enable detection of a target species in a sample supplied to the fluidic device.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: April 14, 2020
    Assignee: Qorvo Biotechnologies, LLC
    Inventor: Rio Rivas
  • Patent number: 10578595
    Abstract: A method and device for the optical scanning of a chromatographic sample (3), where a sample plate (2) holding the sample (3) is illuminated with light from a first illumination device (13) and the light emitted by the sample plate (2) is detected by an optical detector device (15) which detects in cell form or area form, a second illumination device (14) is preferably firstly activated in a preparation step. The sample plate (2) is displaced in a first displacement direction relative to the detector device (15), illuminated by the first illumination device (13) and a first measurement image is recorded. The sample plate (2) is displaced in a second displacement direction relative to the detector device (15), illuminated by the second illumination device (14), and a second measurement image is recorded.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: March 3, 2020
    Assignee: Merck Patent GmbH
    Inventors: Michael Schulz, Michaela Oberle, Thomas Ingendoh
  • Patent number: 10465853
    Abstract: A system can include a valve assembly including a first valve and a second valve in fluid communication with the first valve. The valve assembly can be configured to deliver one or more of a sample, a chemical (e.g., an acid, a base, an organic chemical, etc.), and a standard via flow of a working fluid facilitated by one or more syringe pumps. Further, the one or more of the sample, the chemical, and the standard can maintain a physical separation from the one or more syringe pumps during delivery of the one or more of the sample, the chemical, and the standard.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: November 5, 2019
    Assignee: ELEMENTAL SCIENTIFIC, INC.
    Inventors: Daniel R. Wiederin, Austin Schultz
  • Patent number: 10466040
    Abstract: A sensor device (100), for measuring a surface (101), includes a lighting device (103) emitting a light beam (105); an optical device (107) splitting the light beam (105) into partial light beams (109, 111), and emitting the first partial light beam (109) toward a first surface area (113) and emitting the second partial light beam (111) toward a second surface area (115). A light sensor (117) is configured to receive a first surface area reflection (109-1) of the first partial light beam (109) and a second surface area reflection (111-1) of the second partial light beam (111). A processor (119) is configured to detect a distance of the first surface area (113) and of the second surface area (115) to the sensor device (100) based on a position of the first partial light beam reflection (109-1) and the second partial light beam reflection (111-1) on the light sensor (117).
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 5, 2019
    Assignee: BAUMER ELECTRIC AG
    Inventors: Klaus Friedrich Müller, Sven Bauer
  • Patent number: 10453664
    Abstract: A unique fiber core sampler composition, related systems, and techniques for designing, making, and using the same are described. The sampler is used to interface with existing field instrumentation, such as Ion Mobility Spectrometer (IMS) equipment. Desired sampler characteristics include its: stiffness/flexibility; thermal mass and conductivity; specific heat; trace substance collection/release dependability, sensitivity and repeatability; thickness; reusability; durability; stability for thermal cleaning; and the like. In one form the sampler has a glass fiber core with a thickness less than 0.3 millimeter that is coated with a polymer including one or more of: polymeric organofluorine, polyimide, polyamide, PolyBenzlmidazole (PBI), PolyDiMethylSiloxane (PDMS), sulfonated tetrafluoroethylene (PFSA) and Poly(2,6-diphenyl-p-phenylene Oxide) (PPPO).
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: October 22, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Raymond S Addleman, Xiaohong Shari Li, Wilaiwan Chouyyok, David A Atkinson
  • Patent number: 10451592
    Abstract: An arrangement for preparing samples and analyzing pesticides in samples contains an HILIC chromatography column with a first pump for a predominately low-water and/or non-polar solvent; and SPE enrichment arrangement; a second chromatography column with a second pump for a predominantly water-rich and/or polar solvent; a detector; and a valve arrangement for controlling the stream of sample and matrix, which valve arrangement is designed in such a way that the sample stream, in a first switching state of the valve arrangement, can be conducted from the HILIC chromatography column to the SPE enrichment arrangement and, in a second switching state, the sample enriched in the SPE enrichment arrangement can be conducted in the opposite direction from the SPE enrichment arrangement through the second chromatography column to the detector.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: October 22, 2019
    Assignee: Joint Analytical Systems GmbH
    Inventors: Stefan Kittlaus, Jorg Radtke
  • Patent number: 10309940
    Abstract: There are provided a data processing device for chromatograph and a data processing method for chromatograph which allow a peak to be desirably checked. A peak (correction target peak (P1)) whose intensity exceeds a predetermined threshold in a chromatogram at a target wavelength (?1) is corrected based on correction reference values (height (H1) and area (A1) of a peak (P11)) and a sensitivity coefficient (R=I1/I2), and the chromatogram after correction is displayed or printed. Therefore, even if the correction target peak (P1) is saturated, display or printing may be performed in a state where correction has been performed so that the chromatogram at the peak (P1) is not cut off in the middle. Accordingly, at the time of display or printing of the chromatogram, a fine peak may be prevented from becoming too small, and also the correction target peak (P1) may be prevented from being cut off in the middle, and thus the peaks may be desirably checked.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: June 4, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Etsuho Kamata, Toshinobu Yanagisawa, Yasuhiro Mito, Kenichi Mishima
  • Patent number: 10151734
    Abstract: A data processing system for a chromatograph including a standard sample data storage section; a standard sample sensitivity factor calculator; a post-correction standard sample chromatogram strength calculator; a specific designated retention time and specific designated wavelength setter; a measurement sample data storage section; a measurement sample sensitivity factor calculator; and a post-correction measurement sample chromatogram creator.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: December 11, 2018
    Assignee: SHIMADZU CORPORATION
    Inventors: Etsuho Kamata, Toshinobu Yanagisawa, Yasuhiro Mito, Kenichi Mishima
  • Patent number: 10099158
    Abstract: An apparatus and a method are provided for column chromatography which provide improvements in separation resolution and detection sensitivity, comprising a chromatography column, the column having an inlet and an outlet, wherein the outlet is configured to split a flow of eluate as it leaves the column through the outlet into at least two separate portions, wherein the apparatus is configured to separately process the portions, for example to separately detect a portion or separately collect fractions of a portion with improved resolution. A split frit assembly is preferably configured to split the flow of eluate. The portions preferably emanate from different radial regions of the column. An end fitting for the column outlet may be provided having multiple ports to separately convey the portions.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: October 16, 2018
    Assignees: Thermo Electron Manufacturing Limited, University of Western Sydney
    Inventors: Harald Ritchie, Ross Andrew Shalliker
  • Patent number: 10090139
    Abstract: A mass analysis device capable of reliably detecting the peak in a mass chromatogram of a given m/z is equipped with a control unit, which generates a mass chromatogram and total ion chromatogram. The control unit includes a determination unit which, using the total ion chromatogram, determines the start time and end time of the peak in the total ion chromatogram by searching for the peak based on maximum value of detected intensity and searching for peak start time and end time based on slope of change of detected intensity; and a detection unit, which detects the peak in the mass chromatogram by making the start time and end time of the peak in the mass chromatogram the same as the start time and end time of the peak in the total ion chromatogram.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: October 2, 2018
    Assignee: SHIMADZU CORPORATION
    Inventor: Yutaro Yamamura
  • Patent number: 10018620
    Abstract: The present disclosure describes systems and methods for mimicking body tissue and the function thereof. The mimicked body tissue can include kidney tissue, the blood brain barrier, and other tissues. In some implementations, the systems described herein are used to test the impact of controlled factors on the tissue. The controlled factors can include flow rates, shear rates, and test chemicals (e.g., therapeutics and toxins). In some implementations, the system and methods are used to test pharmaceutical and biological therapies, characterize healthy or diseased tissue, and observe phenomena of the tissue in vitro.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: July 10, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Joseph L. Charest, Else Frohlich, Christopher DiBiasio, Kenneth Vandevoordt
  • Patent number: 9921192
    Abstract: The disclosure describes embodiments of an apparatus including a first gas chromatograph including a fluid inlet, a fluid outlet, and a first temperature control. A controller is coupled to the first temperature control and includes logic to apply a first temperature profile to the first temperature control to heat, cool, or both heat and cool the first gas chromatograph. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: March 20, 2018
    Assignee: TricornTech Corporation
    Inventors: Tsung-Kuan A. Chou, Shih-Chi Chu, Chia-Sheng Cheng, Li-Peng Wang, Chien-Lin Huang
  • Patent number: 9723298
    Abstract: A system and computer implemented method for managing a display for a software application is disclosed. The software application may have a set of portions. The method can include collecting, for a first portion and a second portion of the set of portions, optical tracking information including a set of viewing coordinates having a temporal feature. The method can also include determining, based on the optical tracking information including the set of viewing coordinates having the temporal feature, a set of viewing scores including a first group of viewing scores and a second group of viewing scores. The method can also include generating a frustum having a set of regions. The set of regions can include a first region, to provide the first portion, based on the first group of viewing scores, and a second region, to provide the second portion, based on the second group of viewing scores.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: August 1, 2017
    Assignee: International Business Machines Corporation
    Inventor: Santosh Devale
  • Patent number: 9697995
    Abstract: A method for analyzing a mixture of components includes forming precursor ions from the components, alternately causing the precursor ions to pass to and to by-pass a fragmentation device, to form product ions from the precursor ions that pass to the device and to form substantially fewer product ions from precursor ions that by-pass the device, and obtaining mass spectra from product ions received from the device and from precursor ions that by-passed the device. An apparatus for analyzing a sample includes an ion source for forming precursor ions from the components of the sample, a fragmentation device for forming product ions from the precursor ions, a by-pass device disposed upstream of the fragmentation device for switchable by-pass of the fragmentation device, and a mass analyzer.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 4, 2017
    Assignee: Micromass UK Limited
    Inventor: Robert Harold Bateman
  • Patent number: 9638706
    Abstract: An external standard solution for use in the analysis of amino acid in plasma, containing, (1) at least one amino acid selected from the following components A, at a concentration of 0.0007 M to 0.49 M, and (2) (i) at least one amino acid selected from the following components B, at a concentration of 0.2 to 0.9 times of the lowest-concentration amino acid among the amino acids selected from components A, (ii) at least one amino acid selected from the following components C, at a concentration of 0.1 to 0.4 times of the lowest-concentration amino acid among amino acids selected from the components A, or (iii) at least one amino acid selected from the following components D, at a concentration of 0.05 to 0.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: May 2, 2017
    Assignees: WAKO PURE CHEMICAL INDUSTRIES, LTD., AJINOMOTO CO., INC.
    Inventors: Masako Hayakawa, Kazutaka Shimbo, Hiroo Yoshida
  • Patent number: 9580736
    Abstract: Provided herein are methods and compositions for analyzing nucleic acids associated with single cells using nucleic acid barcodes. According to some embodiments, a method for producing one or more polynucleotides of interest comprises: obtaining a plurality of RNAs associated with one or more samples, wherein the samples are obtained from one or more subjects, each RNA is associated with a single sample, and the RNAs associated with each sample are present in a separate reaction volume; adding an adapter molecule to the RNAs associated with each sample, wherein the adapter molecule is generated using an enzymatic reaction and comprises a universal priming sequence, a barcode sequence, and a binding site; and incorporating the barcode sequence into one or more polynucleotides associated with each sample, thereby producing the one or more polynucleotides of interest.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 28, 2017
    Assignee: Atreca, Inc.
    Inventors: Yann Chong Tan, Gary Withey
  • Patent number: 9573099
    Abstract: The present invention generally relates to emulsions, and more particularly, to double and other multiple emulsions. Certain aspects of the present invention are generally directed to the creation of double emulsions and other multiple emulsions at a common junction of microfluidic channels. In some cases, the microfluidic channels at the common junction may have substantially the same hydrophobicity. In one set of embodiments, a device may include a common junction of six or more channels, where a first fluid flows through one channel, a second fluid flows through two channels, and a third or carrying fluid flows through two more channels, such that a double emulsion of a first droplet of the first fluid, contained in a second droplet of the second fluid, contained by the carrying fluid, flows away from the common junction through a sixth channel.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: February 21, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Assaf Rotem, Adam R. Abate, Christian Holtze
  • Patent number: 9482651
    Abstract: The present invention relates to a method for producing a miniaturized separation column for chromatographic purposes including a porous stationary phase anchored in the column, including the following steps: (a) preparing a flat substrate of silicon, glass, glass ceramic or ceramic; (b) etching at least one channel structure into the flat substrate; (c) introducing a non-porous precursor material for the porous stationary phase into at least one portion of the channel structure (s); (d) forming a porous, three-dimensional network from the precursor material; and (e) fluid-tight covering of the channel structure(s) on the top side of the flat substrate.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: November 1, 2016
    Assignee: Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V.
    Inventors: Gundula Piechotta, Hans-Joachim Quenzer
  • Patent number: 9347931
    Abstract: The present invention is directed to a lateral flow assay device for the monitoring and measuring of coagulation and method thereof. Ideally, the invention is directed to a lateral capillary flow device for the monitoring and/or measurement of coagulation in a liquid sample wherein the device comprises a non-porous substrate with a zone for receiving a sample and a defined flow path zone wherein a clotting agent is deposited on at least part of the defined flow path zone to accelerate the coagulation of the liquid sample, enable the formation of an evenly distributed clot along the defined flow path zone and to result in the change in flow rate or cessation of flow of the liquid sample along the defined flow path zone.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 24, 2016
    Assignees: DUBLIN CITY UNIVERSITY, ÅMIC AB
    Inventors: Anthony Joseph Killard, Magdalena Maria Dudek, Brian MacCraith, Ib Mendel-Hartvig, Ove Öhman
  • Patent number: 9238206
    Abstract: The present invention generally relates to emulsions, and more particularly, to double and other multiple emulsions. Certain aspects of the present invention are generally directed to the creation of double emulsions and other multiple emulsions at a common junction of microfluidic channels. In some cases, the microfluidic channels at the common junction may have substantially the same hydrophobicity. In one set of embodiments, a device may include a common junction of six or more channels, where a first fluid flows through one channel, a second fluid flows through two channels, and a third or carrying fluid flows through two more channels, such that a double emulsion of a first droplet of the first fluid, contained in a second droplet of the second fluid, contained by the carrying fluid, flows away from the common junction through a sixth channel.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: January 19, 2016
    Assignees: President and Fellows of Harvard College, BASF SE
    Inventors: Assaf Rotem, David A. Weitz, Adam R. Abate, Christian Holtze
  • Patent number: 9217733
    Abstract: A method and system for detecting residual poison in human body are provided. Using the disclosed HPLC-Chip-mass spectrometry (MS)/MS and/or HPLC-MS/MS method to detect the residual poison, the method of the present invention mainly includes sample preparation, liquid chromatography and mass spectrometry. The method of the present invention has advantages of low sample size, high specificity, low detection limit, high sensitivity, low cost, high accuracy and stability, etc.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: December 22, 2015
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Karl Wah Keung Tsim, Tina Tingxia Dong, Kevin Yue Zhu, Ka Wing Leung, Tiejie Wang
  • Patent number: 9029162
    Abstract: Disclosed are methods and systems for the analysis of testosterone in a sample using supported liquid extraction and liquid chromatography-mass spectrometry.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 12, 2015
    Assignee: Laboratory Corporation of America Holdings
    Inventors: Russell Philip Grant, Matthew Crawford, Donald Walt Chandler, William Curtin
  • Publication number: 20150118675
    Abstract: The present invention provides an immunochromatography detection method capable of suppressing non-specific reactions. The present invention relates to an immunochromatography detection method including: a step of adding an analyte dilution solution containing an analyte to a chromatography medium; a step of recognizing a detection target by a labeling substance modified with gold nanoparticles, which is dry-retained at a labeling substance retaining part; a step of developing a composite of the labeling substance and the detection target as a mobile phase; and a step of detecting the detection target in the developed mobile phase at a judgment part, wherein the labeling substance is protected with a polyalkylene glycol having one or more mercapto groups and/or a derivative thereof and then dry-retained together with arginine and casein at the labeling substance retaining part.
    Type: Application
    Filed: March 13, 2013
    Publication date: April 30, 2015
    Inventor: Daisuke Ito
  • Patent number: 9005526
    Abstract: A polymer-based PLOT capillary column prepared by in situ copolymerization of a functional monomer and a crosslinking monomer, which enhances the strength of the polymer matrix, is disclosed. Also disclosed is a system comprising the polymer-based PLOT column coupled to a mass flow or concentration sensitive detector, for carrying out a chemical analysis method on samples separated by liquid chromatography using the column, and a process for using the system. Columns of the invention can be prepared in a robust fashion with a very narrow i.d., e.g., 5-15 ?m. Thus, they are suitable for commercial use in ultratrace LC/MS proteomic analysis. Columns according to the invention are characterized by high resolving power and high column-to-column reproducibility. When these columns are coupled on-line with, e.g., ESI-MS detection, the resulting systems are capable of detecting the component parts of complex proteomic samples down to the low attomole to sub-attomole level.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: April 14, 2015
    Assignee: Northeastern University
    Inventors: Barry L. Karger, Jian Zhang
  • Patent number: 8999245
    Abstract: The disclosure describes a cascaded gas chromatograph including a first gas chromatograph having a first temperature control and a second gas chromatograph coupled to the first gas chromatograph. The first and second chromatographs have individual temperature controls that can be controlled independently of each other. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: April 7, 2015
    Assignee: Tricorn Tech Corporation
    Inventors: Li-Peng Wang, Chien-Lin Huang, Tsung-Kuan A. Chou
  • Patent number: 8985144
    Abstract: A plurality of suctioning flow paths for suctioning mobile phases meet each other at a meeting portion. The meeting portion is connected to an inlet flow path communicating with an inlet of a reciprocating pump. The suctioning flow paths are respectively provided with solenoid valves for opening and closing the respective flow paths. The suctioning flow paths are respectively provided with orifices between the solenoid valves and the meeting portion. The orifices are sections of the respective suctioning flow paths having smaller diameters.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 24, 2015
    Assignee: Shimadzu Corporation
    Inventors: Yoshiaki Aso, Fujio Inoue
  • Publication number: 20150079608
    Abstract: A method for detecting or quantifying an analyte, using a test strip for lateral flow type chromatography which contains a membrane and a detection part on which a capturing ligand that is to specifically bind to the analyte has been fixed on the membrane, includes: bringing an analyte contained in a sample into contact with a labeled ligand labeled with a phosphor that is to be excited by light having a wavelength from 600 nm to 800 nm to generate fluorescence, bringing a complex containing the analyte and the labeled ligand into contact with a capturing ligand at the detection part, and irradiating on the test strip light having a wavelength from 600 nm to 800 nm as an excitation light for the phosphor contained in the complex to generate fluorescence from the phosphor, and measuring a fluorescence intensity of the fluorescence.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 19, 2015
    Applicants: ADTEC, INC., KONICA MINOLTA, INC.
    Inventors: Tsuruki Tamura, Katsuyoshi Takayama
  • Publication number: 20150079623
    Abstract: The apparatus for analyzing a disease sample according to the present invention includes: a member for separating and quantitatively determining an amino acid stereoisomer in a biological material from a subject; a member for obtaining a disease state index value through a calculation by substituting the amount of the amino acid stereoisomer into a discriminant equation; and a member for outputting disease state information on the subject on the basis of the disease state index value. The method for analyzing a disease sample according to the present invention includes: a step of measuring the amount of amino acid stereoisomers in a biological material from a subject; a step of obtaining a disease state index value through a calculation by substituting the amount of the amino acid stereoisomers into a discriminant equation; and the like.
    Type: Application
    Filed: March 18, 2013
    Publication date: March 19, 2015
    Inventors: Kenji Hamase, Yousuke Toujo, Masashi Mita, Chieko Mizumoto
  • Patent number: 8980572
    Abstract: A method for generating and localizing a signal in a solid phase substrate detection system comprises applying a solution of target material to a substrate; binding the target with a specific affinity molecule having an attached label, the label comprising multiple signal precursor molecules; applying a carrier to the substrate, and treating the label to convert the signal precursor molecules to signal generating molecules. The carrier comprises solvent for the label and thickener for localizing the signal. The carrier may include developer that converts signal precursor molecules to signal generating molecules. Developer is not necessary if the signal precursor molecules are converted to signal generating molecules by e.g. temperature change, pH change, sonication, light irradiation, microwave heating. A test device for detecting target in a fluid sample, and a kit of parts for determining the presence of target in a fluid sample are also disclosed.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 17, 2015
    Assignee: Supernova Diagnostics, Inc.
    Inventors: Ling Wai Wong, Pui Yee Cangel Chan, Wing Cheung Mak, King Keung Sin, Reinhard Renneberg
  • Patent number: 8968560
    Abstract: Methods and related apparatuses and mixtures are described for chromatographic analysis. The described system includes a pressurized source of a mobile phase and a flow path in fluid communication with the pressurized source such that the mobile phase flows through the flow path. The system also includes an injector in fluid communication with the flow path and downstream of the pressurized source, the injector being configured to inject a sample into the flow path. A first column located downstream of the injector, contains a stationary phase, and forms part of the flow path. A first detector is positioned to detect properties of fluid in the flow path at a location downstream of the injector and upstream from the first column. A second detector is positioned to detect properties of fluid in the flow path at a location downstream of the first column.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: March 3, 2015
    Assignee: Schlumberger Technology Corporation
    Inventor: William H. Steinecker
  • Publication number: 20150056688
    Abstract: Systems include test cells with sorbent material in a T-shape and defining a first flow path for a solution and a second flow path for a sample, and a test line or test site with immobilized antigens or antibodies or other ligand binding molecules located at the junction of the T. A housing houses the sorbent material and defines a first hole adjacent an end of the first flow path for receiving the solution and a second hole adjacent an end of the second flow path for receiving the sample.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Applicant: CHEMBIO DIAGNOSTICS SYSTEMS, INC.
    Inventor: Javanbakhsh Esfandiari
  • Patent number: 8963077
    Abstract: Provided are methods for determining the amount of reverse T3 in a sample using mass spectrometry. The methods generally involve ionizing reverse T3 in a sample and detecting and quantifying the amount of the ion to determine the amount of reverse T3 in the sample.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: February 24, 2015
    Assignee: Quest Diagnostics Investments, Inc.
    Inventors: J. Fred Banks, Peter P. Chou, Noriya M. Matt
  • Patent number: 8959984
    Abstract: This invention relates to methods for the evaluation and/or quantification of the binding affinity of small molecules or other compounds to target components contained within an analyte, such as target proteins contained within the proteome of a cell or tissue.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 24, 2015
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften E.V.
    Inventors: Henrik Daub, Michaela Bairlein, Kirti Sharma, Klaus Godl, Andreas Tebbe, Christoph Weber
  • Patent number: 8961764
    Abstract: A DNA analyzer includes an interface for coupling a microfluidic chip to the DNA analyzer. The microfluidic chip includes a first separation channel for electrophoretic separation of DNA fragments in a first sample. Further, the DNA analyzer includes a first optical device. The first optical device includes an illuminating path and a detecting path. The illuminating path directs a first input light beam received from a light source to a first separation channel of the microfluidic chip. The first input light beam causes fluorescent labels attached on DNA fragments in the first separation channel to emit a first fluorescence light. The detecting path collects and directs the first fluorescent light to a first plurality of optical fibers. Further, the DNA analyzer includes a spectrometer configured to receive the first fluorescent light from the plurality of optical fibers and detect fluorescent components in the first fluorescent light.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 24, 2015
    Assignees: Lockheed Martin Corporation, ZyGEM Corporation, Ltd.
    Inventors: Peter Karl Trost, Michael E. Egan, Doug South, Brian E. Root, Orion N. Scott, James P. Landers
  • Publication number: 20150024514
    Abstract: The present invention relates to a method for determining analytes and to a device suitable for this purpose.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 22, 2015
    Applicant: SECURETEC DETEKTIONS-SYSTEME AG
    Inventors: Torsten Stadthagen, Frank Schwieger, Sebastian Klaus
  • Patent number: 8932524
    Abstract: A stationary medium is employed both to separate chemicals from a sample solution and also to generate surface-enhanced Raman scattering, so that spectral analysis of the separated analyte chemical can be performed. Applied driving force causes the sample to flow into the stationary medium and to distribute therethrough, thereby causing rapid separation of the analyte chemical, and surface-enhanced Raman scattered radiation is quickly detected, at a plurality of locations along a flow path defined by the stationary medium, for ultimate analysis.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: January 13, 2015
    Assignee: Real-Time Analyzers, Inc.
    Inventors: Stuart Farquharson, Paul Maksymiuk, Chetan S. Shende
  • Publication number: 20150011016
    Abstract: A pipette tip device for use in dispersive SPE. The device includes a pipette tip having a lower barrier, loose sorbent that is freely moveable during the extraction process, and a baffle system that is shaped to disrupt the flow of liquid sample that is aspirated into the pipette tip. The baffle system includes an insert that may be separate from or monolithic with the interior of the pipette tip.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 8, 2015
    Inventor: William E. Brewer
  • Patent number: 8920658
    Abstract: Methods and apparatus for desolvating flowing liquid streams while retaining temporal resolution of dissolved substrates are disclosed. A novel small-scale self-regulating spray dryer preserves temporal resolution while desolvating a liquid chromatography eluent stream and depositing the solute onto an optical surface for infrared spectrographic analysis. The liquid eluent is pumped through a heated nebulizer to create a high-speed jet of solute containing liquid and solvent vapor. This jet is directed circumferentially inside a hot cylindrical cavity. Centrifugal force causes the larger liquid droplets to travel along the outer diameter of the cavity. The cavity surface is heated to cause the droplets to film boil. Film boiling reduces droplet contact with the cavity surface thereby retaining the solute in the droplets. The solute temperature is limited by controlling the pressure into which the solvent evaporates from the droplets.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: December 30, 2014
    Assignee: Spectra Analysis Instruments, Inc.
    Inventors: William W. Carson, Sidney Bourne