Ion Selective Electrode Patents (Class 422/82.03)
  • Patent number: 11360065
    Abstract: Techniques are disclosed for calibration systems and methods for analyte detectors. In one example, a system may include a calibration device configured to operate with an analyte detector. The calibration device may include a chamber configured to receive a sample and pass at least a portion of the sample including analytes to the analyte detector for examination. The calibration device may further include a reservoir including a calibrant and configured to be selectively positioned in the chamber as the sample to provide the portion of the sample including the analytes to calibrate the analyte detector. Additional systems and related methods are provided.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: June 14, 2022
    Assignee: Teledyne FLIR Detection, Inc.
    Inventors: John B. Lynch, Martin Sanders, Chris Willis
  • Patent number: 10710079
    Abstract: A scanning micro-fluid device for an exchange of species with a surface and with an intermediate immersion liquid is disclosed. The device comprises a first and a second micro-channel comprising a fluid. The first micro-channel comprises a first aperture and the second micro-channel comprises a second aperture. They have a distance to each other in an apex area in proximity of the surface of a substrate. The surface, the apex area is immersed with the intermediate immersion liquid. The device also comprises a first electrode reaching into the fluid on the first micro-channel and a second electrode reaching into the fluid on the second micro-channel, and an apex electrode. Different voltage levels are applicable to the first, the second and the apex electrode such that species are interacting at surface of the substrate.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: July 14, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, Technion Research and Development Foundation Ltd.
    Inventors: Govind Kaigala, Nadya Ostromohov, Moran Bercovici
  • Patent number: 10274451
    Abstract: This work provides an affordable approach for detecting environmental contaminants (e.g., arsenic in groundwater). Electro-chemical analysis of a sample is performed using a disposable three-electrode sensor that can be connected to an electrochemical analyzer (which is not disposable). The disposable sensor has a sample chamber to admit a liquid sample. The sensor includes a substrate disposed within the sample chamber that includes at least one conditioning reagent to condition the sample for electrochemical analysis. Analysis results can be displayed via a mobile device application.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: April 30, 2019
    Assignee: Santa Clara University
    Inventors: Unyoung Kim, Silvia Figueira, Shoba Krishnan
  • Patent number: 9551707
    Abstract: A nanopore structure includes an aperture extending from a first surface to a second surface of a substrate, the aperture having a wall comprising gold ions embedded in the substrate, the wall defining a first diameter; a first deoxyribonucleic acid (DNA) layer including a thiolated DNA strand covalently bonded to the embedded gold ions within the wall of the aperture; and a second DNA layer hydrogen bonded to the first DNA layer, the second DNA layer defines a substantially cylindrical nanopore that defines a second diameter within the wall of the aperture, the second DNA layer including a single-stranded DNA strand; wherein the second diameter is less than the first diameter.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, Joshua T. Smith
  • Patent number: 9543118
    Abstract: A nanopore structure includes an aperture extending from a first surface to a second surface of a substrate, the aperture having a wall comprising gold ions embedded in the substrate, the wall defining a first diameter; a first deoxyribonucleic acid (DNA) layer including a thiolated DNA strand covalently bonded to the embedded gold ions within the wall of the aperture; and a second DNA layer hydrogen bonded to the first DNA layer, the second DNA layer defines a substantially cylindrical nanopore that defines a second diameter within the wall of the aperture, the second DNA layer including a single-stranded DNA strand; wherein the second diameter is less than the first diameter.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: January 10, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann Astier, Joshua T. Smith
  • Patent number: 9045840
    Abstract: Methods, systems, and apparatus for plating a metal onto a work piece are described. In one aspect, an apparatus includes a plating chamber, a substrate holder, an anode chamber housing an anode, and an ionically resistive ionically permeable element positioned between a substrate and the anode chamber during electroplating. The anode chamber may be movable with respect to the ionically resistive ionically permeable element to vary a distance between the anode chamber and the ionically resistive ionically permeable element during electroplating. The anode chamber may include an insulating shield oriented between the anode and the ionically resistive ionically permeable element, with opening in a central region of the insulating shield.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: June 2, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: David W. Porter, Jonathan D. Reid, Frederick D. Wilmot
  • Publication number: 20150125872
    Abstract: The present disclosure provides a device, such as a FET sensing cell, which includes a first dielectric layer over a substrate, an active layer over the first dielectric layer, a source region in the active layer, a drain region in the active layer, a channel region in the active layer situated between the source region and the drain region, a sensing film over the channel region, a second dielectric layer over the active layer, wherein an opening is formed in the second dielectric layer and the sensing film is located within the opening, a first electrode located within the second dielectric layer and a fluidic gate region located over the second dielectric layer and extending into the opening. The present disclosure also provides a method for improving the sensitivity of a device by adjusting a sensing value.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Chin-Hua Wen, Chun-wen Cheng, Yi-Shao Liu
  • Patent number: 8986981
    Abstract: The use of ion sensitive field effect transistor (ISFET) to detect methylated nucleotides in a DNA sample is described. A method of detecting methylated nucleotides in a DNA sample may include the steps of treating a sample of DNA with a reagent which discriminates between methylated and non-methylated nucleotides to provide treated DNA, amplifying the treated DNA and optionally sequencing the amplified DNA. An ISFET is used to monitor the addition of one or more dNTPs in the strand extension reactions during the amplification and/or sequencing step. Suitable apparatus is also provided.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Oncu Limited
    Inventors: Christofer Toumazou, Melpomeni Kalofonou
  • Patent number: 8969100
    Abstract: Regions where metastatic cancer cells can exist are detected with high accuracy in a sentinel lymph node. Quantum dots are injected into the vicinity of a cancer in a living body, thereby identifying the location of the sentinel lymph node by means of fluorescence. Subsequently, the sentinel lymph node is extracted. With respect to the sentinel lymph node extracted with quantum dots injected, structural analysis is conducted by means of precision fluorescence measurement which uses a confocal fluorescence microscope for monomolecular observation. Specifically, the fluorescence intensity is measured with respect to each of multiple areas in the sentinel lymph nodes, and out of the multiple areas measured, one or more areas are detected as afferent lymph vessel inflow regions in descending order of fluorescence intensity.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: March 3, 2015
    Assignees: Tohoku University, Konica Minolta Medical & Graphic, Inc.
    Inventors: Makoto Hikage, Kohsuke Gonda, Motohiro Takeda, Takashi Kamei, Noriaki Ohuchi, Hideki Gouda, Yasushi Nakano
  • Patent number: 8961759
    Abstract: A microfluidic sensor device includes a substrate having patterned thereon at least one Ag/AgCl electrode (working electrode) and an inner chamber overlying the at least one Ag/AgCl electrode. The device includes an ion selective permeable membrane permeable to TPP+ disposed on one side of the first chamber and a sensing chamber overlying the ion selective permeable membrane. A separate reference electrode is inserted into the sensing chamber. The working electrode and reference electrode are coupled to a voltmeter to measure voltage. This voltage can then be translated into a TPP+ concentration which is used to determine the mitochondrial membrane potential (??m).
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 24, 2015
    Assignee: The Regents of the University of California
    Inventors: Peter Burke, Tae-Sun Lim, Antonio Davila, Douglas C. Wallace, Katayoun Zand
  • Patent number: 8956519
    Abstract: Devices for detecting an analyte comprising a redox active analyte sensitive material on a working electrode and computer assisted signal acquisition and processing.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: February 17, 2015
    Assignee: Senova Systems, Inc.
    Inventors: Lee Leonard, Joseph A. Duimstra, Eric Lee, Mark Micklatcher, Victor Simonyi, Gregory G. Wildgoose, Joseph I. Keto, Anton Seidl
  • Patent number: 8932525
    Abstract: Described herein is an apparatus for characterizing an analyte in breath and related method. The apparatus comprises an interactant that is configured to interact with the analyte in breath to generate a change in thermal energy relative to a base thermal energy. The apparatus further comprises a piezoelectric system that is coupled to the interactant, comprises at least one piezoelectric material having a material property, and generates a signal that comprises information useful in characterizing the analyte in breath. The signal is in response to a change in a material property of the piezoelectric material. The change in the material property is in response to the change in thermal energy. The apparatus may be used for a variety of applications such as, for example, personal health monitoring, clinical diagnostics, safety and law enforcement monitoring, and others.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: January 13, 2015
    Assignee: Invoy Technologies, LLC
    Inventors: Lubna M. Ahmad, Srinivas Tadigadapa
  • Publication number: 20140348707
    Abstract: A sol-gel deposition technique that forms ion sensitive layers is compatible with CMOS fabrication methods and is applied to build sensors of concentrations of solutions of selected target ions. The ion sensitive sensor may be formed on an exposed portion of a signal trace of a printed circuit board. Additionally, the ion sensitive layer may be formed within an ion sensitive field effect transistor.
    Type: Application
    Filed: April 21, 2014
    Publication date: November 27, 2014
    Inventors: Oliver KING SMITH, Eric Kerstan HOOBLER
  • Patent number: 8890216
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: November 18, 2014
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson
  • Patent number: 8865071
    Abstract: A test tape device is disclosed herein for use with a replaceable analytical tape cassette, where the device includes a housing having a cassette compartment covered by a cassette door and a housing opening for sample application, a protective cover that can be moved between a closed position covering the housing opening and a release position allowing access to the housing opening and a door lock for retaining the cassette door in the closed position, wherein the protective cover is coupled with the door lock via an interlocking mechanism, such that the door lock can only be unlocked in the release position of the cover.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: October 21, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Hao-Chih Lin, Wen Tsung Wang
  • Patent number: 8821796
    Abstract: A mechanism is provided for sensing molecules. A twin-nanopore probe includes a first channel and a second channel. A first pressure-controlled reservoir is connected to the first channel to generate a positive pressure. A second pressure-controlled reservoir is connected to the second channel to generate a negative pressure. A container includes ionic solvent with molecules, and a tip of the twin-nanopore probe is submerged in the container of the ionic fluid with the molecules. The first channel, the second channel, the first pressure-controlled reservoir, and the second pressure-controlled reservoir are filled with the ionic fluid. The first pressure-controlled reservoir drives the ionic fluid out of the first channel and the second pressure-controlled reservoir draws in the ionic fluid with the molecules and solvent through the second channel. A flow of ionic current in the twin-nanopore probe is measured to differentiate the molecules that flow through the second channel.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventor: Hongbo Peng
  • Patent number: 8815078
    Abstract: Disclosed are a pH or concentration measuring device and a pH or concentration measuring method which enable measurement in the shortest possible time even in an object to be measured having low buffer capacity.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 26, 2014
    Assignee: National University Corporation Okayama University
    Inventors: Akira Yamada, Michihiro Nakamura, Satoshi Mohri, Keiji Naruse
  • Publication number: 20140206090
    Abstract: Silicon ions in an alkaline etchant solution are analyzed by acidifying a sample of the etchant solution, adding fluoride ions in excess of the concentration required to react with all of the silicon ions, and using a fluoride ion specific electrode (FISE) to detect free fluoride ions in the resulting test solution. Good sensitivity and precision are provided by using a relatively acidic test solution and only a slight excess of fluoride ions, and limiting the analysis range to the maximum expected silicon concentration in the etchant solution.
    Type: Application
    Filed: July 15, 2013
    Publication date: July 24, 2014
    Applicant: ECI TECHNOLOGY, INC.
    Inventors: Eugene Shalyt, Guang Liang, Peter Bratin
  • Patent number: 8781632
    Abstract: A method for analyzing a fluid containing one or more analytes of interest includes; measuring a plurality of properties of a sample fluid with unknown concentrations of the one or more analytes of interest; and using the measurements and a model of the relationship between the plurality of properties and concentrations of the one or more analytes to calculate the concentration of at least one of the analytes of interest. The model may be an artificial neural network. The method may be used to monitor the concentration of inhibitors of gas hydrate formation in a fluid. Apparatus for use in the method is also provided.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: July 15, 2014
    Assignee: Heriot-Watt University
    Inventors: Bahman Tohidi, Jinhai Yang, Antonin Chapoy
  • Patent number: 8772698
    Abstract: A floating electrode is used to detect ions in close proximity to the electrode. The electrode is charge coupled to other electrodes and to other transistors to form a pixel that can be placed into an array for addressable readout. It is possible to obtain gain by accumulating charge into another electrode or onto a floating diffusion (FD) node or directly onto the column line. It is desirable to achieve both a reduction in pixel size as well as increase in signal level. To reduce pixel size, ancillary transistors may be eliminated and a charge storage node with certain activation and deactivation sequences may be used.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 8, 2014
    Assignee: Life Technologies Corporation
    Inventors: Keith Fife, Mark Milgrew
  • Patent number: 8765060
    Abstract: A device for detecting an analyte present in a fluid includes a fluorous sensing phase into which the analyte enters selectively in comparison with other components of the fluid.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: July 1, 2014
    Assignee: Regents of the University of Minnesota
    Inventors: Philippe Buhlmann, Paul G. Boswell
  • Patent number: 8765058
    Abstract: The invention concerns an analyzer, typically for analyzing body fluids, which has one or several exchangeable cassettes (consumables) that contain operating liquids, operating materials and/or consumables and can be inserted into corresponding holders of the analyzer, wherein the analyzer has a system for exchanging ambient air which has a filter unit on the inlet side of the analyzer to filter the ambient air that needs to be exchanged. The filter unit is integrated into at least one of the exchangeable cassettes in order to minimize the amount of maintenance for the analyzer.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Wolfgang Sprengers, Berndt Ebner, Andreas Riegelnegg
  • Patent number: 8758584
    Abstract: Systems and methods are provided for detecting the presence of an analyte in a sample. A solid state electrochemical sensor can include a redox active moiety having an oxidation and/or reduction potential that is sensitive to the presence of an analyte immobilized over a surface of a working electrode. A redox active moiety having an oxidation and/or reduction potential that is insensitive to the presence of the analyte can be used for reference. Voltammetric measurements made using such systems can accurately determine the presence and/or concentration of the analyte in the sample. The solid state electrochemical sensor can be robust and not require calibration or re-calibration.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: June 24, 2014
    Assignee: Sensor Innovations, Inc.
    Inventors: Carolyn R. Kahn, Elicia Wong, James A. Wilkins, Vern Norviel
  • Patent number: 8721964
    Abstract: An animal blood cell measuring apparatus comprising: a specimen preparation section for preparing a measurement specimen from blood of an animal; a characteristic information obtaining section for obtaining characteristic information indicating a characteristic of the measurement specimen, from the measurement specimen prepared by the specimen preparation section; and a controller configured for performing operations comprising: (a) classifying aggregate reticulocytes contained in the blood from other blood cells, based on the characteristic information obtained by the characteristic information obtaining section; and (b) outputting information regarding a number of the classified aggregate reticulocytes.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 13, 2014
    Assignee: Sysmex Corporation
    Inventors: Yoichi Nakamura, Hideki Hirayama, Hideaki Matsumoto, Keiko Moriyama
  • Patent number: 8691152
    Abstract: A method of measuring an analyte in a biological fluid comprises applying an excitation signal having a DC component and an AC component. The AC and DC responses are measured; a corrected DC response is determined using the AC response; and a concentration of the analyte is determined based upon the corrected DC response. Other methods and devices are disclosed.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: April 8, 2014
    Assignees: Roche Operations Ltd., Roche Diagnostics Operations, Inc.
    Inventors: David W. Burke, Lance S. Kuhn, Terry A. Beaty, Vladimir Svetnik
  • Patent number: 8679408
    Abstract: The present invention provides an apparatus and method for measuring carbon (any one or all of TC, TOC, or TIC) in a sample matrix. In an embodiment, a method for measuring carbon in a sample composition is provided. The method comprises providing an apparatus comprising a reaction chamber and a diamond coated electrode, wherein the diamond coated electrode is doped with boron. The apparatus further comprises a detector. In addition, the method comprises contacting the sample composition with the electrode. The method further comprises applying an alternating current to the electrode at a sufficient voltage to produce carbon dioxide. Moreover, the method comprises measuring the amount of carbon dioxide produced.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: March 25, 2014
    Assignee: O.I. Corporation
    Inventors: Gary L. Erickson, Karl M. Williams
  • Patent number: 8663579
    Abstract: This invention provides a biological component-measuring device, enabling the operator to easily calibrate the entire device and capable of measuring biological components accurately, and a method for calibrating the device. The device measures a sample including a body fluid taken through a body fluid sampler by sending it with a pump through a sample channel to a sensor. The device further includes a calibrating liquid channel through which a calibrating liquid can be supplied to the sensor via the sample channel by a switching of a first flow path changeover valve placed in the sample channel at a location upstream of the pump and connected to the channel. The method includes introducing the calibrating liquid in the calibrating liquid channel, via other channels, into the sensor by switching the valve.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: March 4, 2014
    Assignee: Nikkiso Co., Ltd.
    Inventor: Motoaki Murakami
  • Publication number: 20140056763
    Abstract: A mechanism is provided for sensing molecules. A twin-nanopore probe includes a first channel and a second channel. A first pressure-controlled reservoir is connected to the first channel to generate a positive pressure. A second pressure-controlled reservoir is connected to the second channel to generate a negative pressure. A container includes ionic solvent with molecules, and a tip of the twin-nanopore probe is submerged in the container of the ionic fluid with the molecules. The first channel, the second channel, the first pressure-controlled reservoir, and the second pressure-controlled reservoir are filled with the ionic fluid. The first pressure-controlled reservoir drives the ionic fluid out of the first channel and the second pressure-controlled reservoir draws in the ionic fluid with the molecules and solvent through the second channel. A flow of ionic current in the twin-nanopore probe is measured to differentiate the molecules that flow through the second channel.
    Type: Application
    Filed: August 28, 2012
    Publication date: February 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Hongbo Peng
  • Patent number: 8647490
    Abstract: The present invention relates to a method for manufacturing a micro wire, a sensor including the micro wire, and a method for manufacturing the sensor, having improved production efficiency. According to an embodiment of the present invention, a method for manufacturing a micro wire includes applying a three-dimensional electric field to a solution for forming a micro wire. The method for manufacturing the micro wire may further include providing an electrode assembly comprising a substrate, a first electrode and a second electrode formed on the substrate, and providing the solution to a space. The first electrode and the second electrode may form the space therebetween, and the space may have a first width and a second width that is smaller than the first width. The three-dimensional electric field is applied to the solution by applying a voltage to the first electrode and the second electrode.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: February 11, 2014
    Assignee: Postech Academy-Industry Foundation
    Inventors: WooSeok Choi, Guenbae Lim, Tae-Chang An
  • Patent number: 8647577
    Abstract: The described embodiments may provide a method of fabricating a chemical detection device. The method may comprise forming a microwell above a CMOS device. The microwell may comprise a bottom surface and sidewalls. The method may further comprise applying a first chemical to be selectively attached to the bottom surface of the microwell, forming a metal oxide layer on the sidewalls of the microwell, and applying a second chemical to be selectively attached to the sidewalls of the microwell. The second chemical may lack an affinity to the first chemical.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: February 11, 2014
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, John Matthew Mauro, Shifeng Li, James Bustillo
  • Publication number: 20140024073
    Abstract: A method and apparatus for observing a biological microelectromechanical systems response to a fluid including combining an activator and a fluid wherein the fluid comprises a component from a subterranean formation, exposing the combined activator and fluid to a sensor in a wellbore to observe a biological microelectromechanical systems response, and integrating data from the observing with petrophysical data. A method and apparatus for observing a biological microelectromechanical systems response to a fluid including a housing comprising a biological microelectromechanical observation material, a signal analyzer in communication with the material, and a fluid preparation device positioned to allow fluid to flow to the surface, wherein the fluid comprises a component from a subterranean formation.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: OLEG ZHDANEEV, BRADLEY KAANTA, HUA CHEN
  • Patent number: 8617468
    Abstract: An assembly for testing platelet aggregation including an electrode subassembly that is mounted in a cuvette subassembly for use with relatively small samples containing platelets.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 31, 2013
    Assignee: Chrono-Log Corporation
    Inventors: Andrew Roth, Nicholas J. Veriabo
  • Patent number: 8609427
    Abstract: A sulfur dioxide sensor comprising a first beam having a functionalized sensing surface capable of sensing sulfur dioxide, the first beam capable of producing a first resonant frequency; and a second beam having a functionalized reference surface not capable of sensing sulfur dioxide, the second beam capable of producing a second resonant frequency, wherein differential sensing of sulfur dioxide may be performed, further wherein the first beam is functionalized with a liquid phase of a first polymeric compound and the second beam is functionalized with a liquid phase of a second polymeric compound is provided. In one embodiment, the sensor is a nano-sensor capable of low drift accurately detecting sulfur dioxide levels at the zeptograms level. Methods of making and using a sulfur dioxide sensor are also provided.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: December 17, 2013
    Assignee: Honeywell Romania s.r.l.
    Inventors: Bogdan Catalin Serban, Cornel P. Cobianu, Mihai N. Mihaila, Viorel Georgel Dumitru
  • Patent number: 8574510
    Abstract: In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor has a base with first and second ends, a concave recess in the first end, a second end receiving surface, and a sidewall extending between the ends. An electrode may be provided on the receiving surface with an electrochemically-active region coupled to the electrode. A conductor in electrical contact with the electrode may extend along the sidewall and may be adapted to be in electrical contact with a first contact of an analyte meter. Manufacturing methods and systems utilizing and dispensing the analyte sensors are provided, as are numerous other aspects.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 5, 2013
    Assignee: Bayer Healthcare LLC
    Inventors: Igor Gofman, Robert S. Sams
  • Patent number: 8563319
    Abstract: A nitrogen dioxide sensor comprising a first beam having a first functionalized sensing surface capable of sensing nitrogen dioxide, the first beam capable of producing a first resonant frequency; and a second beam having a second functionalized reference surface not capable of sensing nitrogen dioxide, the second beam capable of producing a second resonant frequency, wherein differential sensing of nitrogen dioxide may be performed, further wherein the first beam and the second beam are each functionalized with one or more soft bases having comparable viscoelastic properties is provided. In one embodiment, the sensor is a nano-sensor capable of low drift and accurate detection of nitrogen dioxide levels at the zeptogram level. Methods of making and using a nitrogen dioxide sensor are also provided.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 22, 2013
    Assignee: Honeywell Romania S.R.L.
    Inventors: Bogdan Catalin Serban, Cornel P. Cobianu, Mihai N. Mihaila, Viorel Georgel Dumitru, Octavian Buiu
  • Publication number: 20130273664
    Abstract: There is provided a semiconductor device for detecting a change in ion concentration of a sample and method of using same. The device comprises a plurality of Field Effect Transistors (FETs) coupled to a common floating gate and an ion sensing layer exposed to the sample and coupled to the floating gate. There may be other input voltages coupled to the floating gate.
    Type: Application
    Filed: October 10, 2011
    Publication date: October 17, 2013
    Applicant: DNA Electronics Limited
    Inventors: Christofer Toumazou, Abdulrahman Al-Ahdal
  • Patent number: 8545759
    Abstract: A pair or receptacles capable of housing an emitter probe and a detector probe are installed inside a bioreactor to monitor the properties of the nutrient media without contacting the nutrient media.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 1, 2013
    Assignee: Therapeutic Proteins International, LLC
    Inventor: Sarfaraz Niazi
  • Publication number: 20130220375
    Abstract: The invention proposes a pH monitoring device 10 comprising a chamber 107 for containing a solution; a polymer 105 being immersed in the solution, wherein the physical state of the polymer is changeable in dependence on whether the pH of the solution exceeds a threshold value; and a detector 109 for detecting the change of the physical state of the polymer.
    Type: Application
    Filed: November 10, 2011
    Publication date: August 29, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Jun Shi, Weiran Wang
  • Patent number: 8518329
    Abstract: A biosensor system incorporating CMOS integrated circuits. In one type of biosensor system, the biosensor system includes a silicon substrate. The biosensor system further includes active devices fabricated on the silicon substrate. Additionally, the biosensor system includes a plurality of metal layers stacked on top of the active devices. Furthermore, the biosensor system includes a passivation layer covering a top metal layer, where the passivation layer includes an opening configured to expose the top metal layer, where the opening is used as a sensing electrode. Additionally, the biosensor system includes a plurality of probes attached to the sensing electrode.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: August 27, 2013
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arjang Hassibi, Byungchul Jang, Arun Manickam
  • Publication number: 20130210128
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: March 12, 2013
    Publication date: August 15, 2013
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventor: Life Technologies Corporation
  • Patent number: 8506908
    Abstract: An electrochemical detection system having a disposable cartridge capable of performing a plurality of assay protocols is disclosed. The cartridge includes a blister pack for the long-term storage and controlled release of multiple reagents. The blister pack is bonded to and operatively associated with a fluidic backbone for providing the fluid pathways, storage capacity, and fluid control functions for performing multiple assay protocols. The cartridge further includes a plurality of sensors having a multiple electrode arrangement in operative association with a respective flow cell defined by the fluidic backbone. After the user has transferred a sample into the cartridge and engaged the cartridge to the reader, the reader operatively interfaces with the cartridge such that different assay protocols may be simultaneously performed in isolation from one another inside the cartridge. The reader may be one of many readers that operatively communicate data to a remote server for processing.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: August 13, 2013
    Assignee: Vantix Holdings Limited
    Inventors: Jim Benn, Bruce Carvalho, Andy Gover, Roger Morris
  • Patent number: 8486721
    Abstract: Methods and devices for reducing interference from leukocytes in an analyte immunoassay are provided. In one embodiment, a method is provided comprising the steps of amending a biological sample with magnetic sacrificial beads opsonized to leukocytes, binding leukocytes in the sample to the magnetic sacrificial beads, and magnetically retaining the beads out of contact from an immunosensor.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 16, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8470164
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 25, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo, John Leamon, Jonathan Schultz
  • Patent number: 8444937
    Abstract: A method and apparatus for near real-time in-situ soil solution measurements is presented. An outer sleeve is placed in soil where ionic concentrations of organic or inorganic species are to be measured. A porous section connects with the outer sleeve (the porous section initially loaded with distilled water) equilibrates with the solution present in soil pores to form a solution to be measured. The initial distilled water is displaced within the porous section by a removable plunger. After substantial equilibration of the solution to be measured within the apparatus, the plunger is removed and a removable probe replaced. The probe may be an Ion Selective Electrode, or a transflection dip probe. The probe then may be used under computer control for measurement of solution properties. The Ion Selective Electrode may measure nitrate (NO3?) concentrations. The transflection dip probe may be read with spectrometer with an input deuterium light source.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 21, 2013
    Assignee: The Regents of the University of California
    Inventors: Atac Tuli, Jan W. Hopmans, Tamir Kamai, Benjamin D. Shaw
  • Patent number: 8440062
    Abstract: A miniature, lightweight, inexpensive, environmental monitoring system containing a number of sensors that can simultaneously and continuously monitor fluorescence, absorbance, conductivity, temperature, and several ions. Sensors that monitor similar parameters can cross-check data to increase the likelihood that a problem with the water will be discovered.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 14, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: David A Kidwell
  • Publication number: 20130084214
    Abstract: An ion concentration meter measures a concentration of an ion in a solution by exposing both an ISFET gate and a reference electrode within a filtered test area. In preferred embodiments, the test area filters preferred compounds from a solution being tested by occluding an opening to the test area with a species-selective membrane. Contemplated species-selective membranes include silicate membranes, chalcogenide membranes, lanthanum fluoride membranes, and valinomycin membranes.
    Type: Application
    Filed: September 27, 2012
    Publication date: April 4, 2013
    Inventors: Frederick Quincy Johnson, Mark Bain, Henry Roskos
  • Patent number: 8398921
    Abstract: A chemical sensor using metal nano-particles and a method for manufacturing a chemical sensor using metal nano-particles are provided. The chemical sensor includes: metal nano-particles; single-ligand organic molecules (or a single molecule) that binds to the metal nano-particles by using a metal bonding functional group; a substrate bonding functional group formed at the metal nano-particles and the single-ligand organic molecules as bound to each other; a substrate; electrodes formed on the substrate and having an interdigitate (IDT) structure; and a substrate functional group formed on the substrate and positioned between the electrodes, wherein the substrate bonding functional group and the substrate functional group are covalently bonded.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 19, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Myung Lae Lee, Young Jun Kim, Sung Hae Jung, Ho Jun Ryu, Jong Moo Lee
  • Patent number: 8394325
    Abstract: Methods and devices for reducing interference from leukocytes in an analyte immunoassay are provided. In one embodiment, a method is provided comprising the steps of amending a biological sample with magnetic sacrificial beads opsonized to leukocytes, binding leukocytes in the sample to the magnetic sacrificial beads, and magnetically retaining the beads out of contact from an immunosensor.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 12, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8382968
    Abstract: A conductor/insulator/porous film device is provided which is used in electrochemiluminescence methods and instrumentation based on the chemical excitation of label molecules with subsequent measurement of the luminescence in order to quantitate analyte concentrations especially in bioaffinity assays.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: February 26, 2013
    Assignee: Labmaster Ltd.
    Inventors: Timo Väinö Kalevi Ala-Kleme, Jarkko Uolevi Eskola, Timo Kalevi Korpela, Sakari Mikael Kulmala, Piia Kaarina Mäkinen
  • Patent number: 8309368
    Abstract: A method and apparatus for the manipulation of colloidal particulates and biomolecules at the interface between an insulating electrode such as silicon oxide and an electrolyte solution. Light-controlled electrokinetic assembly of particles near surfaces relics on the combination of three functional elements: the AC electric field-induced assembly of planar aggregates; the patterning of the electrolyte/silicon oxide/silicon interface to exert spatial control over the assembly process; and the real-time control of the assembly process via external illumination. The present invention provides a set of fundamental operations enabling interactive control over the creation and placement of planar arrays of several types of particles and biomolecules and manipulation of array shape and size. The present invention enables sample preparation and handling for diagnostic assays and biochemical analysis in an array format, and the functional integration of these operations.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: November 13, 2012
    Assignee: BioArray Solutions, Ltd.
    Inventor: Michael Seul