Measuring Optical Property By Using Ultraviolet, Infrared, Or Visible Light Patents (Class 422/82.05)
  • Patent number: 8778687
    Abstract: A method and apparatus for determining the hematocrit of a blood sample disposed within an analysis chamber, the method including the steps of: a) imaging at least a portion of the sample that contains one or more red blood cells and one or more areas void of red blood cells; b) determining a representative optical density value for a plurality of image units optically aligned with portions of the red blood cells, and assigning an optical density first boundary value to those image units; c) determining a representative optical density value of a plurality of image units optically aligned with the one or more regions of the sample devoid of red blood cells, and assigning a second optical density boundary value to those image units; and d) determining the hematocrit of the sample.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 15, 2014
    Assignee: Abbott Point of Care, Inc.
    Inventors: Robert A. Levine, Stephen C. Wardlaw, Darryn Unfricht, Niten V. Lalpuria
  • Patent number: 8778279
    Abstract: The present disclosure relates to microfluidic devices adapted for facilitating cytometry analysis of particles flowing therethrough. In certain embodiments, the microfluidic devices have onboard sterilization capabilities. In other embodiments, microfluidic devices have integral collection bags and methods for keeping the microfluidic channels clean.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: July 15, 2014
    Assignees: Sony Corporation, Sony Corporation of America
    Inventor: Gary P. Durack
  • Publication number: 20140194502
    Abstract: A method of diagnosing in a subject for the purpose of determining if the subject's gastrointestinal contents has entered the subject's respiratory tract. The qualitative analysis can be also expanded into quantitative analysis, enabling the estimation of either the concentration, or the amount, or both, of the gastrointestinal contents that entered the respiratory tract. The invention also provides methods of treatment based on the identification of aspiration using the methods of the invention.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: ARADIGM CORPORATION
    Inventor: Igor Gonda
  • Patent number: 8772039
    Abstract: Device, method, and computer program product for determining a material parameter of a blood coagulation cascade based on parameters of light diffused at a biofluid sample. In one example, the biofluid sample includes a blood sample. Laser light scattered by the sample is collected by the optical system in reflection and/or transmission mode. An image of the sample in so collected light is formed, and data representing fluctuations of laser speckle intensity with is processed to derive numerical descriptors associated with blood coagulation and fibrinolysis. In a specific case, such numerical descriptors are derived based on temporal dynamic of a viscoelastic characteristic of the blood sample.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 8, 2014
    Assignee: The General Hospital Corporation
    Inventor: Seemantini K. Nadkarni
  • Patent number: 8773658
    Abstract: A detection device includes a sensor chip, a suction section adapted to suck a fluid sample to the sensor chip, a light source adapted to irradiate the sensor chip, a light intensity adjustment section adapted to adjust intensity of the light, a light detection section adapted to detect the light reflecting the sample adsorbed to the sensor chip, and a control section adapted to perform drive control on the suction section. The control section sets the suction flow velocity to V1 in the first mode in which the light detection section performs the detection, and sets the suction flow velocity to V2 (V2>V1) in the second mode. The light intensity adjustment section sets the light intensity to L1 in the first mode, and sets the light intensity to L2 (L2>L1) in the second mode. The first and second modes are switched based on the signal from the light detection section.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: July 8, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Kohei Yamada, Yoshifumi Hano
  • Patent number: 8772040
    Abstract: An apparatus and method for platelet multi-function analysis using measurement of electrical characteristics, and a stirring microchip are provided. The apparatus for platelet multi-function analysis includes a stirring microchip that has a sample storage chamber formed therein to hold a blood sample, and in which an inner part of the sample storage chamber is coated with reagents composed of collagen and epinephrine, or collagen and ADP. The apparatus for platelet multi-function analysis further includes a microstirrer installed inside the stirring microchip to stir the blood sample and the reagents in the stirring microchip and a stirring induction unit configured to facilitate stirring of the microstirrer. Therefore, the platelet aggregation and multi-function analysis can be performed using a trace of blood, and the platelet aggregation and multi-function analysis can also be performed using the whole blood taken from the veins through a vacuum tube containing an anticoagulant.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 8, 2014
    Assignee: Korea University Research and Business Foundation
    Inventors: Se Hyun Shin, Jeong Hun Nam, Hyun Jung Lim
  • Patent number: 8771597
    Abstract: The invention relates to an apparatus for the determination of a concentration of a component to be measured in a gas, comprising a light source, a wavelength selection unit, a measurement cuvette, a reference cuvette arranged in the optical beam path in parallel thereto, at least one light receiver and an evaluation unit which determines the concentration from the signals of the light receiver, wherein the gas to be analyzed is supplied to the measurement cuvette, on the one hand, and, on the other hand, to the reference cuvette via an absorption apparatus which includes a substance which completely absorbs the component to be measured. Further, the component to be measured is H2S and a wavelength selection unit is provided for the selection of an absorption wavelength.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: July 8, 2014
    Assignee: SICK AG
    Inventors: Michael Zochbauer, Carsten Rogge, Dominikus Huttner
  • Publication number: 20140186218
    Abstract: The present invention concerns an apparatus for staining tissue samples, said apparatus including a reagent section or reagent containers; at least one staining section or tissue samples, a robotic head or robotic element that may move reagent to a predetermined tissue sample, said robotic element being moveable above the reagent and the staining sections, a control element that may manage a staining process, a 2-D optical sensor to detect two-dimensional image data of a relevant property and that can feed the captured image data to the control element. By providing the robotic element with a 2-D optical sensor, a common image processor may be provided having multiple functions. By using a 2-D optical image processing system, the control system of the apparatus may easily be adapted to read various types of data presentations, just as actual images for sections of the apparatus may be identified in order to assess the condition of the apparatus.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 3, 2014
    Applicant: DAKO DENMARK A/S
    Inventors: Doug SWEET, Marc KEY, Gordon FEINGOLD, Kristopher BUCHANAN, Bob LATHROP, John FAVUZZI
  • Patent number: 8765482
    Abstract: A test strip with a sample chamber is secured to a meter. The sample chamber in the portion of the test strip that extends out of the meter is illuminated by transmitting light from a light source inside the meter internally through the test strip towards the sample chamber. By way of analogy, the test strip acts in a fashion similar to a fiber optic cable or optical wave guide by transmitting the light from the meter to the remotely located sample chamber that extends outside the meter. The user is then able to easily see the sample chamber of the test strip in dark conditions so that the user is able to readily align the sample chamber with the drop of fluid on the skin as well as view the sample chamber in order to ensure proper filling. The light also illuminates a test strip slot into which the test strip is inserted.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 1, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Abner D. Joseph, Brian A. Heald
  • Patent number: 8765061
    Abstract: Disclosed are systems and methods for inspecting and monitoring an inner surface of a pipeline. One system includes a pig arranged within the pipeline and having a housing that defines a conduit therein for providing fluid communication through the pig, one or more optical computing devices arranged on the conduit for monitoring a bypass fluid flowing through the conduit. The one or more optical computing devices including at least one integrated computational element configured to optically interact with the bypass fluid and generate optically interacted light, and at least one detector arranged to receive the optically interacted light and generate an output signal corresponding to a characteristic of the bypass fluid. A signal processor is communicably coupled to the at least one detector of each optical computing device for receiving the corresponding output signals and determining the characteristic of the fluid.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 1, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ola Tunheim, Robert P. Freese, Laurence James Abney, Christopher M. Jones, James Robert MacLennan
  • Patent number: 8765062
    Abstract: Systems and methods for analysis of samples, and in certain embodiments, microfluidic sample analyzers configured to receive a cassette containing a sample therein to perform an analysis of the sample are described. The microfluidic sample analyzers may be used to control fluid flow, mixing, and sample analysis in a variety of microfluidic systems such as microfluidic point-of-care diagnostic platforms. Advantageously, the microfluidic sample analyzers may be, in some embodiments, inexpensive, reduced in size compared to conventional bench top systems, and simple to use. Cassettes that can operate with the sample analyzers are also described.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 1, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: Vincent Linder, David Steinmiller, Jason Taylor
  • Patent number: 8765058
    Abstract: The invention concerns an analyzer, typically for analyzing body fluids, which has one or several exchangeable cassettes (consumables) that contain operating liquids, operating materials and/or consumables and can be inserted into corresponding holders of the analyzer, wherein the analyzer has a system for exchanging ambient air which has a filter unit on the inlet side of the analyzer to filter the ambient air that needs to be exchanged. The filter unit is integrated into at least one of the exchangeable cassettes in order to minimize the amount of maintenance for the analyzer.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 1, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Wolfgang Sprengers, Berndt Ebner, Andreas Riegelnegg
  • Patent number: 8765056
    Abstract: A method for detecting optical signals, a microfluidic mixing chip having light emitting compound and a system thereof are provided. The microfluidic mixing system comprises the microfluidic mixing chip, an electrode pairs and a power supplier. The microfluidic mixing chip comprises a first side cavity, a second side cavity and a mixing cavity. The mixing cavity is disposed between the first side cavity and the second side cavity. The mixing cavity further contains the light emitting compound, a catalyst and a redox reagent. The electrode pair is respectively disposed to the first side cavity and the second cavity. The power supplier supplies a power source with high frequency alternating current electric field. By utilizing the power source with alternating current electric field, the light emitting compound, the redox reagent and the catalyst are mixed in the mixing cavity to generate a chemiluminescence or bioluminescence optical signal to detect.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: July 1, 2014
    Assignee: National Chung Cheng University
    Inventors: Shau-Chun Wang, Pei-Ching Hung, Chun-Yi Yeh
  • Patent number: 8765484
    Abstract: The invention concerns a particle having a code embedded in its physical structure by refractive index changes between different regions of the particle. In preferred embodiments, a thin film possesses porosity that varies in a manner to produce a code detectable in the reflectivity spectrum.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Thomas Schmedake, Frederique Cunin, Jamie Link
  • Publication number: 20140179013
    Abstract: A method of analyzing a blood sample is provided. The method comprises providing a glucometer configured to analyze a blood sample and a remote computing device separate from the glucometer, analyzing, by the glucometer, the blood sample, and presenting, by the glucometer, encoded results. The encoded results may be presented as a machine-readable visually-encoded representation of one or more results of the analysis, in which case the method further comprises imaging, by the remote computing device, the representation. The encoded results may be presented as a capacitive profile, in which case the method further comprises reading, by a capacitive sensing input mechanism of the remote computing device, the capacitive profile. According to either option, the method further comprises decoding, by the remote computing device, the representation, thereby retrieving at least one of the results.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Inventors: DOV MORAN, YIFTAH BEN AHARON, ITAY COHEN, ROEE TUVAL
  • Patent number: 8758689
    Abstract: The present invention is capable of determining that a reaction region is in an abnormal reaction state precisely with high reproducibility, executing proper analysis processing in accordance with the determined a state of the reaction region, and efficiently analyzing a characteristic of the reaction region. The present invention obtains intensity values of first and second wavelength components by measurement of light emitted from the reaction region with a spectrometer. A relative intensity calculator calculates relative intensity of the first wavelength component relative to the second wavelength component from the intensity values of the first and second wavelength components. The apparatus determines whether or not the calculated relative intensity is a value within a predetermined range. An output portion provides notification that the state of the reaction region is a predetermined state when it is determined that the relative intensity is within the predetermined range.
    Type: Grant
    Filed: November 17, 2007
    Date of Patent: June 24, 2014
    Assignee: Imagineering, Inc.
    Inventors: Yuji Ikeda, Atsushi Nishiyama
  • Publication number: 20140170027
    Abstract: A control unit outputs measurement status information including the time up to the completion of creation of the calibration curve for each of the desired measurement items to a display unit. The output/display of the calibration curve data measurement status for each of the items enables the operator to be aware of information about a failure to set a standard solution or to request the setting of the standard solution and to recognize how long he or she will need to wait until the creation of the calibration curve begins. The operator can therefore know what can be done while waiting, thereby improving job efficiency.
    Type: Application
    Filed: July 9, 2012
    Publication date: June 19, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takashi Nakasawa, Yoichi Aruga
  • Publication number: 20140170026
    Abstract: There is provided a dispensing apparatus including a dispensing unit; and a drive mechanism. The dispensing unit is configured to support a dispensing nozzle, provide the dispensing nozzle with a material to be dispensed, and allow the dispensing nozzle to discharge the material. The drive mechanism is configured to change relative position between a stage and the dispensing nozzle in a second direction and a third direction, where the second direction is a horizontal direction when a first direction is substantially vertical direction, and the third direction is substantially perpendicular to the first direction and to the second direction.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 19, 2014
    Applicant: Sony Corporation
    Inventors: Hatsume Uno, Eriko Matsui, Shinsuke Haga, Teppei Toyoizumi
  • Patent number: 8753812
    Abstract: Methods for direct detection of chemical reactions are provided. Electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal. This technique may be adapted to other reaction determinations, such as enzymatic reactions, other electrode configurations, and other amplifying circuits.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: June 17, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Patent number: 8753574
    Abstract: This invention relates to a cartridge for an immunoassay test. The cartridge comprises (a) a probe well comprising a probe and a cap, the cap being in a closed position to enclose the probe in the probe well, wherein the probe has a bottom tip coated with analyte-binding molecules; (b) a sample well to receive a sample; (c) one or more reagent wells; (d) a plurality of wash wells each containing a first aqueous solution; and (e) a measurement well having a light transmissive bottom, the measurement well containing a second aqueous solution; wherein the openings of the sample well, reagent well, measurement well and wash wells are sealed. The present invention also relates to an apparatus for loading and releasing a probe. The apparatus comprises a push pin and a groove to load and transfer the probe to a plurality of locations, such as different wells in the above-mentioned cartridge, to conduct the immunoassay test.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: June 17, 2014
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Ming Xia, Yushan Tan, Jun Chen, Erhua Cao, Genqian Li, Robert F. Zuk
  • Patent number: 8753872
    Abstract: A method and apparatus for assay of multiple analytes. The method uses a sensing element comprising a substrate upon which is arranged a multiplicity of recognition elements, such that each element is laid out in a predetermined pattern. Each pattern is unique in that it can give rise to a characteristic diffraction pattern in the assay. The patterns may or may not be interpenetrating on the substrate surface. The method of detecting multiple analytes includes contacting the medium of analytes with the patterned substrate, illuminating the substrate by a light source, and detecting any resultant diffraction image. The pattern of diffraction and the intensity of the diffracted signal provides information about the existence of specific analytes and their quantification.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 17, 2014
    Assignee: Axela Inc.
    Inventors: M. Cynthia Goh, Jane B. Goh, Richard Mcaloney, Richard Loo
  • Patent number: 8753869
    Abstract: A cartridge for biochemical analysis includes a support, a structure, which is set on the support and contains wells for receiving a solution, and photodetectors on the support, in positions corresponding to respective wells.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: June 17, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Maria Eloisa Castagna, Giuseppe Catania, Salvatore Leonardi, Alberto Mario Piro
  • Publication number: 20140162372
    Abstract: Provided is a device for measuring electrolyte ions that is capable of providing a uniform pH environment in the region of an optode, and a method of measuring electrolyte ion concentration using the device.
    Type: Application
    Filed: November 15, 2013
    Publication date: June 12, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jin-young PARK, Youn-suk CHOI, Hye-jung SEO, Jae-yeon JUNG, Young-ki HAHN, Hyo-young JEONG, Joon-hyung LEE, Soo-suk LEE
  • Patent number: 8748191
    Abstract: Analytical systems and methods are provided for simultaneously dispensing metered volumes of fluids at different rates and mixing the fluids to generate a mixed sample having the fluids in proportion to the different rates at which they were dispensed. In some cases two or more of the fluids are premixed prior to mixing with other fluids. In some cases a use composition and diluent are simultaneously dispensed at different rates and premixed to form a diluted sample. One or more reagents may be mixed with the diluted sample and the sample mixture can be analyzed to determine characteristics of the use composition.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: June 10, 2014
    Assignee: Ecolab USA Inc.
    Inventors: Paul R. Kraus, William M. Christensen
  • Patent number: 8747747
    Abstract: A reader for mechanical actuation of fluids within a test cartridge. The instrument interface including multiple independently-controlled plungers aligned to respective fluidic pouches on a test cartridge that is inserted into a testing apparatus embodying the instrument interface. The plungers include tips for applying mechanical force to the respective fluidic pouches.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: June 10, 2014
    Assignee: Abbott Point of Care Inc.
    Inventor: Seth Hunter
  • Patent number: 8747773
    Abstract: Embodiments of the invention relate to portable detection apparatus, comprising one or more detector regions adapted to visually indicate the presence or amount of an analyte in a beverage. The detection apparatus is shaped substantially the same as a consumer product.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: June 10, 2014
    Inventor: Maryse Thomas
  • Patent number: 8748091
    Abstract: Methods of trapping a deformed portion of a double-stranded polynucleotide in a membrane nanopassage are provided. In an aspect, the membrane has a nanopassage that defines a confine region, wherein the membrane separates a first fluid compartment from a second fluid compartment, and the nanopassage is in fluid communication with the first and second compartments. A polynucleotide is provided to the first fluid compartment and optionally a threshold voltage for the membrane and the polynucleotide is determined. A driving voltage across the membrane that is greater than the threshold voltage is applied to force a portion of the polynucleotide sequence into the nanopassage confine region, and decreased to a holding voltage bias to trap the polynucleotide portion in the nanopassage confine region. In particular, at least one nucleotide base-pair is fixably positioned in the nanopassage confine volume. In further embodiments, any of the trapping methods are used to characterize or sequence double stranded DNA.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 10, 2014
    Assignees: The Board of Trustees of the University of Illinois, The John Hopkins University
    Inventors: Gregory Timp, Winston Timp, Utkur Mirsaidov, Aleksei Aksimentiev, Jeffrey Comer
  • Patent number: 8748183
    Abstract: A method of continuously verifying proper sort calibration in a droplet sorting flow cytometer by selecting a fraction of droplets estimated to have substantially zero probability of containing a particle; applying one charge of a set of charges to the selected droplets in order to form a test stream out of the selected droplets; illuminating the droplets in the test stream; and detecting any light emitted or scattered by any particles in the selected droplets.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: June 10, 2014
    Assignee: Inguran, LLC
    Inventors: Gary Durack, Jeffrey D. Wallace, Gary P. Vandre, Lon A. Westfall, Jeremy T. Hatcher, Niraj V. Nayak
  • Patent number: 8747779
    Abstract: A microfluidic cartridge including on-board dry reagents and microfluidic circuitry for determining a clinical analyte or analytes from a few microliters of liquid sample; with docking interface for use in a host workstation, the workstation including a pneumatic fluid controller and spectrophotometer for monitoring analytical reactions in the cartridge.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Micronics, Inc.
    Inventors: Isaac Sprague, John E. Emswiler, C. Frederick Battrell, Joan Haab, Sean M. Pennell, Justin L. Kay, Zane B. Miller, Troy D. Daiber
  • Patent number: 8741658
    Abstract: A method and devices analyze for the presence of cyanide in samples using colorimetric analysis of samples after contacting with cobinamide or monocyanocohinapmide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: June 3, 2014
    Assignees: The Regents of the University of California, Board of Regents, The University of Texas System
    Inventors: Gerry Boss, Vijay Sharma, Matthew Brenner, Purnendu K. Dasgupta, William Curt Blackledge
  • Patent number: 8735056
    Abstract: A new device capable of measuring the number of particles present in a colloidal suspension is disclosed, which includes a forward scatter detector, an extinction detector, a laser beam, a cylindrical lens with which to create a plane of light through which particles can pass, and the various pumps and tubing needed to pass the colloidal suspension through the plane of light. The device is particularly designed for measuring particles which have different refractive indices, and which are in the size range of between about 0.7 to 2 microns. The device can determine the presence or absence of biological particles of interest in a given sample, by incubating a sample with a given ratio of active particles and marker particles, and determining whether the ratio of active particles and marker particles has changed. Additional binding and/or non-binding particles can also be present, and kits including the particles are also disclosed.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 27, 2014
    Assignee: Invitrox, Inc.
    Inventors: Paul Toumbas, Don Gabriel
  • Patent number: 8735165
    Abstract: A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Purdue Research Foundation
    Inventors: Agbai Agwu Nnanna, Ahmed Hasnain Jalal
  • Patent number: 8735062
    Abstract: This invention relates to the detection and quantitation of target nucleic acids in a heterogeneous mixture in a sample and the methods of use thereof. The detection system includes a chemiluminescent molecule, a chemiluminescent substrate, a dye that is light responsive when intercalated into nucleic acids and nucleic acids. This invention is useful in any application where detection of a specific nucleic acid sequence is desirable, or where the detection of enzymes that modify nucleic acids is desirable such as diagnostics, research uses and industrial applications.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: May 27, 2014
    Assignee: Beacon Biotechnology LLC
    Inventors: Anthony West, Millard Gambrell Cull
  • Patent number: 8735161
    Abstract: The disclosure provides sensor for gas sensing including CO2 gas sensors comprising a porous framework sensing area for binding an analyte gas.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: May 27, 2014
    Assignees: The Regents of the University of California, BASF SE
    Inventors: Omar M. Yaghi, Alexander U. Czaja, Bo Wang, Kosmas Galatsis, Kang L. Wang, Hiroyasu Furukawa
  • Patent number: 8728399
    Abstract: The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: May 20, 2014
    Assignee: Lumencor, Inc.
    Inventors: Claudia B. Jaffe, Steven M. Jaffe, Michieal L. Jones
  • Patent number: 8728729
    Abstract: An apparatus and system are provided for simultaneously analyzing a plurality of analytes anchored to microparticles. Microparticles each having a uniform population of a single kind of analyte attached are disposed as a substantially immobilized planar array inside of a flow chamber where steps of an analytical process are carried out by delivering a sequence of processing reagents to the microparticles by a fluidic system under microprocessor control. In response to such process steps, an optical signal is generated at the surface of each microparticle which is characteristic of the interaction between the analyte carried by the microparticle and the delivered processing reagent. The plurality of analytes are simultaneously analyzed by collecting and recording images of the optical signals generated by all the microparticles in the planar array.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: May 20, 2014
    Assignee: Illumina, Inc.
    Inventors: John Bridgham, Kevin Corcoran, George Golda, Michael C. Pallas, Sydney Brenner
  • Patent number: 8728407
    Abstract: A holding device disposed in a bio-detecting instrument for holding a test strip is provided, wherein the holding device comprises a first casing, a second casing, an ejecting member, and an elastic member. The second casing is assembled with the first casing to form an accommodating space, wherein the sensing terminals are extended into the accommodating space. The ejecting member comprises a push rod configured to be reciprocated in the accommodating space. The elastic member is configured to be compressed by driving the ejecting member to an ejecting position, where the push rod enters the accommodating space and is adapted to push the test strip outward without being contact with the sensing terminals, and the elastic member is configured to be released by drawing the push rod back from the accommodating space to an initial position.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: May 20, 2014
    Assignee: Apex Biotechnology Corp.
    Inventors: Ming-Chang Hsu, Ming-Hsin Chuang, Mon-Wen Yang, Thomas Y. S. Shen
  • Publication number: 20140134711
    Abstract: A microstructured measurement chip (1) for optical measurement of properties of artificial or biological membranes (40), having a lower, translucent support layer (10) and at least one non-translucent main layer (20) disposed on top of the former, which layer has depressions (30) configured as measurement chambers, having an upper opening (25) and one or multiple inner side walls (26). In order to improve the measurement chip (1) in such a manner that biological systems can be measured with greater measurement accuracy and higher throughput, it is proposed that the side wall or the side walls (26) of the measurement chambers (30) have depressions (27) and/or elevations (28). The invention furthermore relates to a holder (200) for the measurement chips (1) as well as to a method for the production of the measurement chips (1) from a silicon wafer (300).
    Type: Application
    Filed: March 10, 2011
    Publication date: May 15, 2014
    Applicant: NANOSPOT GMBH
    Inventor: Guido Boese
  • Patent number: 8721968
    Abstract: An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 13, 2014
    Assignee: Fluidigm Corporation
    Inventors: Marc A. Unger, Geoffrey Richard Facer, Barry Clerkson, Christopher G. Cesar, Neil Switz
  • Patent number: 8721990
    Abstract: Disclosed is an assay device for the determination of the presence and/or extent if an analyte in a liquid sample over an extended concentration range comprising a first assay and a second assay, wherein the first assay for an analyte comprises a first flow-path having a sole detection zone capable of immobilizing a labelled binding reagent and the second assay for said analyte comprises a second flow-path having a sole detection zone capable of immobilizing a labelled binding reagent, wherein the presence of labelled binding reagent at the detection zones provides an indication of the presence and/or extent of analyte in said liquid sample.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: May 13, 2014
    Assignee: Alere Switzerland GmbH
    Inventors: Balbir Raj, Saji Eapen, Ezra Linley
  • Patent number: 8721989
    Abstract: The invention relates to an apparatus for measuring blood oxygen saturation, comprising a housing (1), a sensor (2), a connecting cable (3) and a plug (4), wherein the housing (1) has a cavity (5) for accepting a patient's tissue which is supplied with blood; the sensor (2) which is arranged on the housing and has at least one light source (21) for the emission of light which passes through the tissue which is supplied with blood and a detector (22) for receiving the light passing through the tissue which is supplied with blood; and the apparatus can be connected to an evaluation unit via the plug (4).
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 13, 2014
    Assignee: EnviteC-Wismar GmbH
    Inventors: Martin Eckermann, Thomas Scholl
  • Patent number: 8721969
    Abstract: An apparatus for detecting an object capable of emitting light. The apparatus comprises a light source and a waveguide. The waveguide comprises a core layer and a first cladding layer. At least one nanowell is formed in at least the first cladding layer. The apparatus further comprises a light detector. The light detector can detect a light emitted from a single molecule object contained in the at least one nanowell.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 13, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Fan Chiou, Rung-Ywan Tsai, Yu-Tang Li, Chih-Tsung Shih, Ming-Chia Li, Chang-Sheng Chu, Shuang-Chao Chung, Jung-Po Chen, Ying-Chih Pu
  • Patent number: 8716007
    Abstract: An instrument for fluorometric assays in liquid samples is disclosed. The instrument may include multiple optical channels for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a control. The disclosed instrument finds utility in any number of applications, including microfluidic molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 6, 2014
    Assignee: Micronics, Inc.
    Inventors: C. Frederick Battrell, Troy D. Daiber, William Samuel Hunter
  • Patent number: 8715592
    Abstract: An integrated electronic-micro fluidic device an integrated electronic-micro fluidic device, comprising a semiconductor substrate on a first support, an electronic circuit on a first semiconductor-substrate side of the semiconductor substrate, and a signal interface structure to an external device. A micro fluidic structure is formed in the semiconductor substrate, and is configured to confine a fluid and to allow a flow of the fluid to and from the microfluidic structure only on a second semiconductor-substrate side that is opposite to the first semiconductor-substrate side and faces away from the first support.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 6, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ronald Dekker, Remco Henricus Wilhelmus Pijnenburg, Nicolaas Johannes Anthonius Van Veen
  • Patent number: 8716028
    Abstract: The invention is directed towards methods and compositions for identifying the amount of hydrofluoric acid in a buffered oxide etching composition. In buffered oxide etching compositions it is very difficult to measure the amount of hydrofluoric acid because it has varying equilibriums and it is toxic so it hard to handle and sample. When used to manufacture microchips however, incorrect amounts of hydrofluoric acid will ruin those chips. The invention utilizes a unique method of spectrographically measuring the hydrofluoric acid when in contact with added chromogenic agents to obtain exact measurements that are accurate, immediate, and safe.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: May 6, 2014
    Assignee: Nalco Company
    Inventors: Amy Tseng, Brian V. Jenkins, Robert M. Mack
  • Patent number: 8715924
    Abstract: A process is disclosed for determining the concentration of nucleic acids in a sample in a microfluidic device. In at least one embodiment, the method includes a) introducing the sample into a first chamber, b) carrying out a number of cycles of an amplification reaction to be carried out in cycles for amplifying nucleic acids, c) transferring a defined volume which is a fraction of the volume of the first chamber and which has amplified nucleic acids into a second chamber and replacing the transferred defined volume with fresh reagents for the amplification reaction, d) determining the concentration of the amplified nucleic acids in a second chamber equipped with an element to determine concentrations, and e) repeating steps b)-d) until a concentration of the amplified nucleic acids which is within a range is determined in the second chamber. An arrangement is further disclosed.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: May 6, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Gumbrecht, Jörn Mosner, Sebastian Schmidt
  • Publication number: 20140120632
    Abstract: The invention relates to a method and a sensor device (100) for the detection of clusters (C) of magnetic particles (MP) in a sample volume (111), particularly of clusters (C) consisting of two magnetic particles (MP) with different binding sites that are bound to a target molecule in a sandwich configuration. Output light (L2) originating from an interaction of input light (L1) with clusters (C) of magnetic particles (MP) is detected. Moreover, the magnetic particles (MP, C) are actuated by a magnetic actuation field (B), wherein said actuation is at least once interrupted by a pause. In this way a high output signal can be achieved that properly reflects the amount of specifically bound clusters (C).
    Type: Application
    Filed: June 18, 2012
    Publication date: May 1, 2014
    Inventors: Andrea Ranzoni, Menno Willem Jose Prins
  • Patent number: 8709788
    Abstract: Characteristics of a chemical or biological sample are detected using an approach involving light detection. According to an example embodiment of the present invention, an assaying arrangement including a light detector is adapted to detect light from a sample, such as a biological material. A signal corresponding to the detected light is used to characterize the sample, for example, by detecting a light-related property thereof. In one implementation, the assaying arrangement includes integrated circuitry having a light detector and a programmable processor, with the light detector generating a signal corresponding to the light and sending the signal to the processor. The processor provides an output corresponding to the signal and indicative of a characteristic of the sample.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: April 29, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Abbas El Gamal, Helmy Eltoukhy, Khaled Salama
  • Patent number: 8709363
    Abstract: A cartridge for conducting a chemical reaction includes a body having at least one flow path formed therein. The cartridge also includes a reaction vessel extending from the body for holding a reaction mixture for chemical reaction and optical detection. The vessel comprises a rigid frame defining the side walls of a reaction chamber. The frame includes at least one channel connecting the flow path to the chamber. The vessel also includes flexible films or sheets attached to opposite sides of the rigid frame to form opposing major walls of the chamber. In addition, at least two of the side walls are optically transmissive and angularly offset from each to permit real-time optical detection of analyte in the reaction chamber.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 29, 2014
    Assignee: Cepheid
    Inventors: Kurt Petersen, William McMillan, Farzad Pourahmadi, Ronald Chang, Douglas Dority
  • Patent number: 8709822
    Abstract: An assembly determines an analyte concentration in a sample of body fluid. The assembly includes a test sensor having a fluid-receiving area for receiving a sample of body fluid, where the fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the sample. The assembly also includes a meter having a port or opening configured to receive the test sensor; a measurement system configured to determine a measurement of the reaction between the reagent and the analyte; and a temperature-measuring system configured to determine a measurement of the test-sensor temperature when the test sensor is received into the opening. The meter determines a concentration of the analyte in the sample according to the measurement of the reaction and the measurement of the test-sensor temperature.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 29, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Hoi-Cheong Steve Sun, Paul Ripley