Ion Exchanging Or Liquid-liquid Extracting Patents (Class 423/139)
  • Patent number: 6214301
    Abstract: Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively ad
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 10, 2001
    Assignee: The Regents of the University of California
    Inventors: Wayne A. Taylor, David J. Jamriska
  • Patent number: 6210647
    Abstract: An improved process for the extraction of a metal from an aqueous ammoniacal solution comprising: (i) contacting the aqueous ammoniacal solution with an extraction reagent comprised of a water insoluble extractant for the metal, to provide an organic phase, now containing metal values, and an aqueous phase from which metal values have been extracted; (ii) contacting the organic phase with an aqueous stripping solution to provide an aqueous strip phase, now containing metal values, and an organic phase from which metal values have been stripped; and (iii) recovering the metal values from the aqueous stripping solution; the improvement wherein (a) the extraction reagent contains an ammonia antagonist having only hydrogen bond acceptor properties; (b) the stripping solution is an aqueous highly acidic solution; and (c) the organic phase is washed with a weakly acidic aqueous solution prior to stripping with the highly acidic aqueous stripping solution.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: April 3, 2001
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Gary A. Kordosky, George A. Wolfe, J. Murdoch MacKenzie
  • Patent number: 6207612
    Abstract: The invention provides media for absorption of phosphate and metal contaminants from a hydrocarbon stream and a method of making such media. The media comprise alumina with relatively minor amounts of calcia and magnesia and are made by a process in which the minor components or precursors of such components are dispersed in a gelled sol of a hydrated alumina such as boehmite.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: March 27, 2001
    Assignee: Norton Chemical Process Products Corporation
    Inventors: John S. Reid, Thomas Szymanski
  • Patent number: 6203708
    Abstract: An ion exchange resin comprising an ion exchange material dispersed or distributed throughout a polyurethane matrix. The ion exchange material is typically a second polymer which has been chemically modified after dispersion or distribution throughout the polyurethane matrix.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: March 20, 2001
    Assignee: Monash University
    Inventors: Frank Lawson, William Harold Jay
  • Patent number: 6171564
    Abstract: A process for the extraction of metal from an ore or concentrate which contains nickel and/or cobalt values and other metals, comprises subjecting the ore or concentrate to acid leaching under pressure at pH≦2 to obtain a liquor containing nickel and/or cobalt values, subjecting the liquor to a first precipitation stage at pH of about 5 to 6 to produce a solid containing non nickel and non cobalt metals and a resultant solution containing the nickel and/or cobalt values and subjecting the resultant solution to a second precipitation stage at a pH of about 7 to 8 to produce a solid containing nickel and/or cobalt.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: January 9, 2001
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 6156280
    Abstract: Process for removing manganese values from a solution of a water-immiscible hydrocarbon containing manganese values and a water-insoluble oxime extractant capable of extracting nickel values from aqueous ammoniacal solutions comprising the steps ofI) contacting the water-immiscible hydrocarbon solution with a finely divided active metal and an aqueous solution of a strong acid to decrease or complete remove the manganese values from said water-immiscible hydrocarbon solution; andII) separating the stripped hydrocarbon solution from the aqueous solution.The invention also relates to a method for the extraction of nickel from nickel-containing ores in which a content of manganese values is present in which the above process is used.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: December 5, 2000
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Stephen M. Olafson, Burrel Boley, III
  • Patent number: 6149885
    Abstract: A method of purifying a crude nickel sulfate solution to give pure nickel sulfate through solvent extraction, in which the impurities such as cobalt, calcium, magnesium, iron, zinc, copper, sodium, ammonia and others to be in the crude solution are removed while, if necessary, effectively recovering cobalt, and for which the amount of a neutralizer to be used is reduced and the cost of treating wastewater is also reduced includes an extraction step of adding an organic acid extractant to a crude nickel sulfate solution to thereby extract nickel into the extractant to give a nickel-loaded organic phase, followed by a scrubbing step of scrubbing the organic phase as obtained in the previous extraction step with a nickel-containing scrub solution to thereby remove sodium and ammonia from the organic phase; and a second purifying step of adding a crude nickel sulfate solution to the nickel-retaining organic phase as obtained in the previous first purifying step so as to exchange the nickel in the organic phase wi
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 21, 2000
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Susumu Makino, Naoyuki Tsuchida, Atsushi Goda, Sunao Kanesaka, Masaki Imamura, Kazuyuki Takaishi, Yoshitomo Ozaki
  • Patent number: 6110433
    Abstract: The invention relates to a process for recovering metals from used nickel/hydride storage batteries, in which storage battery scrap has been mechanically comminuted and divided into at least a coarse fraction and a fine fraction capable of being treated separately from one another. The process comprises the steps of digesting and dissolving the fine fraction with a mixture of sulfuric acid and hydrogen peroxide, performing a double sulfate precipitation of the rare earths by raising the pH, performing a precipitation of the iron and of the aluminum by further raising the pH, performing a solvent extraction of other metals to separate nickel and cobalt which remain in the aqueous phase from the other metals which are extracted into the organic phase. Optionally, the nickel and the cobalt can be separated from each other and, if desired, the mixed-metal rare earth component which has been recovered can be melted together with cobalt and nickel alloy for the fabrication of new batteries.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: August 29, 2000
    Assignee: Varta Batterie Aktiengesellschaft
    Inventors: Klaus Kleinsorgen, Uwe Kohler, Alexander Bouvier, Andreas Folzer
  • Patent number: 6063344
    Abstract: A method of removing HMO.sub.2.sup.- anions from an aqueous silicate solution comprising contacting the solution with a cationic ion exchange resin, where M is manganese, zinc, copper, nickel, or a mixture thereof. The method is particularly applicable to solutions of sodium silicate or potassium silicate.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: May 16, 2000
    Assignee: Occidental Chemical Corporation
    Inventors: Sharon D. Fritts, Walter Opalinski, Joseph Guzzetta
  • Patent number: 6054105
    Abstract: A process for the extraction of nickel and/or cobalt values from a solution comprises the steps of effecting a cobalt solvent extraction in the presence of magnesium ions with a cobalt extractant to produce a cobalt extractant loaded with cobalt ions and a first raffinate containing nickel and magnesium ions in solution. The first raffinate is subjected to magnesium solvent extraction with a magnesium extractant to produce a magnesium extractant loaded with magnesium and cobalt ions and a second raffinate. The second raffinate is subjected to nickel solvent extraction with a nickel extractant to produce a nickel loaded extractant and a third raffinate.
    Type: Grant
    Filed: November 27, 1998
    Date of Patent: April 25, 2000
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 6048506
    Abstract: A process for the separation of unwanted ferric, iron and zinc impurities from a cobalt sulphate solution containing these impurities, the process including the steps of (i) reacting the cobalt sulphate solution with an organic reagent specific for the removal of iron and zinc at an initial pH of less 2.8 to remove the majority of the unwanted ferric iron impurities; and (ii) slowly raising the pH of the solution to about 3.5 in order to remove zinc impurities and any remaining ferric iron impurities.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: April 11, 2000
    Assignee: Queensland Nickel Pty. Ltd.
    Inventors: John E. Fittock, Malcolm J. Price, John G. Reid
  • Patent number: 6045763
    Abstract: The invention relates to a process for working up charged aqueous solutions, more especially etching solutions, which contain ammonia, at least one ammonium salt and metal ions in dissolved form and which accumulate in the treatment of substrates containing valuable metals, more especially copper-containing electronic sub-assemblies by contacting the aqueous solution with an organic water-immiscible extractant in one or more extraction stages to form an organic phase containing valuable metals and an aqueous phase, (b) washing the organic phase with a water-containing liquid in one or more successive washing stages wherein the water-containing liquid has a pH above 6.5 in the first washing stage and after said washing stage contacting the washing water before reuse with an organic extraction solution, and (c) conducting one or more stripping stages to transfer the valuable metals from the organic phase to an aqueous phase.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: April 4, 2000
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Ralf Kehl, Werner Schwab
  • Patent number: 6010630
    Abstract: A method for recovering at least one metal from an acidified waste water sludge by liquid-liquid extraction by providing an acidified waste water sludge containing ions of at least one metal and organic material, treating the waste water with an oxidizer to convert the organic material into a form that does not have an unfavorable effect on a subsequent liquid-liquid extraction, and subjecting the treated, acidified waste water sludge to a liquid-liquid extraction thereby obtaining an organic phase loaded with ions of said at least one metal, and subsequently recovering ions of said at least one metal from said organic phase.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: January 4, 2000
    Assignee: Kemira Kemi AB
    Inventors: Pekka Oinas, Simo Jokinen
  • Patent number: 5993757
    Abstract: A process for purifying a degraded oxime metal extractant organic phase from a metal extraction circuit wherein a degraded oxime metal extractant organic phase comprised of an oxime metal extractant, and aldehyde or ketone degradates in a water immiscible hydrocarbon solvent is reoximated thereby restoring the oxime extractant organic phase for further extraction in the metal extraction circuit. Optionally the degraded organic phase may be purified by distillation prior to reoximation. The distillation is carried out in a wiped film evaporator at temperatures above 180.degree. C. up to about 250.degree. C. at a pressure from about 0.5 mm Hg or lower up to about 10 mm Hg and the reoximation is carried out with hydroxylamine in the presence of a weak organic carboxylic acid as a phase transfer catalyst and in the presence of an alkali metal or alkaline earth metal hydroxide or carbonate, preferably sodium carbonate.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: November 30, 1999
    Assignee: Henkel Corporation
    Inventors: Michael J. Virnig, Leroy Krbechek, Mary Casey
  • Patent number: 5955394
    Abstract: An improved separation process for the continuous catalytic oxidation of aromatic alkyls for the production of aromatic carboxylic acids in a liquid solvent medium, wherein the reactor product stream is withdrawn from the oxidation process, then separated to produce a product containing stream, mother liquor stream and a catalyst containing purge stream which is then passed through a filtration system and series of sorption vessels to remove the oxidation catalyst and separate the impurities from the catalyst. The solvent is then separated from the reaction by-products by conventional distillation methods. The solvent is recycled to the process while the reaction by-product residue is disposed of by incineration. The oxidation catalyst is eluted from the ion exchange columns and returned to the process.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: September 21, 1999
    Assignee: Mobile Process Technology, Co.
    Inventor: Michael D. Kelly
  • Patent number: 5945342
    Abstract: The present invention relates to methods for digesting diphosphonic acid substituted cation exchange resins that have become loaded with actinides, rare earth metals, or heavy metals, in a way that allows for downstream chromatographic analysis of the adsorbed species without damage to or inadequate elution from the downstream chromatographic resins. The methods of the present invention involve contacting the loaded diphosphonic acid resin with concentrated oxidizing acid in a closed vessel, and irradiating this mixture with microwave radiation. This efficiently increases the temperature of the mixture to a level suitable for digestion of the resin without the use of dehydrating acids that can damage downstream analytical resins. In order to ensure more complete digestion, the irradiated mixture can be mixed with hydrogen peroxide or other oxidant, and reirradiated with microwave radiation.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 31, 1999
    Assignee: Westinghouse Savannah River Company
    Inventors: Sherrod L. Maxwell, III, Sheldon T. Nichols
  • Patent number: 5925784
    Abstract: A bis(1,1,3,3-tetramethylbutyl)phosphinic acid compound represented by the formula (1) and an extracting agent using the same for separating Co from an aged electroless Ni plating solution.
    Type: Grant
    Filed: February 27, 1996
    Date of Patent: July 20, 1999
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Masashi Sugiya, Tsutomu Watanabe, Kaoru Takeuchi
  • Patent number: 5888462
    Abstract: A method of solvent extraction of a nickel sulfate solution uses a multi-stage, counter-current, organic solvent extraction system composed of at least two extractors connected in series, and includes a first extraction step of feeding a crude nickel sulfate solution that contains sodium and ammonium impurities into a second-stage extractor, wherein it is treated in countercurrent flow and at a pH of 6.5 to 7.0 with an organic extractant fed into the second-stage extractor from the first-stage extractor, to thereby extract some of nickel in the crude nickel sulfate solution into the organic extractant; and a second extraction step of transferring the nickel-containing, organic phase to an organic phase-scrubbing step to remove sodium and ammonium, while transferring the nickel sulfate solution, from the first extraction step and from which some of nickel has been removed, to the first-stage extractor, wherein it is treated in countercurrent flow and at a pH of 5.5 to 6.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: March 30, 1999
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Susumu Makino, Naoyuki Tsuchida, Masaki Imamura, Kazuyuki Takaishi, Yoshitomo Ozaki
  • Patent number: 5881358
    Abstract: A composition for extracting a transition metal which comprises as an active ingredient a cyclic phenol sulfide represented by the following formula (1): ##STR1## wherein X represents a hydrogen atom, a hydrocarbon group, an acyl group, a carboxyalkyl group, or a carbamoylalkyl group; Y represents a hydrocarbon group; Z represents a sulfide group, a sulfinyl group, or a sulfonyl group; and n is an integer of 4 to 8; and a method for extracting a transition metal using the composition
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: March 9, 1999
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Sotaro Miyano, Nobuhiko Iki, Fumitaka Narumi, Naoya Morohashi, Hitoshi Kumagai
  • Patent number: 5855858
    Abstract: A process for the extraction of Ni/Co values from an ore or concentrate comprises the steps of subjecting the ore or concentrate to pressure oxidation in the presence of oxygen and an acidic solution containing halide, copper and sulphate ions to obtain a liquor containing Ni/Co values from the resultant pressure oxidation slurry. The liquor is subjected to a selective precipitation treatment to obtain a solid containing Ni/Co hydroxide. The solid is subjected to a Ni/Co leaching stage with an ammonium solution to produce a leach solution containing Ni/Co values and a residue. The Ni/Co values are separated by solvent extraction to produce solutions suitable for electrowinning of Ni and Co. The process also provides for the recovery of precious metals and other metals such as copper.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: January 5, 1999
    Assignee: Cominco Engineering Services Ltd.
    Inventor: David L. Jones
  • Patent number: 5795482
    Abstract: Hydrocarbon-soluble aminomethylenephosphonic acid derivatives comprising the structural element of the formula I ##STR1## where R.sup.1 and R.sup.2 are hydrogen, C.sub.1 -C.sub.30 -alkyl which can additionally bear up to 15 hydroxyl groups and/or be interrupted by up to 14 non-adjacent oxygen atoms, C.sub.2 -C.sub.30 -alkenyl, C.sub.7 -C.sub.18 -aralkyl or C.sub.6 -C.sub.14 -aryl which may be substituted by up to three C.sub.1 -C.sub.12 -alkyl groups, C.sub.1 -C.sub.12 -alkoxy groups, halogen atoms, cyano groups, hydroxyl groups or C.sub.1 -C.sub.4 -alkoxycarbonyl groups, for the solvent extraction of iron ions from aqueous solutions.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: August 18, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Ehle, Knut Oppenlander
  • Patent number: 5779997
    Abstract: A method for preventing the formation of jarosite, ammonium and alkali metal double salts during solvent extraction and leaching of an acidic leaching process in which an aqueous solution containing at least two metals are separated selectively from each other, and ammonium and alkali salts in the solution are neutralized prior to separation of the metals from the solution, and the formation of harmful double salts are prevented by using an exchange ion, which includes separating a first metal of the at least two metals by solvent extraction after neutralizing the solvent extraction solution by means of ammonium or alkali base; contacting the extraction solution with an aqueous solution containing an exchange ion, and replacing the ammonium or alkali ions contained in the extraction solution with the metal exchange ion during a pre-extraction step, whereby the ammonium or alkali ions are transferred into the aqueous solution to prevent formation of ammonium and alkali based double salts in a leach process sol
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: July 14, 1998
    Assignee: Outokumpu Harjavalta Metals Oy
    Inventors: Bror Goran Nyman, Stig-Erik Hultholm
  • Patent number: 5759512
    Abstract: The invention provides a method of regenerating dithiophosphorus extractants such as dithiophosphoric acids, dithiophosphonic acids and dithiophosphinic acids from their sulfur-sulfur bonded oxidation products contained in an organic solution. The process generates active hydrogen for regenerating the spent dithiophosphorus extractants. Advantageously, this active hydrogen originates either from introducing a reactive metal into a liquid mixture containing the organic solution and an acidic aqueous solution to form nascent hydrogen or from using hydrogen gas in the presence of a catalyst in the organic solution. The active hydrogen generated in the process breaks the sulfur-sulfur bonds of the dithiophosphorus molecules to form the corresponding dithiophosphorus acids.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: June 2, 1998
    Assignees: Cytec Technology Corp., Inco Limited
    Inventors: William Andrew Rickelton, Indje Ognianov Mihaylov, Bruce John Love, Pak Kuen Louie, Eberhard Krause
  • Patent number: 5756063
    Abstract: Reagent grade hydrochloric acid having an iron content of less than 200 p.p.b. is made from an industrial organic isocyanate manufacturing process by removing hydrogen chloride from organic isocyanates produced in the reaction between phosgene and an organic amine, converting the hydrogen chloride to concentrated aqueous hydrochloric acid, and contacting the acid with a strongly basic anion exchange resin.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: May 26, 1998
    Assignee: BASF Corporation
    Inventors: K. Edward Nuernberg, Hans V. Schwarz
  • Patent number: 5750032
    Abstract: Process for removing an alkali metal compound from an acid solution also containing nickel and aluminum compounds, which requires contacting the acid solution first with an ion exchange resin functional to remove the nickel and aluminum compounds from the acid solution; and then contacting the acid solution with an ion exchange resin which is more selective to remove the alkali metal compound from the acid solution.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: May 12, 1998
    Assignee: Shell Oil Company
    Inventors: Zaida Diaz, John David Wilkey
  • Patent number: 5723098
    Abstract: The invention relates to a process for the selective recovery of catalysts used in the production of adipic acid by(a) separating adipic acid from the reaction solution,(b) exposing the resultant reaction solution to a sulfonated ion exchanger, thereby binding iron, copper, and vanadium ions to said sulfonated ion exchanger,(c) separating the ion-exchanger from the reaction solution,(d) washing the separated ion exchanger with nitric acid to obtain an acid eluate, and(e) exposing the acid eluate to an ion exchanger modified with aminophosphonic acid groups, thereby removing the iron ions from the acid eluate.
    Type: Grant
    Filed: September 4, 1996
    Date of Patent: March 3, 1998
    Inventors: Herbert Salzburg, Georg Steinhoff, Heiko Hoffmann, Helmut Kaponig
  • Patent number: 5718874
    Abstract: Ferric chloride is separated from nickel chloride in a spent etchant solution 10 using a solvent extractant system 12. An extractant solution 14 is mixed with an HCl solution 16 to form an aqueous layer 18 and an organic extractant 20. The organic extractant 20 is introduced into an extraction section 22 of the system 12 and mixed with a recycled, stripped organic solvent 32 and a first raffinate 34 to form a first mixture 36 which is separated into a first organic layer 38 and a Ni-containing aqueous layer 40. A feed solution 44 consisting of the spent etchant solution 10 and concentrated HCl is combined with the first organic layer 38 to form a second mixture 46 which is separated into the first raffinate 34 and an organic solution 47 having a high concentration of iron. The solution 47 is introduced into a stripping section 48 of the system 12 and mixed with a raffinate 58 to form a third mixture 60 which is separated into a partially stripped organic layer 62 and an aqueous ferric chloride solution 64.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: February 17, 1998
    Assignee: Thomson Consumer Electronics, Inc.
    Inventors: John Joseph Moscony, Barry Michael Cushman
  • Patent number: 5682593
    Abstract: Use of diethyl dodecylphosphonate (DEDP) for the extraction of acids and metal salts from aqueous solutions.
    Type: Grant
    Filed: October 19, 1995
    Date of Patent: October 28, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Christoph Holzner, Hans-Dieter Block, Hans-Heinrich Moretto
  • Patent number: 5678242
    Abstract: Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: October 14, 1997
    Assignee: Arch Development Corporation
    Inventors: Earl Philip Horwitz, Ralph Carl Gatrone, Kenneth LaVerne Nash
  • Patent number: 5667665
    Abstract: A process for producing a high purity cobalt is provided comprising the following steps. An aqueous solution of cobalt chloride having a hydrochloric acid concentration of 7 to 12N is provided. The solution includes either or both of Fe and Ni as impurities. The solution is contacted with an anion exchange resin so that cobalt is adsorbed on the resin. Cobalt is eluted from the resin with hydrochloric acid at a concentration of 1 to 6N. The solution containing the eluted cobalt is dried or otherwise concentrated to produce a purified aqueous solution of cobalt chloride having a pH of 0 to 6. Organic materials are preferably removed from the purified solution by active carbon treatment. Electrolytic refining is conducted with the purified aqueous solution as an electrolyte to obtain electrodeposited cobalt. A high purity cobalt sputtering target can be obtained wherein Na content is 0.05 ppm or less; K content is 0.
    Type: Grant
    Filed: March 12, 1996
    Date of Patent: September 16, 1997
    Assignee: Japan Energy Corporation
    Inventors: Yuichiro Shindo, Tsuneo Suzuki
  • Patent number: 5632963
    Abstract: A process is disclosed for removing impurity elements, such as arsenic, and if necessary antimony, iron or bismuth, from valuable metal containing, such as copper containing, strongly mineral acid solutions by way of solvent extraction with organic solutions of hydroxamic acids, and for selectively stripping the impurity elements therefrom. Antimony, iron or bismuth are stripped with complexing acids, and arsenic is stripped with an aqueous solution containing valuable metal ions at a pH value in the 1.5 to 5 range, a higher pH than the original valuable metal containing aqueous acid solution.
    Type: Grant
    Filed: October 19, 1994
    Date of Patent: May 27, 1997
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Werner Schwab, Ralf Kehl
  • Patent number: 5626648
    Abstract: A bioleaching method is provided for recovering nickel from an ore selected from the group consisting nickel-containing lateritic ores and nickel-containing sulfidic ores or concentrates thereof. Where the ore selected is a nickel-containing lateritic ore, at least one micro-organism selective to the leaching of the lateritic ore is provided as an aqueous solution thereof maintained at a pH ranging from about 1 to 3 including a nutrient for the micro-organism. The ore may be in the form of a heap, or a charge in a vat, or as a slurry. Where the ore selected is a nickel-containing sulfidic ore or concentrate thereof, at least one micro-organism comprising a biooxidizing bacterium selective to the leaching of sulfidic ore is added as an aqueous solution to the sulfidic ore or concentrate maintained at a pH of about 1 to 3, including a nutrient for the bacterium.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: May 6, 1997
    Assignee: BHP Minerals International Inc.
    Inventors: Willem P. C. Duyvesteyn, Matt Omofoma
  • Patent number: 5605668
    Abstract: A process for the preparation and purification of a cobalt oxide hydroxide intermediate from a cobalt sulphate solution containing cationic and anionic impurities, including the successive steps of (i) contacting the cobalt sulphate solution with an organic reagent to extract iron and zinc cationic impurities from the sulphate solution; (ii) extracting the cobalt from the sulphate solution with an organic reagent to produce a cobalt loaded organic phase substantially free of all anionic impurities; (iii) stripping the cobalt loaded organic phase with a concentrated ammoniacal ammonium carbonate solution to produce an ammoniacal ammonium carbonate strip liquor rich in cobalt II ammines; (iv) oxidizing the cobalt II ammines in the ammoniacal ammonium carbonate strip liquor to cobalt III tetraammines; (v) extracting the majority of nickel impurity from the cobalt III tetraammine rich ammoniacal liquor with an organic reagent; and (vi) recovering the cobalt from the cobalt III tetraammine rich ammoniacal liquor.
    Type: Grant
    Filed: October 27, 1994
    Date of Patent: February 25, 1997
    Assignee: Queensland Nickel Pyt. Ltd.
    Inventors: John E. Fittock, Malcolm J. Price, John G. Reid, David T. White, Michael R. Davis
  • Patent number: 5585080
    Abstract: The present invention relates to a method for recovering iron chloride, aluminum chloride and calcium chloride from silicon and ferrosilicon or from residues which contain silicon and/or ferrosilicon and metal chlorides and optionally copper and/or copper compounds, which materials are leached with HCl or HCl+FeCl.sub.3 /FeCl.sub.2 solutions, whereafter the solid silicon or ferrosilicon residue is removed from the leach solution and where any copper is removed from the leach solution. Fe.sup.2+ in the leach solution is oxidized to Fe.sup.3+ whereafter the leach solution is subjected to a liquid-liquid extraction by means of an organic phase containing n-tributyl phosphate dissolved in a hydrocarbon solvent in order to extract FeCl.sub.3 and at least a part of CaCl.sub.2 from the leach solution, stripping FeCl.sub.3 and any CaCl.sub.2 from the organic phase by water, concentrating the remaining solution by evaporation and adding HCl gas to the solution in order to selectively precipitate AlCl.sub.3.6H.sub.
    Type: Grant
    Filed: March 2, 1995
    Date of Patent: December 17, 1996
    Assignee: Elkem a/s
    Inventors: Einar Andersen, Bruno Ceccaroli, Roald Gundersen
  • Patent number: 5571308
    Abstract: A method is provided for recovering nickel from high magnesium-containing lateritic ores which also contain iron. The ores which are referred to as saprolitic ores are subjected to leaching with a mineral acid from the group consisting of HCl, H.sub.2 SO.sub.4 and HNO.sub.3, HCl being preferred.Following leaching with HCl, for example, the pregnant solution obtained is separated from undissolved solids and the nickel preferably recovered by contacting the solution with a resin selective to nickel absorption. The raffinate remaining which contains iron and magnesium chlorides may be subjected to pyro-hydrolysis to produce their respective oxides and free HCl for recycle into the leaching system. The nickel is extracted from the resin using a stripping solution of said acid, and the nickel thereafter extracted from the nickel-loaded stripping solution.
    Type: Grant
    Filed: July 17, 1995
    Date of Patent: November 5, 1996
    Assignee: BHP Minerals International Inc.
    Inventors: Willem P. C. Duyvesteyn, Manuel R. Lastra, Houyuan Liu
  • Patent number: 5562828
    Abstract: Spent acid contaminated with metal salts in a hot solution removed from a metal pickling bath is directed to one side of an anionic membrane to separate acid ions from the metal salt solution by diffusion dialysis through the membrane. Most of the metal salts in the remaining low acidity mother liquor are crystallized by refrigerating the mother liquor. The crystals are dewatered (in a centrifuge, for example) to produce a commercially viable noncorrosive byproduct, and the substantially decontaminated mother liquor is directed to the opposite side of the diffusion membrane, where it receives the acid ions diffusing through the membrane, and is then recycled to the pickling bath. Heat interchange between the hot spent acid solution and the recycled acid lowers the temperature of the spent acid to an optimum value for dialysis while raising the temperature of the recycled acid to close to the bath temperature.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: October 8, 1996
    Inventors: Douglas R. Olsen, Daniel E. Bailey
  • Patent number: 5525315
    Abstract: The invention is for a process of removal of dissolved heavy metal cation contaminants from an organic solution. The process of the invention involves providing a chelating ion exchange resin modified by removal of sodium ions therefrom and contacting said organic solution with said modified exchange resin for a time sufficient to remove ionic metal impurities. The invention is useful for removal of ionic contaminants from organic solutions requiring high purity.
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: June 11, 1996
    Assignee: Shipley Company, L.L.C.
    Inventor: W. Andrew Burke
  • Patent number: 5470553
    Abstract: A method for separating aluminum, cobalt, and nickel ions contained in a sulfuric acid aqueous solution comprising the steps of (a) contacting a first water-immiscible organic solution containing a first extractant with the sulfuric acid aqueous solution for a period of time to selectively extract the Co ions into the first water-immiscible organic solution so as to obtain a Co-containing first organic phase and a first raffinate aqueous phase containing substantially no Co ions; (b) separating the Co-containing first organic phase from the first raffinate aqueous; (c) contacting a second water-immiscible organic solution containing the first extractant and a second extractant with the first raffinate aqueous solution for a period of time to selectively extract Ni ions into the second water-immiscible organic solution so as to obtain a Ni-containing second organic phase and a second raffinate aqueous phase containing substantially only Al ions; (d) separating the Ni-containing second organic phase from the se
    Type: Grant
    Filed: December 7, 1993
    Date of Patent: November 28, 1995
    Assignee: Industrial Technology Research Institute
    Inventors: Hsia Hao-Chung, Tei-Chih Cheau, Shang-Lin Tsai
  • Patent number: 5470552
    Abstract: The recovery of nickel from aqueous ammoniacal solutions containing nickel values by extraction of the nickel values therefrom with an organic solution containing an oxime extractant and an equilibrium modifier followed by stripping of the nickel values from the organic solution by a concentrated aqueous ammoniacal solution from which the nickel can then be recovered. The use of the equilibrium modifier and the concentrated ammonia stripping solution provides advantages in that (1) there is an increase in the nickel transfer of the reagent, (2) the strip solution can be built to a higher nickel concentration giving a lower volume nickel containing solution for further processing and (3) a lesser number of stripping stages are required.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: November 28, 1995
    Assignee: Henkel Corporation
    Inventors: Gary A. Kordosky, Stephen M. Olafson
  • Patent number: 5468281
    Abstract: A process is disclosed for separating cobalt in the form of cobalt (III) hexammine sulphate from an aqueous solution containing cobalt (III) hexammine sulphate and nickel (II) hexammine sulphate comprising adding ammonium sulphate to provide an effective amount of ammonium sulphate, saturating the solution with an effective amount of ammonia at a temperature whereby the triple salt of cobalt (III) hexammine sulphate, nickel (III) hexammine sulphate and ammonium sulphate is precipitated, recovering the precipitated triple salt from the solution, and repulping the triple salt with an effective amount of water or aqueous ammonia solution to selectively leach nickel (II) hexammine sulphate to produce a crystalline cobalt (III) hexammine sulphate with a cobalt: nickel ratio of at least 100:1.
    Type: Grant
    Filed: November 17, 1994
    Date of Patent: November 21, 1995
    Assignee: Sherritt Gordon Limited
    Inventor: Derek G. E. Kerfoot
  • Patent number: 5460791
    Abstract: A method of adsorbing and separating a heavy metal element by using a tannin adsorbent comprising:(a) adjusting the pH of a solution containing a plurality of heavy metal elements to a predetermined pH;(b) contacting the adsorbent with the solution in which the pH thereof is adjusted;(c) adjusting the pH of the solution contacted with the adsorbent to a pH different from the predetermined pH; and(d) contacting the solution in which the pH thereof is adjusted at the step (d) with the adsorbent prepared at the step (a).According to the inventive method, all of the heavy metal elements can be efficiently separated and adsorbed by using a tannin adsorbent from a solution containing a number of heavy metal elements. A method of regenerating a tannin adsorbent are also disclosed.
    Type: Grant
    Filed: August 10, 1992
    Date of Patent: October 24, 1995
    Assignee: Mitsubishi Nuclear Fuel Company, Ltd.
    Inventors: Wataru Shirato, Yoshinobu Kamei
  • Patent number: 5433855
    Abstract: A process for extracting metal values especially zinc values from aqueous solutions of metal salts which comprises contacting the aqueous solution with an organic phase comprising a compound of the formula: ##STR1## wherein each of R.sup.1, R.sup.2, R.sup.3 and R.sup.4, independently, represents an optionally substituted hydrocarbyl or hydrocarbyloxy group or R.sup.1 and R.sup.2 together with the attached phosphorus atom and/or R.sup.3 and R.sup.4 together with the attached phosphorus atom form a 5- to 8-membered heterocyclic ring.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: July 18, 1995
    Assignee: Zeneca Limited
    Inventors: John Campbell, Raymond F. Dalton, Peter M. Quan
  • Patent number: 5429887
    Abstract: A process for treating an AB.sub.5 Ni--MH battery to recover purified positive and negative electrode components of the battery is disclosed. An AB.sub.5 Ni--MH battery is placed in a mineral acid leach solution to cause the positive and negative electrode components of the battery to separate. The positive and negative electrode components are maintained in the leach solution until the negative electrode component breaks down into its dissolved rare earth metal constituents and metallic solids. The metallic solids remaining from the negative electrode component and the positive electrode components are separated from the mineral acid leach solution and subjected to an elutriation process and thereafter to ball milling to obtain Ni rich powder and Fe. The mineral acid leach solution containing the completely dissolved rare earth metals is subjected to a phosphate precipitation process to recover La and Ce in precipitate, and then subjected to a second precipitation process to recover Ni, Co, Mn and Al.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: July 4, 1995
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Jane W. Lyman, Glenn R. Palmer
  • Patent number: 5399322
    Abstract: Discussed is a process for recovering metals and metal-containing products, such as a nickel sulfate product, from aqueous feed solutions comprising two or more dissolved metals. A selected metal is isolated and in a purified form in an aqueous raffinate phase from solvent extraction of nonselected metals using an organic phase containing a salt of an organic acid and the selected metal. Aqueous feed solution may result from leaching operations, including leaching of nickel-containing catalyst, such as catalyst used in hydrogenation of vegetable oils.
    Type: Grant
    Filed: October 15, 1992
    Date of Patent: March 21, 1995
    Assignee: Hazen Research, Inc.
    Inventor: Enzo Coltrinari
  • Patent number: 5393431
    Abstract: A process for extracting metal values especially zinc values from aqueous solutions of metal salts which comprises contacting the aqueous solution with an organic phase comprising a compound of the formula: ##STR1## wherein each of R.sup.1, R.sup.2, R.sup.3 and R.sup.4, independently, represents a substituted hydrocarbyl or hydrocarbyloxy group or R.sup.1 and R.sup.2 together with the attached phosphorus atom and/or R.sup.3 and R.sup.4 together with the attached phosphorus atom form a 5- to 8-membered heterocyclic ring.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: February 28, 1995
    Assignee: Zeneca Limited
    Inventors: John Campbell, Raymond F. Dalton, Peter M. Quan
  • Patent number: 5338473
    Abstract: Beta cobaltous hydroxide is synthesized by decomposing the complex formed between cobaltous ions and a suitable complexing agent under hydrothermal conditions. Cobaltous ion and complexing agent are combined in an aqueous medium, wherein the molar ratio of the cobaltous ion to the complexing agent is about one or more. Hydroxide ion is added, wherein the molar ratio of hydroxide ion to cobaltous ion is more than about 2. The resulting admixture is heated under hydrothermal conditions for precipitating beta cobaltous hydroxide. The method provides improved control over the size and shape of the beta cobaltous hydroxide reaction product. The beta cobaltous hydroxide can be reduced to form magnetic particles of cobalt metal.
    Type: Grant
    Filed: March 11, 1993
    Date of Patent: August 16, 1994
    Assignee: Minnesota Mining and Manufacturing Company
    Inventor: Jean A. Lown
  • Patent number: 5332531
    Abstract: Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
    Type: Grant
    Filed: June 10, 1992
    Date of Patent: July 26, 1994
    Assignee: Arch Development Corporation
    Inventors: Earl P. Horwitz, Ralph C. Gatrone, Kenneth L. Nash
  • Patent number: 5316683
    Abstract: Process for extracting Ge, Ga, In, As, Sb, Bi, Pt, Pd, Ni, and/or Co from an acid aqueous solution, wherein use is made of a resin with 8-hydroxyquinoline groups, resulting from the reaction of an aminated resin with an aldehyde and 8-hydroxyquinoline, characterized in that the aminated resin itself is obtained by imidoalkylation of a cross-linked styrene-copolymer and an ester or an ether of an N-hydroxyalkylimide and by hydrolysis of the imidoalkylation product.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: May 31, 1994
    Assignee: n.v. Union Miniere s.a.
    Inventors: Guy G. Haesebroek, Achille J. De Schepper
  • Patent number: RE36118
    Abstract: A method for the recovery of a metal from an organic complex thereof, said method comprising treating the complex with a weakly acid aqueous solution of an alkali metal or alkaline earth metal chloride having a chloride content of at least 4 molar whereby said complex is decomposed and metal ions are transferred to the aqueous solution.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: March 2, 1999
    Assignee: Zeneca Limited
    Inventors: Domenico C. Cupertino, Peter A. Tasker
  • Patent number: RE36990
    Abstract: A method for the recovery of a metal from an organic complex thereof, said method comprising treating the complex with a weakly acid aqueous solution of an alkali metal, an alkaline earth metal or ammonium chloride having a chloride content of at least 4 molar whereby said complex is decomposed and metal ions are transferred to the aqueous solution.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: December 19, 2000
    Assignee: Zeneca Limited
    Inventors: Domenico C. Cupertino, Peter A. Tasker