Subjecting Mixture To Pressure, Vacuum, Or Steam Patents (Class 423/141)
  • Patent number: 11721850
    Abstract: An improved method of recycling lithium-ion battery anode scraps is provided. The method involves isolating an anode scrap including a graphite anode film adhered to a current collector foil with a polyvinylidene fluoride binder. The anode scrap is combined with deionized water to form a first mixture. The graphite anode film is delaminated from the current collector foil to form a second mixture comprising a free collector foil and a free graphite anode film. The free graphite anode film is filtered and dried from the second mixture to recover the free graphite anode film. The free graphite anode film is combined with a solvent comprising N-methyl-2-pyrrolidone (NMP) to form an anode formation slurry. The slurry is coated onto a copper current collector to produce a new anode.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: August 8, 2023
    Assignee: UT-BATTELLE, LLC
    Inventors: Yaocai Bai, Ilias Belharouak, Rachid Essehli
  • Patent number: 11575158
    Abstract: The invention discloses a recycling method for oxide-based solid electrolyte with original phase, method of fabricating lithium battery and green battery thereof, which is adapted to recycle the solid-state or quasi-solid lithium batteries after discard. The oxide-based solid electrolyte is only used as an ion transport pathway, and does not participate in the insertion and extraction of lithium ions during charge and discharge cycles. Its crystal structure dose not be destroyed. Therefore, the original phase recycle of the oxide-based solid electrolyte is achieved without damage the structure or materials. The recycled the oxide-based solid electrolyte can be re-used to reduce the manufacturing cost of the related lithium battery.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: February 7, 2023
    Assignees: PROLOGIUM TECHNOLOGY CO., LTD., Prologium Holding Inc.
    Inventor: Szu-Nan Yang
  • Patent number: 10850989
    Abstract: An embodiment of the present invention provides a method for preparing a solid lithium salt from a lithium solution including the steps of, preparing a mixture in which a phosphorus-containing material is added to a lithium solution in step 1; adding a basic solution to the prepared mixture to adjust the pH in step 2; making the pH-adjusted mixture react by raising its temperature and filtering to recover lithium phosphate in step 3; preparing an acid lithium solution in which distilled water and acid are added to the recovered lithium phosphate, in step 4; and recovering a solid lithium salt by evaporative concentration of the acid lithium solution, in step 5.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 1, 2020
    Assignee: SUNGEEL HITECH CO., LTD.
    Inventors: Suk-Hyun Byun, Kang-Myung Yi, Ki-Woong Lee, Kwang-Joong Kim, Woo-Young Jung
  • Patent number: 10829447
    Abstract: The present invention provides a method for producing methionine characterized by comprising a step of hydrolyzing 5-[2-(methylthio)ethyl]imidazolidine-2,4-dione in the presence of an alkali compound to obtain a reaction solution containing an alkali salt of methionine, a step of precipitating methionine by introducing carbon dioxide into the reaction solution to obtain a first slurry containing the methionine, a step of allowing the first slurry to flow into a pressurized filter and obtaining the solid methionine and mother liquor from the first slurry, and a step of recovering carbon dioxide from the mother liquor. By the present production method, the carbon dioxide introduced in the crystallization step is suppressed from being released from the mother liquor, and the carbon dioxide can be recovered.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 10, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Norihito Omoto, Yoshitaka Satoh, Masayuki Morikawa, Yoshiyuki Koizumi, Naoya Yamashiro, Ryousuke Katagami
  • Patent number: 8969606
    Abstract: These disclosures relate to preparing nickel metal (Ni(0)) suited for use in catalyst systems, such as nickel complexes with phosphorus-containing ligands, useful to catalyze the hydrocyanation of ethylenically unsaturated compounds. The methods described herein can include use of steam during reduction of nickel.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: March 3, 2015
    Assignee: INVISTA North America S.a r.l.
    Inventors: Vinay Medhekar, John J. Ostermaier, Michael C. Quinn, III, Colin S. Slaten
  • Patent number: 8906220
    Abstract: Method for production of metallic cobalt from the raffinate from solvent extraction of nickel’.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: December 9, 2014
    Inventors: Vanessa Torres, Marcelo Augusto Castro Lopes da Costa, Omar Antunes Do Carmo, Salomão Solino Evelin
  • Publication number: 20140341791
    Abstract: The present invention provides a hydrothermal oxidation method for producing alkali metal dichromate from carbon ferrochrome, and the method comprises the following steps: formulating an initial reaction liquid by mixing carbon ferrochrome, an alkaline substance and water, in which the actual addition amount of the alkali is controlled smaller than the theoretically required amount; adding the initial reaction liquid into a reaction kettle, charging an oxidizing gas into the reaction kettle, and allowing the reaction to proceed for 0.5 to 3 h at a temperature of 150° C. to 370° C. and a pressure of 2 Mpa to 24 MPa; carrying out solid-liquid separation, cooling the resultant filtrate to a temperature of ?12° C. to ?20° C.
    Type: Application
    Filed: November 2, 2010
    Publication date: November 20, 2014
    Applicant: TIANJIN PASSION SCIENCE AND TECHNOLOGY CO., LTD.
    Inventors: Zhu Ji, Jinsong Wang, Zhong Zhang, Yuqing Yang, Aishan Wang, Weiguo Song, Xinjian Yin, Qingting Wei, Hongwei Ru, Wenwen Zhang, Haijun Mei
  • Publication number: 20140227153
    Abstract: The invention relates to a method for recycling lithium batteries and more particularly batteries of the Li-ion type and the electrodes of such batteries.
    Type: Application
    Filed: September 5, 2012
    Publication date: August 14, 2014
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Richard Laucournet, Sandrine Barthelemy, Nathalie Diaferia
  • Patent number: 8790516
    Abstract: The invention relates to a method for removing arsenic as scorodite from solutions that contain iron and arsenic. In accordance with the method, arsenic is first precipitated as ferric arsenate and subsequently processed hydrothermally into crystalline scorodite.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: July 29, 2014
    Assignee: Outotec Oyj
    Inventors: Mikko Ruonala, Jaakko Leppinen, Ville Miettinen
  • Patent number: 8747678
    Abstract: The invention provides hydrometallurgical processes by which dissolved nickel may be removed from water at ambient temperature and low system pressure.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 10, 2014
    Assignee: Bioteq Environmental Technologies Inc.
    Inventors: Michael Bratty, Rick Lawrence, David Kratochvil
  • Patent number: 8603420
    Abstract: The invention enables processing waste sludge after galvanic treatment of metals, and particularly recycling spent pickling acids after pickling. Provided is an environmentally friendly process, which yields acids for reuse, and pure nano-sized iron pigments as a side product.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: December 10, 2013
    Assignee: Green Future Ltd.
    Inventors: Vladimir Boiko, Reuben Schapiro
  • Patent number: 8585993
    Abstract: Methods for regenerating amorphous iron oxide hydroxide after being used as desulfurizer by (1) grinding a waste mixture into waste powder, wherein the waste mixture results from use of the composition comprising amorphous iron oxide hydroxide as desulfurizer; (2) preparing the waste powder into a suspension and charging the suspension with a gas containing oxygen to obtain a slurry comprising amorphous iron oxide hydroxide and elemental sulfur; and (3) placing the slurry or a solid resulting from filtering the slurry into a container and charging the slurry or the solid with air so that the elemental sulfur floats and the amorphous iron oxide hydroxide precipitates.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 19, 2013
    Assignee: Beijing Sanju Enviromental Protection and New Material Co., Ltd.
    Inventors: Zhenyi Liu, Fengren Liu, Ke Lin
  • Patent number: 8287738
    Abstract: The disclosure provides a process for removing dissolved niobium, titanium, and zirconium impurities from an iron chloride solution having an iron concentration of about 50 to about 250 grams/liter comprising: (a) heating the iron chloride solution comprising a compound selected from the group consisting of a niobium compound, titanium compound, zirconium compound, and mixtures thereof, in a vessel, at a temperature of about 120° C. to about 300° C., and at least autogenous pressure, to precipitate the compound as a solid; and (b) separating the solid from the iron chloride solution. The separation of the solid is accomplished by filtration, settling, or centrifugation. In one embodiment, the iron chloride solution is a byproduct of the chlorination process for making titanium dioxide.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 16, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Peter Hill, Mitchell Scott Chinn, Ulrich Klabunde
  • Patent number: 8287827
    Abstract: Process for the treatment of a lateritic nickel/cobalt ore consisting of a mixture (2) of limonite and saprolite, characterized in that: the mixture (2) in the presence of an iron-precipitating agent is made into a pulp (1), having a solids content of between 10 and 40% by weight; the pulp undergoes a leaching operation (4) with sulphuric acid (5), at a temperature between 70° C. and the boiling point and at atmospheric pressure; and a solid-liquid separation (8) is carried out so as to obtain an iron-containing solid residue (9) and a solution containing nickel and cobalt ions. Process for producing nickel and/or cobalt intermediate concentrates or commercial products using the above process.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: October 16, 2012
    Assignee: Eramet
    Inventors: Jérôme Agin, Yves Le Quesne, Bertrand Berthomieu
  • Patent number: 8241594
    Abstract: There are provided processes for extracting aluminum ions from aluminous ores. Such processes can be used with various types of aluminous ores such as aluminous ores comprising various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: August 14, 2012
    Assignee: Orbite Aluminae Inc.
    Inventors: Richard Boudreault, Serge Alex, Fabienne Biasotto
  • Patent number: 8211389
    Abstract: Uses for a composition comprising a polymer derived from at least two monomers: acrylic-x and an alkylamine, wherein said polymer is modified to contain a functional group capable of scavenging one or more compositions containing one or more metals are disclosed. These polymers have many uses in various mediums, including wastewater systems.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 3, 2012
    Assignee: Nalco Company
    Inventors: Paul J. Zinn, Jitendra T. Shah, William J. Andrews
  • Patent number: 8147797
    Abstract: A system for cooling and recuperative heating of a slurry in a metallurgical process which includes heat exchangers, pumps and autoclaves is described herein. The heat exchangers use a non-scaling common liquid heat transfer medium. Preferably, the heat exchangers are tube-in-tube heat exchangers with 3 to 7 slurry tubes in each heat exchanger. An advantage of this system is that it does not use flash tanks. To minimize abrasive wear on impinged surfaces, the velocity of the slurry is not more than 5 meters per second. The slurry comprises a solids concentration of 25% to 50%. Preferably, the pumps in the system are float-type pumps in which the driven liquid from the discharge pumps is also used as the drive liquid for the feed pumps.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 3, 2012
    Inventor: Donald J. Donaldson
  • Patent number: 8062620
    Abstract: The present invention relates to a process for the conversion of cobalt(II)hydroxide into cobalt(III)oxidehydroxide (CoOOH) by reaction of the cobalt(II)hydroxide with oxygen in the presence of certain metal compounds. The invention further relates to the use of cobalt(III)oxidehydroxide thus prepared in the preparation of catalysts or catalysts precursors, especially catalysts or catalyst precursors for the conversion of synthesis gas into normally liquid and normally solid hydrocarbons and to normally liquid or solid hydrocarbons, optionally after additional hydrotreatment, obtained in such a conversion process.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: November 22, 2011
    Assignee: Shell Oil Company
    Inventors: Ronald Jan Dogterom, Heiko Oosterbeek, Marinus Johannes Reynhout
  • Patent number: 8038979
    Abstract: Disclosed is a method of manufacturing a metal oxide nano powder comprising preparing a first dispersed solution by adding a nano-sized metal powder to water and dispersing the metal powder within the water, performing a hydration reaction of the first dispersed solution at a temperature of about 30 to about 70° C. to generate a precipitation, and filtering and drying the precipitation to prepare a metal oxide powder. Also, disclosed is a metal oxide nano powder manufactured by the method described above, and having any one of a bar-form, a cube-form, and a fiber-form.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 18, 2011
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Chang Kyu Rhee, Min Ku Lee, Young Rang Uhm, Jin Ju Park, Byung Sun Han, Hi Min Lee, Seung-Hee Woo
  • Patent number: 7964165
    Abstract: The separation method for zinc sulfide, in the hydrometallurgical process by a High Pressure Acid Leach for nickel oxide ore comprising leaching and solid/liquid separation step, neutralization step, zinc removal step, and nickel recovery step, which can inhibit clogging of a filter cloth and reduce a frequency of washing operation and replacement operation of a filter cloth by improving filtration performance of zinc sulfide, and inhibit decrease of nickel recovery ratio, in the zinc removal step in which zinc sulfide is formed by adding a sulfurizing agent to the neutralization final liquid containing zinc as well as nickel and cobalt and zinc sulfide is separated to obtain a mother liquid for nickel recovery containing nickel and cobalt. The separation method for zinc sulfide of the present invention is characterized in that in the above-described neutralization step, the leach residue is added to the leach liquor, and pH of the neutralization final liquid is adjusted so as to fall to the range from 3.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: June 21, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Osamu Nakai, Yoshitomo Ozaki, Keisuke Shibayama, Takao Ooishi, Satoshi Matsumoto
  • Patent number: 7922995
    Abstract: This invention relates to novel compositions of zeolites or microporous metallosilicates characterized by a continuous spatial distribution of the metal and silicon in the crystals and characterized by a crystal surface enriched in silicon relative to the internal part of the same crystals. This invention also relates to a synthesis method of producing these metallosilicates with spatial distribution of the constituting elements. These novel zeolitic compositions can be used in various hydrocarbon conversion reactions. The crystalline metallosilicates can be selected from the group consisting of aluminosilicates, gallosilicates, ferrosilicates, titanosilicates and borosilicates.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: April 12, 2011
    Assignee: Total Raffinage Marketing
    Inventors: Walter Vermeiren, Jean-Pierre Dath, Valérie Buono
  • Patent number: 7922996
    Abstract: This invention relates to novel compositions of zeolites or microporous metallosilicates characterized by a continuous spatial distribution of the metal and silicon in the crystals and characterized by a crystal surface enriched in silicon relative to the internal part of the same crystals. This invention also relates to a synthesis method of producing these metallosilicates with spatial distribution of the constituting elements. These novel zeolitic compositions can be used in various hydrocarbon conversion reactions. The crystalline metallosilicates can be selected from the group consisting of aluminosilicates, gallosilicates, ferrosilicates, titanosilicates and borosilicates.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: April 12, 2011
    Assignee: Total Raffinage Marketing
    Inventors: Walter Vermeiren, Jean-Pierre Dath, Valérie Buono
  • Patent number: 7914756
    Abstract: A method of treating alkaline industrial by-products, such as red mud generated by Bayer process bauxite refining, is described. Embodiments of the method comprise treating the alkaline industrial by-products with salts of divalent and/or polyvalent cations, thereby lowering pH of the alkaline industrial by-products. The method involves replacement reactions in which relatively insoluble hydroxide salts form precipitates, thereby removing hydroxide ions from solution.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: March 29, 2011
    Inventors: Philip N. Baldwin, Jr., Norman K. Murray, Charles Richard Lee, Michael W. Farrall
  • Patent number: 7871584
    Abstract: A process for the recovery of nickel and cobalt from nickel and cobalt containing ores, including the steps of first leaching a laterite ore and/or a partially oxidized sulfide ore with an acid solution to produce a pregnant leach solution containing at least dissolved nickel, cobalt and ferric ions, and subsequently leaching a sulfide ore or concentrate with the pregnant leach solution to produce a product liquor. Alternatively, the laterite ore and/or partially oxidized sulfide ore can be leached in a combined leach with the sulfide ore or concentrate. The ferric ion content in the pregnant leach solution or in the combined leach is sufficient to maintain the oxidation and reduction potential in the sulfide leach high enough to assist in leaching nickel from the sulfide ore or concentrate.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: January 18, 2011
    Assignee: BHP Billiton SSM Technology Pty. Ltd.
    Inventors: Houyuan Liu, Alexey Duarte, Wolf Meihack
  • Patent number: 7837961
    Abstract: There are provided processes for extracting aluminum ions from aluminous ores. Such processes can be used with various types of aluminous ores such as aluminous ores comprising various types of metals such as Fe, K, Mg, Na, Ca, Mn, Ba, Zn, Li, Sr, V, Ni, Cr, Pb, Cu, Co, Sb, As, B, Sn, Be, Mo, or mixtures thereof.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: November 23, 2010
    Assignee: Exploration Orbite VSPA Inc.
    Inventors: Richard Boudreault, Serge Alex, Fabienne Sotto
  • Patent number: 7799295
    Abstract: There is provided a method for leach extraction of copper/iron/sulphur ores and concentrates including leaching the mineral with an aqueous stream containing ferric ions and sulphuric acid in the presence of oxygen, the aqueous stream including a solution formed by reaction of basic ferric sulphate with excess suphuric acid. Integrated methods of forming and releaching basic ferric sulphate are also described.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: September 21, 2010
    Assignee: OZ Minerals Limited
    Inventors: David Dreisinger, Graham Pratt, Kenneth Gordon Baxter
  • Patent number: 7712471
    Abstract: Smoking article components, cigarettes, methods for making cigarettes and methods for smoking cigarettes are provided that use transition metal oxide clusters capable of catalyzing and/or oxidizing the conversion of carbon monoxide to carbon dioxide and/or adsorbing carbon monoxide. Cut filler compositions, cigarette paper and cigarette filter material can comprise transition metal oxide clusters.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 11, 2010
    Assignee: Philip Morris USA Inc.
    Inventors: Budda V. Reddy, Firooz Rasouli, Mohammad R. Hajaligol, Shiv N. Khanna
  • Publication number: 20100098606
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 22, 2010
    Inventor: JOSEPH L. THOMAS
  • Patent number: 7601314
    Abstract: A process for the recovery of nickel and/or cobalt from an impure nickel, cobalt or mixed nickel/cobalt material including the steps of: a) providing a nickel, cobalt or mixed nickel/cobalt material; and b) contacting the nickel, cobalt or mixed nickel/cobalt material with a feed ammoniacal ammonium carbonate solution and a reductant in a leach step.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: October 13, 2009
    Assignee: BHP Billiton SSM Technology Pty Ltd
    Inventors: Peter Allan Anderson, Mark Fisher, John Ernest Fittock, Victoria Margaret Hultgren, Erin Maree Jones, Robert Bruce Messenger, Adam Sean Moroney
  • Patent number: 7563421
    Abstract: A hydrometallurgical process based on pressure leaching at elevated temperature for recovering nickel from nickel oxide ores, characterized by a simplified and efficient process as a whole, realizing a simplified leaching stage, reduced neutralizer consumption and precipitate production in the neutralization stage, and efficient use of recycled water. The hydrometallurgical process of the present invention, comprising a leaching stage which stirs the slurried ore in the presence of sulfuric acid at 220 to 280° C.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: July 21, 2009
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Hirofumi Shouji, Masaki Imamura, Yoshitomo Ozaki, Naoyuki Tsuchida
  • Patent number: 7387767
    Abstract: A process for recovering nickel and cobalt values from nickel- and cobalt-containing laterite ores as an enriched mixed nickel and cobalt sulphide intermediate and for producing nickel and cobalt metal from the nickel and cobalt sulphide intermediate. The laterite ore is leached as a slurry in a pressure acid leach containing an excess of aqueous sulphuric acid at high pressure and temperature, excess free acid in the leach slurry is partially neutralized to a range of 5 to 10 g/L residual free H2SO4 and washed to yield a nickel- and cobalt-containing product liquor, the product liquor is subjected to a reductant to reduce any Cr(VI) in solution to Cr(III), the reduced product liquor is neutralized to precipitate ferric iron and silicon at a pH of about 3.5 to 4.0, and the neutralized and reduced product liquor is contacted with hydrogen sulphide gas to precipitate nickel and cobalt sulphides.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: June 17, 2008
    Assignee: Dynatec Corporation
    Inventors: Finlay Campbell, Michael Collins, Ian Masters, Lyle Trytten
  • Patent number: 7288241
    Abstract: A black composite oxide particle includes a composite oxide having Fe, Mg and Al as metal components. The particle contains Fe, Mg and Al in amounts of 30 to 55 mass %, 1 to 10 mass %, and 1 to 10 mass %, respectively, and has an atomic ratio of Fe3+/Fe2+ of 0.8 to 10. Also described is a method for producing the black composite oxide particle. In an embodiment, the particle includes a hydrated composite oxide represented by an empirical formula: Fe2+aFe3+bMgcAldOe·nH2O. The black composite oxide particle is suitable as a black pigment for a coating material, an ink, toner particles, a rubber and a plastic, and is reduced with respect to the load on the environment and excellent in blackness.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: October 30, 2007
    Assignee: Mitsui Mining and Smelting Co., Ltd.
    Inventors: Koji Aga, Hiroyuki Shimamura
  • Patent number: 7018605
    Abstract: A method of sulfidation removal of zinc using hydrogen sulfide is provided, desirably at a temperature at 60° C. or lower, wherein in a container that is pressurized at 0.1 MPa or less with respect to atmospheric pressure, by making the pH of the solution 1.5 to 4.0, and the concentration of hydrogen sulfide in gas 2 volume % or greater in equilibrium with the hydrogen sulfide dissolved in the solution, the zinc in solution is removed by sulfidation to 1 mg/liter or less.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: March 28, 2006
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Hiroshi Kobayashi, Yoshitomo Ozaki, Masaki Imamura
  • Patent number: 6949232
    Abstract: There is provided an improvement in a process for producing cobalt (III) hexammine sulphate which process comprises oxidatively pressure leaching nickel cobalt sulphides in an ammoniacal ammonium sulphate solution. The nickel and cobalt sulphides are oxidized to sulphates, and an ammoniacal leach liquor in which dissolved cobalt is predominantly in the (III) oxidation state is produced. The ammoniacal leach liquor is combined with ammonia to precipitate the triple salt of cobalt (III) hexammine sulphate, nickel (II) hexammine and ammonium sulphate which is further treated to produce a crystalline cobalt (III) hexammine sulphate and a nickel enriched leach liquor. The improvement involves the provision of a second oxidative pressure treatment effective to maximize the formation of the desired cobalt (III) hexammine ion, prior to the triple salt precipitation step.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 27, 2005
    Assignee: Sherritt International Corporation
    Inventors: Gavin Kerry Wyllie Freeman, Ockert Gerbrandt Pauw, Russell Peter Kofluk, James John Budac
  • Patent number: 6902745
    Abstract: A method for producing nano-sized lithium-cobalt oxide is provided by using flame-spray pyrolysis. The method comprises the steps of: spraying minute droplets, which is a solution dissolved lithium salt with cobalt salt at room temperature; atomizing the minute droplets through rapid expansion into a high temperature environment generated by combusting oxygen and hydrogen; decomposing and oxidizing the atomized minute droplets thermally at high temperature to produce nano-sized oxides in gaseous phase: and collecting the produced nano-sized composite oxides particles. The produced nano-sized lithium-cobalt oxide can be applied to a highly efficient lithium battery as the electrode materials and a thin film type of battery as well as to a miniaturized battery.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: June 7, 2005
    Assignee: Korea Institute of Geosciences and Mineral Resources
    Inventors: Churl Kyoung Lee, Hee Dong Jang, Do Su Kim, Jung Soo Shon
  • Patent number: 6680035
    Abstract: A hydrometallurgical process is provided for leaching nickeliferous laterite ores at temperatures below the boiling point of the pulp and at atmospheric pressure. The high iron fraction of the laterite, referred to as limonite, is first contacted with concentrated sulfuric acid to partially or completely dissolve the iron and nickel into solution. A reducing agent is used to keep the redox potential in solution below 1000 mV to enhance cobalt dissolution and more advantageously between 1000 and 900 mV to avoid reduction of ferric iron. Further mixing of the leach slurry in the presence of sodium, potassium, or ammonium allows formation of iron jarosite at ambient pressure. The resulting acid from iron hydrolysis is neutralized with the low iron fraction of the laterite ore (saprolite), thereby dissolving nickel into solution. The resulting final leach slurry can then be treated with conventional methods to recover nickel and cobalt from solution.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: January 20, 2004
    Assignee: BHP Minerals International Inc.
    Inventors: J. Carlos Arroyo, David A. Neudorf
  • Patent number: 6447650
    Abstract: A method for preparing a CdS photocatalyst represented by general formula (I): m(a)/Cd[M(b)]S, comprising the steps of: dissolving Cd-containing and M-containing compounds in water in such an amount that the mol % of M ranges from 0.001 to. 20.00; adding one H2S or Na2S as a reactant in the solution with stirring to precipitate Cd[M]S; washing the precipitate with water and vacuum-drying the precipitate in a nitrogen environment at a temperature of 105˜150° C. for 1.5˜3.0 hours; doping a liquid m-containing compound to this precipitate in such an amount that the % by weight of m ranges from 0.10 to 5.00. In the formula, m represents a doped metal element as an electron acceptor selected from the group of Ni, Pd, Pt, Fe, Ru, Co or an oxidized compound of these metals; a represents a percentage by weight of m, ranging from 0.10 to 5.00; M is a promoter selected from the group consisting of V, Cr, Al, P, As, Sb and Pb; b represents mol % of M/(M+Cd), ranging from 0.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: September 10, 2002
    Assignees: Korea Research Institute of Chemical Technology, Chonggu Co., Ltd.
    Inventors: Dae-Chul Park, Jin-Wook Baeg
  • Patent number: 6379636
    Abstract: A process is provided for the leaching of both the “limonite” (Fe approx. ≧25% and Mg approx. ≧6%) and “saprolite” (Fe approx. ≦20% and Mg approx. ≧10%) fractions of typical nickel and cobalt bearing laterite ore. The low magnesium fraction of the laterite ore is leached with sulfuric acid at high pressure and temperature to solubilize the metal values while precipitating most of the solubilized iron as hematite or other iron compounds and a portion of the dissolved aluminum as alunite or other aluminum compounds. After reducing the pressure of the leach slurry to approximately atmospheric pressure, the pregnant leach slurry or solution is contacted with the high magnesium fraction of the ore to solubilize most of the nickel contained in the high-magnesium ore fraction while dissolving only a small portion of the iron content of the high magnesium ore fraction.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: April 30, 2002
    Assignee: BHP Minerals International, Inc.
    Inventors: J. Carlos Arroyo, James D. Gillaspie, David A. Neudorf, Erik M. Weenink
  • Publication number: 20020004612
    Abstract: Urea is prepared by reacting ammonia and carbon dioxide in an apparatus comprising a vertical condensation and synthesis column and a stripper, to provide a urea synthesis solution comprising urea, unreacted ammonia, unreacted carbon dioxide and water. The urea synthesis solution is transferred from the top of the vertical condensation and synthesis column to the top of a stripper. Carbon dioxide is introduced into the bottom of the stripper and contacted with the urea synthesis solution, thereby separating the unreacted ammonia and the unreacted carbon dioxide from the urea, and providing a mixed gas comprising ammonia, carbon dioxide and water. The mixed gas is transferred into the bottom of the vertical condensation and synthesis column, where it is reacted with liquid ammonia injected into the bottom and a middle of the vertical condensation and synthesis column. The mixed gas and liquid ammonia are condensed and react to form urea.
    Type: Application
    Filed: July 5, 2001
    Publication date: January 10, 2002
    Applicant: TOYO ENGINEERING CORPORATION
    Inventors: Tadashi Fukunaka, Kenji Yoshimoto, Kenji Sakai, Yasuhiko Kojima
  • Patent number: 6267800
    Abstract: A process for producing cobalt metal powder from nickel-cobalt sulphides wherein said nickel-cobalt sulphides are leached in an ammoniacal ammonium sulphate solution under an elevated pressure of an oxygen bearing gas, at a temperature of at least 80° C., with an effective ammonia to metals mole ratio in the range of 5:1 to 6.5:1 to oxidize the nickel and cobalt sulphides to sulphates, and to produce an ammoniacal leach liquor in which dissolved cobalt is predominantly in the (III) oxidation state, and an ammoniacal ammonium sulphate leach residue containing a cobalt (III) hexammine sulphate-calcium sulphate double salt.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: July 31, 2001
    Assignee: Sherritt International Corporation
    Inventor: Gavin Kerry Wyllie Freeman
  • Patent number: 6264904
    Abstract: There is provided a process for the recovery of cobalt as cobalt (III) hexammine sulphate, comprising adding an effective amount of a calcium sulphate slurry to an ammoniacal ammonium sulphate solution containing cobalt (III) hexammine sulphate to thereby selectively precipitate a cobalt (III) hexammine sulphate-calcium sulphate double salt. The solution containing other base metal impurities is separated from the cobalt (III) hexammine sulphate-calcium sulphate double salt precipitate. An effective amount of an ammonium carbonate containing solution is added to the double salt precipitate to thereby redissolve cobalt (III) hexammine sulphate and precipitate calcium carbonate.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: July 24, 2001
    Assignee: Sherritt International Corporation
    Inventor: Gavin Kerry Wyllie Freeman
  • Patent number: 6206951
    Abstract: The invention relates to a method for leaching sulfidic nickel matte and particularly copper rich nickel matte, as well as for leaching said matte together with a metallic copper and/or copper-nickel matte. The leach of nickel matte is carried out as pressure leach in one or several stages by means of copper sulfate.
    Type: Grant
    Filed: March 12, 1999
    Date of Patent: March 27, 2001
    Inventor: Sigmund Fugleberg
  • Patent number: 5824283
    Abstract: This process produces nickel hydroxide from elemental nickel. Introducing elemental nickel into at least a 4N aqueous ammonia solution forms a mixture. Activating the nickel powder of this mixture allows the nickel to react with oxygen in the solution. This results in the dissolving of the nickel, producing a loaded solution containing nickel and hydroxyl ions. The redox potential of the solution remains negative during the dissolution of nickel. Distilling the loaded solution to vaporize the aqueous ammonia solution results in the precipitating of nickel hydroxide.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: October 20, 1998
    Assignee: Inco Limited
    Inventors: Juraj Babjak, Victor Alexander Ettel, Stephen Joseph Baksa, Raymond Augustus Bradford
  • Patent number: 5746994
    Abstract: A method of producing ferrate is disclosed, in which Fe.sup.3+ is oxidized with monoperoxosulfate (HSO.sub.5.sup.-) to form K.sub.2 FeO.sub.4 /K.sub.2 SO.sub.4. The isolation of the potassium ferrate (K.sub.2 FeO.sub.4) product in a sulfate matrix (K.sub.2 SO.sub.4) stabilizes the ferrate against decomposition and inhibits clumping of the solid product by inhibiting moisture adsorption. The method is a safe, simple process for the production of ferrate that is reliable, fast, and inexpensive, and that avoids the use of chlorine or chlorinated products, thus avoiding their harmful side effects. The improved ferrate product of this method is particularly useful for water and wastewater treatment, especially in the treatment of sulfides and hydrazines, and in other applications.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: May 5, 1998
    Assignee: New Mexico State University Technology Transfer Corporation
    Inventor: Michael D. Johnson
  • Patent number: 5348713
    Abstract: A process is disclosed for recovering zinc, lead, copper and precious metals from zinc plant residue, said process comprising leaching the residue with return zinc spent electrolyte, neutralizing residual acid and reducing ferric iron in the solution by addition of zinc sulphide concentrate in the presence of a limited quantity of oxygen, flotation of the resulting slurry to separate unreacted zinc sulphide, treatment of flotation tailings with sulphur dioxide and elemental sulphur to further leach iron, zinc and impurity elements and precipitate copper, flotation of the resulting slurry to separate a copper sulphide concentrate, thickening, filtering and washing of the flotation tailings followed by addition of lime and sodium sulphide to activate lead sulphate and flotation of a lead concentrate from the residue.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: September 20, 1994
    Assignee: Sherritt Gordon Limited
    Inventors: Derek E. Kerfoot, Michael J. Collins, Michael E. Chalkley
  • Patent number: 5336297
    Abstract: In a process for the treatment of electric arc furnace (EAF) dust, the dust is first subjected to atmospheric leaching with a ferric chloride solution and thereafter subjected to treatment in an autoclave at an elevated temperature and pressure for conversion of low temperature stable goethite (FeO.OH) to a filterable crystalline hematite (Fe.sub.2 O.sub.3) in an acidic chloride solution. Zinc is recovered from the solution by solvent extraction using a solvating extractant followed by stripping and zinc recovery by electrolysis of zinc chloride solution. Lead is separated from the solution by cooling to precipitate lead chloride.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: August 9, 1994
    Assignee: Terra Gaia Environmental Group Inc.
    Inventor: Roderick O. McElroy
  • Patent number: 5281494
    Abstract: A novel process for the production of nickel hydroxide wherein particulate nickel is reacted with oxygen in the presence of liquid water at a temperature of at least 180.degree. C. The invention also includes the nickel hydroxide product so produced.
    Type: Grant
    Filed: May 4, 1990
    Date of Patent: January 25, 1994
    Assignee: Inco Limited
    Inventors: Victor A. Ettel, Juraj Babjak, Stephen J. Baksa, James A. E. Bell
  • Patent number: 5248497
    Abstract: This invention provides a process for the recovery of purified ferrous chloride resulting as a by-product during the production of titanium dioxide by the chloride process. The process involves a two-step cooling of a filtered solution containing ferrous chloride and other material in a manner to crystallize the ferrous chloride as a pure product. Such product can then be sold commercially including to companies involved in the waste water treatment business.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: September 28, 1993
    Assignee: Kronos, Inc.
    Inventors: Achim Hartmann, Erwin Schmeir
  • Patent number: 4992143
    Abstract: A continuous multistage process for separating a partially water soluble organic component from a slurry containing an insoluble solid, a partially water soluble organic component and optionally water. In this process, the slurry is continuously fed to a tower or column equipped with a suitable vapor/liquid contact device. Energy is applied at a point below the vapor/liquid contact device. Vapors containing the partially soluble organic component exit the tower or column overhead and the inorganic solid is recovered at the bottom of the tower or column. This application of distillation technology to slurries is particularly advantageous in that a more efficient separation of that solid material from the partially soluble organic component is obtained. The improved separation efficiency can be utilized to either lower separation cost and/or to affect a more complete separation in order to obtain a solid material with a lower residual amount of the organic component.
    Type: Grant
    Filed: June 9, 1989
    Date of Patent: February 12, 1991
    Assignee: Mobay Corporation
    Inventors: Heinrich E. Steude, Joerg Krell, Charles F. Ho, Charles E. Huffman, Michael E. Bowsher
  • Patent number: 4853205
    Abstract: Process of using supercritical fluid to selectively separate, purify and recover metal halides.
    Type: Grant
    Filed: March 12, 1987
    Date of Patent: August 1, 1989
    Assignee: The United states of America as represented by the Secretary of the Interior
    Inventors: William K. Tolley, Alton B. Whitehead