Regenerating Solution Patents (Class 423/182)
  • Patent number: 8858902
    Abstract: A method for removing sulfide from an aqueous alkali solution in which hydrogen peroxide is introduced into a sulfide-containing aqueous alkali solution associated with an alkali mineral recovery operation. The method is particularly useful for the processing of sulfide-containing aqueous alkali solutions containing NaHCO3 and Na2CO3, where bicarbonate in the sulfide-depleted alkali solution is decomposed to form Na2CO3, with concurrent evolution of gaseous carbon dioxide byproduct but without formation of gaseous H2S as a pollutant, and where Na2CO3 values are subsequently recovered from the sulfide-depleted carbonate-rich alkali solution via a crystallization operation.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 14, 2014
    Assignee: FMC Wyoming Corporation
    Inventor: William C. Copenhafer
  • Patent number: 8642813
    Abstract: The present invention provides methods, reactor systems, and catalysts for converting in a continuous process biomass to less complex oxygenated compounds for use in downstream processes to produce biofuels and chemicals. The invention includes methods of converting the components of biomass, such as hemicellulose, cellulose and lignin, to water-soluble materials, including lignocellulosic derivatives, cellulosic derivatives, hemicellulosic derivatives, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, alditols, polyols, diols, alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof, using hydrogen and a heterogeneous liquefaction catalyst.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 4, 2014
    Assignee: Virent, Inc.
    Inventors: Ming Qiao, Randy D. Cortright, John Kania, Elizabeth Woods
  • Patent number: 8454840
    Abstract: A method for removing sulfide from an aqueous alkali solution in which hydrogen peroxide is introduced into a sulfide-containing aqueous alkali solution associated with an alkali mineral recovery operation. The method is particularly useful for the processing of sulfide-containing aqueous alkali solutions containing NaHCO3 and Na2CO3, where bicarbonate in the sulfide-depleted alkali solution is decomposed to form Na2CO3, with concurrent evolution of gaseous carbon dioxide byproduct but without formation of gaseous H2S as a pollutant, and where Na2CO3 values are subsequently recovered from the sulfide-depleted carbonate-rich alkali solution via a crystallization operation.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 4, 2013
    Assignee: FMC Wyoming Corporation
    Inventor: Ann Copenhafer
  • Patent number: 7687049
    Abstract: One exemplary embodiment can be a process for lowering an amount of carbon monoxide in a stream rich in hydrogen. The process can include passing the stream rich in hydrogen through a carbon monoxide removal zone to produce a product stream having no more than about 10 vppm carbon monoxide and communicating the product stream to a reduction zone receiving a catalyst comprising unreduced metal species.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: March 30, 2010
    Assignee: UOP LLC
    Inventors: Mark P. Lapinski, Richard R. Rosin
  • Patent number: 7578984
    Abstract: A caustic recovery system comprising an oxygen source adapted to provide a gas stream comprising at least 30% oxygen. A method of regenerating caustic comprising intermingling spent caustic with a gas stream comprising at least 30% oxygen.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: August 25, 2009
    Assignee: Fluor Technologies Corporation
    Inventor: Charles F. Maitland
  • Patent number: 7247284
    Abstract: A process to regenerate wet flue gas scrubber purge liquid into NaOH caustic suitable for make-up caustic for the scrubber is disclosed. Further, sulfur is removed from waste effluent in the form of gypsum with the process described herein. Lime is added to the spent, sodium sulfate-containing purge liquid to result in the formation of gypsum and sodium hydroxide.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: July 24, 2007
    Inventor: Karl A. Seck
  • Patent number: 6746592
    Abstract: A method for the reduction of soluble aluminum species in an evaporated salt alkali metal halide brine containing up to 500 ppb aluminum species to provide a brine feedstock suitable for use in a chlor-alkali membrane cell process, said method comprising treating said brine with a magnesium salt in an amount to provide a Mg to Al molar ratio selected from 5-20 to 1 at a Mg concentration selected from 0.5-10 ppm, and sufficient alkali metal hydroxide to provide an excess alkalinity concentration of between 0.1-0.5 g/L alkali metal hydroxide to effect precipitation of a magnesium aluminum hydroxide complex; and removing said complex to provide said brine feedstock.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: June 8, 2004
    Assignee: Kvaerner Canada, Inc.
    Inventors: Felix Mok, R. Ganapathy Subramanian
  • Patent number: 6566561
    Abstract: The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R2-R6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: May 20, 2003
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Peter V. Bonnesen, Bruce A. Moyer, Richard A. Sachleben
  • Patent number: 6309530
    Abstract: This invention relates to methods, systems and installations for concentrating depleted brine produced by the electrolytic decomposition of concentrated brine in chlor-alkali membrane cells and to the efficient use of power, steam and brine. More particularly, this invention relates to the use of depleted brine directly into evaporation systems, which are used to concentrate the brine for reuse in membrane cells or other processes. This invention employs the phenomena that a week unsaturated brine boiling under reduced pressure has a lower boiling point rise (BPR) than a saturated brine boiling at the same or higher pressure. The concentration of depleted brine at a lower boiling point rise improves the operating efficiency of either mechanical vapor recompression and/or steam jet thermocompression. Further, this invention allows for concentrating the depleted brine at temperatures low enough to utilize plastic materials of construction.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: October 30, 2001
    Assignee: Texas Brine Company, LLC.
    Inventors: Jeffrey A. Rutherford, John Rutherford
  • Patent number: 6175051
    Abstract: Liquid metal coolants, such as alkali metal used in nuclear reactor systems can be safely deactivated to form a disposable solid waste material. The alkali metal is dissolved in an ammoniacal liquid, such as anhydrous liquid ammonia to form a reaction mixture comprising alkali metal cations and solvated electrons. A precipitating agent that ionizes in the liquid ammonia is introduced into the reaction mixture to combine with the alkali metal cations and/or solvated electrons to form a precipitating alkali metal salt. Additionally, solidified alkali metal remaining within the coolant system after initial drainage of liquid alkali metal can be dissolved by circulating an ammoniacal liquid within the coolant system. Removal of the liquid ammonia having the alkali metal dissolved therein is combined with a ionizable precipitating agent to form a alkali metal salt.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: January 16, 2001
    Assignee: Commodore Applied Technologies, Inc.
    Inventor: Gerry D. Getman
  • Patent number: 5270023
    Abstract: A process for producing sodium carbonate from a variety of crude ores and brine containing sodium bicarbonate and sodium carbonate without the use of calcium carbonate. The process includes the steps of reacting the raw materials containing sodium bicarbonate and sodium carbonate with a bicarbonate filtrate containing ammonium chloride brine solution under heat, producing ammonia, carbon dioxide, and a mother liquor containing an aqueous solution of sodium chloride which is recycled. This solution may contain also sodium bicarbonate and sodium carbonate to enhance production. The mother liquor is separated and reacted with ammonia and carbon dioxide collected from the reacting step to crystalize sodium bicarbonate and produce an ammonium chloride brine solution which is recycled to react with the crude ore.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: December 14, 1993
    Inventors: Frank H. May, Fred C. Hohne
  • Patent number: 5126019
    Abstract: This invention relates to methods and systems for purifying brine for electrolysis in chlor-alkali cells, especially membrane cells by reducing the sulfate ion concentration, while at the same time minimizing the concentration of other undesireable ions such as calcium and chlorate. The methods and systems employed are unique combinations of refrigeration and crystalization, and brine recirculation techniques in the systems for electrolyzing brine.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: June 30, 1992
    Assignee: Texas Brine Corporation
    Inventors: John Rutherford, Raymond W. Ver Hoeve
  • Patent number: 5084389
    Abstract: A novel bioadsorption composition suitable for removing heavy metal from waster water effluent, the composition comprising a biomass encapsulated sol-gel matrix. A process for preparing the biomass encapsulated sol-gel matrix is also provided. The bioadsorption composition may be suitably used to remove a substantial amount heavy metal (such as uranium) from a waste water effluent, particularly a dilute aqueous stream comprising a waste water effluent (such as mine water). Heavy metal may then be recovered from the bioadsorption composition, thereby rendering the latter as reusable.
    Type: Grant
    Filed: August 1, 1989
    Date of Patent: January 28, 1992
    Assignee: Her Majesty in Right of Canada as represented by the Minister of Energy, Mines and Resources Canada
    Inventors: V. I. Lakshmanan, R. G. L. McCready
  • Patent number: 4800042
    Abstract: A volume-reducing solidification treatment method for radioactive waste liquid containing boron primarily in the form of boric acid or borates is disclosed.After an alkali is added to the waste water to adjust pH thereof, and optionally after evaporation concentration is carried out, soluble calcium compounds such as Ca(OH).sub.2 are added, the waste water is stirred at a specific temperature to form insoluble calcium borate aged at a lower temperature than that of forming borate, and evaporation and concentration is carried out, which raises the concentration of the solid component. The concentrated liquid obtained is solidified with cement.The concentrated liquid may also be dried into a powder using a thin film evaporator.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: January 24, 1989
    Assignee: JGC Corporation
    Inventors: Norimitsu Kurumada, Hiroshi Kuribayashi, Setsuo Shibata, Toshikatsu Wakabayashi, Akira Hasegawa, Mamoru Shibuya
  • Patent number: 4430241
    Abstract: A process for producing particles of a non-friable eutectic mixture of sodium nitrate and potassium nitrate for solar power station use is disclosed. In one embodiment of the invention, the particles are produced by shock chilling a molten stream of mixed nitrate material and crushing the resulting flakes to a size range of between about -5 mesh and about +30 mesh. In a second embodiment, particles of this size are produced by spray granulation of a concentrated solution of mixed nitrate salts onto a fluidized bed to produce dry, free-flowing, solid spheres. In both embodiments, the particles are extremely hard, resistant to moisture pickup and adaptable to being readily shipped by bulk containers.
    Type: Grant
    Filed: July 1, 1982
    Date of Patent: February 7, 1984
    Assignee: Olin Corporation
    Inventor: Louis C. Fiorucci
  • Patent number: 4279791
    Abstract: This invention relates to removal of cerium, used as a free-radical initiator, from aqueous polymeric dispersions, particularly starch graft copolymer dispersions, by adsorbing cerium (III) onto a strong cation exchange resin, to separation of the adsorbed cerium (III) from the resin using a solution such as sodium sulfate or sodium oxalate to form a cerium (III) precipitate, and to oxidation of the separated cerium (III) to cerium (IV).
    Type: Grant
    Filed: May 8, 1980
    Date of Patent: July 21, 1981
    Assignee: Standard Brands Incorporated
    Inventor: Edwin L. Speakman
  • Patent number: 4216189
    Abstract: Sodium sulfate is purged from a sulfur dioxide removal system involving contact of a sulfur dioxide-containing gas with a solution containing sodium sulfite to absorb sulfur dioxide from the gas. The spent absorbing solution is regenerated by desorbing sulfur dioxide and recycled for further use. To avoid an unduly large build-up of sulfate in the system, at least a portion of the absorbing-desorbing medium, e.g. spent absorbing solution, containing sodium sulfate and a relatively large amount of sodium bisulfite is treated to reduce the amount of water in the medium so that there is precipitated therefrom up to about 10 weight percent undissolved solids containing sodium sulfate in greater concentration than would otherwise be obtained in the absorption-desorption cycle. The insolubles containing sodium sulfate are removed from the liquid, and the liquid can be returned to the sulfur dioxide removal system.
    Type: Grant
    Filed: October 10, 1978
    Date of Patent: August 5, 1980
    Assignee: Davy Powergas, Inc.
    Inventors: Norman E. Nicholson, John Scarlett, John F. Flintoff
  • Patent number: 4207299
    Abstract: Sodium sulfate is purged from a sulfur dioxide removal system involving contact of a sulfur dioxide-containing gas with a solution containing sodium sulfite to absorb sulfur dioxide from the gas. The spent absorbing solution is regenerated by desorbing sulfur dioxide, and recycled for further use. To avoid an unduly large build-up of sulfate in the system, a portion of the absorbing-desorbing medium, e.g., spent absorbing solution, containing sodium sulfate, a relatively large amount of sodium bisulfite, and generally a minor amount of sodium sulfite, is treated to precipitate solids containing sodium sulfate in a concentration which is greater on a dry basis than would otherwise be obtained in the absorption-desorption cycle. The concentration of sodium sulfate in the precipitated solids is increased by providing a portion of the precipitated sodium sulfate-containing solids, e.g. about 25 to 75 weight percent, in solution in the absorbing-desorbing medium treated for sulfate removal.
    Type: Grant
    Filed: August 30, 1978
    Date of Patent: June 10, 1980
    Assignee: Davy Powergas, Inc.
    Inventor: John F. Flintoff
  • Patent number: 4154643
    Abstract: An alkali metal-containing spent liquor is treated to recover the alkali metal content for reuse without the need for recycling furnace ash and forming solid pellets therefrom. A mixture of aluminum hydrate and alkali metal-containing waste liquor is directed through a heated furnace and dried to form granules of the aluminum hydrate and waste liquor solids, and the organic content of the granules are combusted and reacted to form granular alkali metal aluminate furnace ash. The granular furnace ash is removed from the furnace and treated to recover the alkali metal and to produce aluminum hydrate for reuse in the process.
    Type: Grant
    Filed: February 6, 1978
    Date of Patent: May 15, 1979
    Assignee: Sonoco Products Company
    Inventors: William R. Cook, Donald R. Sheeley, Joel A. Tyner
  • Patent number: 4117077
    Abstract: A process for alunite ore treatment which comprises roasting alunite in the presence of oxygen at a temperature of from 580.degree. to 620.degree. C. for 1 to 3 hours, decomposing the roasted alunite by exposure to reducing agents at a temperature of from 580.degree. to 620.degree. C., subjecting the reduced alunite to hydrochemical treatment by use of a sodium hydroxide solution of concentration from 100 to 150 g/lit in terms of Na.sub.2 O, decomposing the resultant aluminate liquor, with the aluminum hydroxide component precipitating out, and finally, washing and baking the aluminum hydroxide precipitate to obtain same as an end product. The invention provides a comprehensive method of treatment of alunite ores the associated rock whereof comprises silica in the form of opal and chalcedony earlier believed to be refractory to comprehensive treatment by alkaline methods.
    Type: Grant
    Filed: November 23, 1977
    Date of Patent: September 26, 1978
    Inventors: Gakif Zakirovich Nasyrov, Evgenia Ivanovna Zemlyanskaya, Izabella Vladislavovna Ravdonikas
  • Patent number: 4035228
    Abstract: A process and apparatus for treating concentrated alkali metal-containing waste liquor to recover the alkali metal content for reuse includes the following steps and apparatus. Concentrated alkali metal-containing waste liquor is mixed with recycled alumina and formed into solid pellets by mixing the concentrated liquor-alumina mixture with recycled alkali metal aluminate furnace ash. The solid pellets are fed through a furnace operating at a temperature below the fusion temperature of the aluminate for combusting the organic portion of the pellets and reacting the alkali metal content thereof with the alumina to form additional alkali metal aluminate ash. A portion of the furnace ash is recycled for reuse in the formation of pellets, while another portion of the ash is dissolved in water to form a solution of alkali metal aluminate. The alkali metal aluminate solution is mixed with slurry recycled from later in the process to initiate limited precipitation of alumina from the alkali metal aluminate.
    Type: Grant
    Filed: March 3, 1976
    Date of Patent: July 12, 1977
    Assignee: Sonoco Products Company
    Inventors: Donald R. Sheeley, James H. Rion
  • Patent number: 4006213
    Abstract: A process for the extraction and recovery of hydrated stannic oxide and alkali metal ferrocyanide from the sludge formed in a halogen tin electrodeposition bath is described. The process comprises dissolving the ferrocyanide compounds and the tetravalent tin compounds present in the sludge in an alkaline medium, removing any insoluble materials, precipitating hydrated stannic oxide from the solution by neutralization of the solution, and separating the hydrated stannic oxide from the solution which then contains ferrocyanide ion together with acid and base counterions.
    Type: Grant
    Filed: July 25, 1975
    Date of Patent: February 1, 1977
    Assignee: Bethlehem Steel Corporation
    Inventors: Thomas W. Fisher, Stewart E. Rauch, Jr., Richard N. Steinbicker
  • Patent number: 3971844
    Abstract: Metal, e.g. sodium sulfate, is separated from metal, e.g. sodium sulfite, in a solution, for instance a solution used in a system involving contact of sulfur dioxide-containing gases with the sodium sulfite solution as an absorbing solution to recover sulfur dioxide wherein the absorbing solution is regenerated after contact with the gas and recycled for further use. A portion of the absorbing solution is purged to avoid the unduly large build-up of sodium sulfate in it. The purge stream is contacted with sulfur dioxide to reduce the amount of sodium sulfite therein to relatively soluble sodium bisulfite, and the relatively insoluble sodium sulfate is recovered therefrom as undissolved solids. The liquid separated from the sodium sulfate, which is rich in sodium bisulfite, is returned to the absorbing solution. In a preferred aspect, the purge stream is withdrawn from the absorbing solution subsequent to contact with the sulfur dioxide-containing gases and before regeneration.
    Type: Grant
    Filed: February 19, 1974
    Date of Patent: July 27, 1976
    Assignee: Davy Powergas Inc.
    Inventor: Raymond T. Schneider
  • Patent number: 3961034
    Abstract: Filtrate from a formate-sodium hydrosulfite preparation contains valuable amounts of sodium formate and sodium bisulfite, which are raw materials for the synthesis of sodium hydrosulfite. The filtrate also contains sodium thiosulfate which is a known catalyst for the decomposition of sodium hydrosulfite and, therefore, must not be introduced in with the raw materials. Accordingly the method concerns removing the sodium thiosulfate by means of ion exchange with a resin and directing the valuable sodium bisulfite and sodium formate effluent including methanol and water to a distillation column.
    Type: Grant
    Filed: September 25, 1974
    Date of Patent: June 1, 1976
    Assignee: Virginia Chemicals Inc.
    Inventors: Logan C. Bostian, Charles E. Winslow