Catalyst Patents (Class 423/244.09)
  • Patent number: 7417005
    Abstract: Anionic clay compounds such as hydrotalcite-like compounds can be made by a process wherein a non-hydrotalcite-like compound (or a hydrotalcite-like compound) are heat treated and then hydrated to form hydrotalcite-like compounds having properties (e.g., increased hardness and/or density) that differ from those of hydrotalcite-like compounds made by prior art methods wherein non-hydrotalcite-like compounds (or hydrotalcite-like compounds) are not similarly heat treated and hydrated to form such hydrotalcite-like compounds.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: August 26, 2008
    Assignee: Intercal, Inc.
    Inventor: Albert A. Vierheilig
  • Patent number: 7384611
    Abstract: Methods and configurations are drawn to a plant in which an effluent gas with a sulfur dioxide content of more than 1.5% is mixed with a substantially sulfur dioxide free offgas from a contactor to form a mixed feed gas for a hydrogenation reactor, wherein the mixed feed gas has a sulfur dioxide content of less than 1.5%.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: June 10, 2008
    Assignee: Fluor Technologies Corporation
    Inventor: Jen Kai Chen
  • Patent number: 7357905
    Abstract: The invention relates to a process for direct oxidation into sulfur and/or into sulfate of sulfur-containing compounds that are contained in an amount that is less than 10% by volume in a gas, in which said gas is brought into contact with an oxidation catalyst that comprises a substrate and an active phase that comprises iron in a proportion of between 2 and 5% by weight of the oxidation catalyst at a temperature of less than 200° C. and in the presence of oxygen.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: April 15, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Jean-François Chapat, Christophe Nedez, Jean-Louis Ray
  • Patent number: 7335340
    Abstract: A flue gas desulfurization apparatus includes at least one activated carbon fiber board 20 provided in a catalyst unit 6, the board being formed by alternatingly juxtaposing one or more plate-like activated carbon fiber sheets and one or more corrugated activated carbon fiber sheets so as to provide vertically extending conduits, wherein water for producing sulfuric acid is supplied, through a capillary phenomenon, to the activated carbon fiber board 20 provided in the catalyst unit 6. The flue gas desulfurization apparatus attains removal of sulfur oxides (SOx) by adding a minimum required amount of water to the activated carbon fiber board 20 so as to attain uniform water distribution and can reduce the amount of water required for removing sulfur oxides (SOx).
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: February 26, 2008
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Norihisa Kobayashi, Akinori Yasutake, Takashi Kurisaki, Kiyoshi Tatsuhara
  • Patent number: 7311891
    Abstract: Recovering sulfur from a gas stream containing hydrogen sulfide by oxidizing the gas stream to convert the hydrogen sulfide in the gas stream to sulfur oxide, and thus form a sulfur oxide enriched gas stream. The sulfur oxide enriched gas stream is contacted with a solid, sulfation resistant adsorbent bed at relatively low temperatures to extract the sulfur oxides and retain them as sulfur compounds, thus forming a sulfur oxide depleted gas stream. The adsorbent bed is then contacted with an inert or reducing gas stream to reduce the retained sulfur compounds to sulfur and/or sulfur dioxide and thereby form an enriched sulfur and/or sulfur dioxide bearing stream. The elemental sulfur is recovered and/or the sulfur dioxide bearing stream may be recycled to the Claus unit for further conversion.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: December 25, 2007
    Assignee: BASF Catalysts LLC
    Inventors: William Bachop Dolan, John Warren Byrne, Michael John Mitariten, Kenneth Butwell, Alfonse Maglio
  • Patent number: 7235223
    Abstract: In a method for operating a flue gas purification plant (10) including a plurality of parallel of absorber chambers (11), in which in each absorber chamber (11), CO and NO are simultaneously oxidized by a catalyst in a first absorber (15) according to the SCONOx principle and the resulting NO2 is absorbed on the catalyst surface, in which SO2 is furthermore oxidized by a catalyst in a second absorber (14) upstream of the first absorber (15) according to the SCOSOx principle and the resulting SO3 is absorbed on the catalyst surface. The absorber chambers (11) are successively regenerated by a regeneration gas containing hydrogen and/or hydrogen compounds in regularly repeating regeneration cycles affecting all the absorber chambers (11). In order to improve reliability and reduce operating costs in such a method, the regeneration time of the second absorber (14) within the regeneration cycle is respectively selected to be long enough to guarantee sufficient regeneration of the second absorber (14).
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: June 26, 2007
    Assignee: Alstom Technology Ltd.
    Inventor: Gisbert Wolfgang Käfer
  • Patent number: 7112313
    Abstract: Anionic clay compounds such as hydrotalcite-like compounds can be made by a process wherein a non-hydrotalcite-like compound (or a hydrotalcite-like compound) are heat treated and then hydrated to form hydrotalcite-like compounds having properties (e.g., increased hardness and/or density) that differ from those of hydrotalcite-like compounds made by prior art methods wherein non-hydrotalcite-like compounds (or hydrotalcite-like compounds) are not similarly heat treated and hydrated to form such hydrotalcite-like compounds.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: September 26, 2006
    Assignee: Intercat, Inc.
    Inventor: Albert A Vierheilig
  • Patent number: 7074375
    Abstract: A hydrocarbon gas such as methane and LPG is desulfurized in the presence of oxygen and an oxidation catalyst to convert sulfur compounds in the gas to sulfur oxides. The sulfur oxides are then trapped downstream of the oxidation by an adsorbent. The amount of oxygen added to the hydrocarbon gas to promote oxidation is such that the sulfur compounds are selectively oxidized and the oxidation of the hydrocarbon gas is minimized to reduce hydrogen formation.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 11, 2006
    Assignee: Engelhard Corporation
    Inventors: Jordan K. Lampert, Lawrence Shore, Robert J. Farrauto, Shinn Hwang
  • Patent number: 7060233
    Abstract: A process for removing hydrogen sulfide, other sulfur-containing compounds and/or sulfur and mercury from a gas stream contaminated with mercury, hydrogen sulfide or both. The method comprises the step of selective oxidation of hydrogen sulfide (H2S) in a gas stream containing one or more oxidizable components other than H2S to generate elemental sulfur (S) or a mixture of sulfur and sulfur dioxide (SO2). The sulfur generated in the gas stream reacts with mercury in the gas stream to generate mercuric sulfide and sulfur and mercuric sulfide are removed from the gas stream by co-condensation.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: June 13, 2006
    Assignee: TDA Research, Inc.
    Inventors: Girish Srinivas, Robert J. Copeland
  • Patent number: 7029639
    Abstract: A desulfurization apparatus for desulfurizing a flue gas containing sulfur oxides through contact with a porous carbon material. The carbon material, which is provided in a desulfurization tower, is at least one species selected from activated carbon and activated carbon fiber. The apparatus contains an NO2-gas-feeding apparatus for feeding NO2 gas into the desulfurization tower. Within the desulfurization tower, a showering mechanism is provided at the top, the showering mechanism adjusting water content of the flue gas in the desulfurization tower to that corresponding to saturation with water vapor or higher at the treatment temperature.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: April 18, 2006
    Assignees: Osaka Gas Co., Ltd., Mitsubishi Heavy Industries, Ltd.
    Inventors: Akinori Yasutake, Norihisa Kobayashi, Takashi Kurisaki, Masaaki Yoshikawa
  • Patent number: 6998100
    Abstract: Chlorite-like phyllosilicate materials are found useful as SOx sorbents. A novel process of sulfur oxide sorption is provided utilizing these layered materials as contact solids. Typical industrial applications include sulfur removal from fluid catalyst cracking process, cold-side combustion gas sulfur abatement and cleaner coal gasification.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: February 14, 2006
    Assignee: Toll Processing and Consulting, LLC
    Inventors: Edwin W. Albers, Harry W. Burkhead, Jr.
  • Patent number: 6998099
    Abstract: A process is described for the catalytic removal of H2S gas from a sour gas stream in the presence of a chelate ligand of the formula (I) where: X is hydrogen, an alkali metal or NH4+, n is 1, 2 or 3, and at least one of the radicals R1 to R6 is alkyl, aryl, alkyloxy, aryloxy, carboxyl or hydroxyl, the remaining radicals being hydrogen, and the metal in the metal chelate complex is a polyvalent metal, which can occur in more than one oxidation state. A mixture is also described for removing H2S gas from a sour gas stream, the mixture comprising an aminocarboxylate-containing metal chelate complex, and the use is also described of an aminocarboxylate-containing metal chelate complex for removing H2S gas from a sour gas stream.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: February 14, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Werner Hesse, Hans-Ulrich Jäger
  • Patent number: 6962683
    Abstract: A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: November 8, 2005
    Assignee: Research Triangle Institute
    Inventors: Santosh K. Gangwal, Apostolos A. Nikolopoulos, Mary Anne Dorchak, Thomas P. Dorchak
  • Patent number: 6962680
    Abstract: A method for removing sulfur compounds including transferring the impurity gas to a concentration process in which the impurity gas is separated into a concentrated gas containing hydrogen sulfide and a residual gas containing carbon dioxide, mercaptans and aromatic hydrocarbons: transferring the concentrated gas to a Claus reaction process in which hydrogen sulfide is recovered as an elementary sulfur, and an off-gas discharged from the Claus reaction process is heated to a temperature between the discharge temperature and 700° C.; introducing the heated off-gas into a mixing unit provided downstream of the heating means to be mixed with the residual gas; transferring a resultant mixed gas to a hydrogenation reaction process in which sulfur compounds are converted into hydrogen sulfide under the presence of a reduction catalyst; and separating the converted hydrogen sulfide and returning the separated hydrogen sulfide to the Claus reaction process.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 8, 2005
    Assignee: JGC Corporation
    Inventors: Shinya Ishigaki, Mitsuru Kida, Takashi Sasaki
  • Patent number: 6948308
    Abstract: In the control of pollutants such as NOx in the exhaust gases from internal combustion engines, ozone is reacted with NO to form NO2, which is then reduced catalytically to N2.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: September 27, 2005
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Alan Francis Diwell, Raj Rao Rajaram
  • Patent number: 6946108
    Abstract: A flue gas desulfurization apparatus includes at least one activated carbon fiber board 20 provided in a catalyst unit 6, the board being formed by alternatingly juxtaposing one or more plate-like activated carbon fiber sheets and one or more corrugated activated carbon fiber sheets so as to provide vertically extending conduits, wherein water for producing sulfuric acid is supplied, through a capillary phenomenon, to the activated carbon fiber board 20 provided in the catalyst unit 6. The flue gas desulfurization apparatus attains removal of sulfur oxides (SOx) by adding a minimum required amount of water to the activated carbon fiber board 20 so as to attain uniform water distribution and can reduce the amount of water required for removing sulfur oxides (SOx).
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: September 20, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Norihisa Kobayashi, Akinori Yasutake, Takashi Kurisaki, Kiyoshi Tatsuhara
  • Patent number: 6919059
    Abstract: Oxygen or oxygen-enriched air is employed to support combustion in furnaces (16) and (26) of part of the hydrogen sulphide content of a first feed gas stream. Sulphur vapour is extracted in condenser (32) from the resulting gas mixture so as to form a sulphur vapour depleted gas stream. The sulphur vapour depleted gas stream is passed into a catalytic reduction reactor (40) in which all the residual sulphur dioxide is reduced to hydrogen sulphide. This reduced gas mixture has water vapour extracted therefrom in a quench tower (52). The resulting water vapour depleted gas stream flows to a Claus plant for treatment typically together with a second feed gas steam comprising hydrogen sulphide. Employing both furnaces (16) and (26) makes it possible to obtain effective conversions to sulphur of the hydrogen sulphide in the feed gas without having the recycle any of the water vapour depleted gas.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: July 19, 2005
    Assignee: The BOC Group plc
    Inventors: Richard William Watson, Stephen Rhys Graville
  • Patent number: 6902714
    Abstract: Provided is a method and plant for reducing SO2 emissions in which a catalyst for catalyzing the formation of cement clinker is extracted from kiln exhaust gas and recycled.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: June 7, 2005
    Assignee: F. L. Smidth A/S
    Inventors: Lars Skaarup Jensen, Ebbe Skyum Jöns
  • Patent number: 6893620
    Abstract: Oxygen or oxygen-enriched air is employed to support combustion in furnace (16) of part of the hydrogen sulphide content of a first feed gas stream. Sulphur is extracted from the resulting gas stream in a sulphur condenser (26). Catalyst Claus reaction between hydrogen sulphide and sulphur dioxide in the resulting sulphur vapour depleted gas stream takes place in a catalytic reactor (32). Sulphur is extracted in a further sulphur condenser (34). The resulting sulphur vapour depleted gas stream is passed into a catalytic reduction reactor (40) in which all the residual sulphur dioxide and any sulphur vapour are reduced to hydrogen sulphide. The resulting reduced gas mixture has water vapour extracted there from in a quench tower (52). The resulting water vapour depleted gas stream flows to a Claus plant for further treatment typically together with a second feed gas stream.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: May 17, 2005
    Assignee: The BOC Group plc
    Inventors: Richard William Watson, Stephen Rhys Graville
  • Patent number: 6872373
    Abstract: A flue gas processing apparatus for removing sulfur oxide contained in a gas, including a desulfurization tower through which the gas flows, the desulfurization tower including a catalyst unit having at least one activated carbon fiber board which adsorbs the sulfur oxide and a water-supply device configured to supply water to the catalyst unit so as to form sulfuric acid from the sulfur oxide adsorbed to the at least one activated carbon fiber board, the water-supply device being positioned above the catalyst unit in the desulfurization tower, and a pressurizing device configured to apply pressure to the gas supplied to the desulfurization tower so as to flow the gas through the catalyst unit by the pressure.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: March 29, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Kiyoshi Tatsuhara, Akinori Yasutake, Takashi Kurisaki, Norihisa Koyayashi
  • Patent number: 6800261
    Abstract: The invention is directed to a process for the catalytic reduction of sulphur dioxide from a gas mixture at least containing 10 vol. % of water, in which process the gas mixture is passed over a sulphur resistant hydrogenation catalyst in sulphidic form, at a space velocity of at least 2000 h−1, in the presence of a reducing component, preferably at least partly consisting of hydrogen, in a molar ratio or reducing component to sulphur dioxide of more than 10 up to 100, at a temperature of 125° C. to 300° C., followed by passing the gas mixture, after the said reduction, through a dry oxidation bed for the oxidation of sulphur compounds, more in particular hydrogen sulphide, to elemental sulphur.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: October 5, 2004
    Assignees: Gastec N.V., Jacobs Nederland B.V.
    Inventors: Johannes Borsboom, Petrus Franciscus Maria Theresia van Nisselrooij
  • Patent number: 6790422
    Abstract: Active alumina catalysts, well suited for the Claus reaction, for the hydrolysis of organosulfur compounds and for catalytically removing objectionable sulfur compounds from gaseous effluents comprised thereof, contain a cocatalytically effective amount of sodium values, such effective amount, expressed by weight of Na2O, ranging from 1,200 ppm to 2,700 ppm.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: September 14, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Olivier Legendre, Christophe Nedez
  • Publication number: 20040141901
    Abstract: The present invention relates to a process for the preparation of carbon monoxide gas (CO gas) that is free of sulfur compounds to the greatest possible extent, to a process for the desulfurization of a CO gas containing sulfur, and to the use of that gas in chemical syntheses, for example for the synthesis of phosgene from carbon monoxide and chlorine.
    Type: Application
    Filed: January 12, 2004
    Publication date: July 22, 2004
    Inventors: Werner Breuer, Karl-Heinz Kohler
  • Patent number: 6737031
    Abstract: The method of simultaneously reducing carbon dioxide (CO2) emissions and sulfur dioxide (SO2) emissions produced by the combustion of carbon-containing matter in a hearth consists in injecting into the hearth a calcium-based agent, a fraction of which absorbs SO2 after decarbonization, and then, after the flue gases have been subjected to intermediate cooling, in causing them to transit via a first reactor and in putting them in contact therein with the other fraction of the absorbant that has not reacted with SO2 so as to capture CO2 from the flue gases by carbonization, then, in a separator, in extracting the solids contained in the flue gases output from the first reactor so as to subject them to heat treatment in a second reactor in order to extract CO2 therefrom by decarbonization and in order to recycle the resulting regenerated CO2 absorbant to the first reactor.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: May 18, 2004
    Assignee: Alstom Power NV
    Inventors: Corinne Beal, Jean-Xavier Morin, Michel Vandycke
  • Patent number: 6699448
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group II metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6682711
    Abstract: Methods for removing sulfur from syngas in a Fischer-Tropsch reactor, and reactors including means for removing sulfur from syngas are disclosed. Sulfur-reactive metals can be used in the Fischer-Tropsch unit to sequester the sulfur. For example, the Fischer-Tropsch unit can be run in stages, using a sacrificial catalyst in a first stage to adsorb the sulfur. The Fischer-Tropsch reactor can include internal baffles that separate the reactor into zones, with a sacrificial catalyst in one or more of the zones, that can be easily sequestered and regenerated or replaced. Sulfur adsorbents can be placed in the inlet gas manifold. A portion of the Fischer-Tropsch catalyst can be converted into larger size pellets that do not fluidize with the finer grain Fischer-Tropsch catalyst and remain near the gas inlet where they adsorb and sequester the sulfur. These embodiments can be combined in any suitable manner to lower the sulfur concentration in the syngas feed.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 27, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert J. Motal, Dennis J. O'Rear
  • Publication number: 20040013590
    Abstract: A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 22, 2004
    Applicant: Research Triangle Institute
    Inventors: Santosh K. Gangwal, Apostolos A. Nikolopoulos, Thomas P. Dorchak, Mary Anne Dorchak
  • Publication number: 20030231998
    Abstract: A method comprises providing a first gas stream containing a first concentration of sulfur dioxide; passing the first gas stream through at least a first catalyst volume whereby at least a portion of the sulfur dioxide is reacted to produce sulfur trioxide and removing from the at least a first catalyst volume a first treated gas stream containing sulfur trioxide and unreacted sulfur dioxide wherein the reaction of sulfur dioxide to sulfur trioxide is not limited by catalyst volume; providing a second gas stream containing a second and higher concentration of sulfur dioxide; and, passing the first treated gas stream and the second gas stream through at least at least a second catalyst volume to produce a second treated gas stream containing sulfur trioxide and unreacted sulfur dioxide.
    Type: Application
    Filed: June 17, 2002
    Publication date: December 18, 2003
    Applicant: Cecebe Technologies Inc.
    Inventor: Gordon M. Cameron
  • Patent number: 6616903
    Abstract: Method and apparatus for treating the atmosphere to lower the concentration of pollutants, such as ozone, hydrocarbons, nitrogen oxides, sulfur oxides, carbon monoxide and the like, therein in which ambient air is passed into operative contact with a stationary substrate such as an automobile at rest, a billboard, an air conditioning unit, a transportation tunnel and the like, the stationary substrate having at least one ambient air contacting surface having a pollutant treating composition, such as manganese compounds, copper compounds, platinum group metals and compounds thereof, precious metals, and the like, thereon.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: September 9, 2003
    Assignee: Engelhard Corporation
    Inventors: Terence C. Poles, William G. Rosenberg, John Calcagni
  • Patent number: 6607704
    Abstract: An integrated lean NOx trap. The integrated lean NOx trap includes a lean NOx trap containing a composite metal oxide mixture consisting essentially of about 80-100 wt % stoichiometric spinel MgAl2O4 and between about 0-20 wt % of CeO2 or CeO2—ZrO2. A method for removing NOx and SOx impurities from exhaust gases using the integrated lean NOx trap is also described.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: August 19, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Diane L. Guttridge, Jun (John) Li, Mohinder Singh Chattha, Robert J. Kudla, William Lewis Henderson Watkins
  • Patent number: 6585945
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group III metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6546717
    Abstract: In the control of pollutants such as NOx in the exhaust gases from internal combustion engines, ozone is reacted with NO to form NO2, which is then reduced catalytically to N2, by reacting NO2 with ammonia. The NO2 produced can react with the particulates of Diesel engine to exhaust gas to regenerate a particulate filter.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: April 15, 2003
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Guy Richard Chandler, Alan Francis Diwell, Raj Rao Rajaram
  • Patent number: 6521196
    Abstract: A process for adjusting the ratio of sulfur dioxide to hydrogen disulfide from the regeneration of a catalytic system of a structured support for example a monolith coated with: (i) a metal oxide sorber component selected from the group consisting of Ti, Zr, Hf, Ce, Al, Si and mixtures thereof, for example Ti2O, (ii) a precious metal component, for example Pt metal and, optionally (iii) a modifier consisting of an oxide Ag, Cu, Bi, Sb, Sn, As, In, Pb, Au or mixtures thereof, such as Cu as copper oxide. The system first captures the gaseous sulfur compounds. Then the captured gaseous sulfur compounds are then desorbed as mainly H2S and SO, in higher concentrations in a separate isolated lower flow stream in a ratio determined by the amount of modifier in the catalyst. The higher concentrations may be processed to less noxious or useful sulfur materials and the catalyst/sorber is regenerated.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: February 18, 2003
    Assignee: EmeraChem, LLC
    Inventors: Larry E. Campbell, Gregory J. Wagner
  • Publication number: 20030007902
    Abstract: The invention relates to: a process for the desulphurisation of feed streams comprising: supplying a hot process stream to a lead catalyst bed (8) comprising a first sulphur-removing catalyst and a second sulphur-removing catalyst under conditions whereby sulphur is removed from the process stream by the first sulphur-removing catalyst and said second sulphur-removing catalyst does not effectively remove sulphur from the stream at the operating temperature of the lead catalyst bed for the duration of the bed's life; collecting a hot partially sulphur-depleted stream from the lead catalyst bed and cooling said stream; passing said cooled stream through a lag catalyst bed (11) comprising the first sulphur-removing catalyst and the second sulphur-removing catalyst under conditions whereby sulphur is removed from the process stream by the second sulphur-removing catalyst and said first sulphur-removing catalyst removes sulphur less efficiently from the stream at the operating temperature of the lag catalyst bed;
    Type: Application
    Filed: May 30, 2002
    Publication date: January 9, 2003
    Inventors: Roger Bence, Stephen Craig Littlewood, Philip Henry Donald Eastland
  • Patent number: 6497855
    Abstract: A process is provided for the production of hydrogen from hydrogen sulfide by reacting carbon monoxide with hydrogen sulfide to produce hydrogen and carbonyl sulfide, and then reacting the carbonyl sulfide with oxygen to produce carbon monoxide and sulfur dioxide. The carbon monoxide is recycled back to the hydrogen sulfide reaction step. The catalyst used to promote the reaction between carbonyl sulfide and oxygen is an oxide of a metal, such as V, Nb, Mo, Cr, Re, Ti, W, Mn or Ta, which is supported on a support, such as TiO2, ZrO2, CeO2, Nb2O5 and Al2O3.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: December 24, 2002
    Assignee: Lehigh University
    Inventor: Israel E. Wachs
  • Publication number: 20020159939
    Abstract: In general, the invention provides methods and associated apparatuses for removing odorant and sulfur compounds from a gas stream such as natural gas. As an example, such systems are typically required by fuel processor systems adapted to convert natural gas into reformate for use in fuel cell systems, where the odorant and sulfur compounds might otherwise poison the fuel processor and fuel cell catalysts Systems under the present invention are based on the use of at least two filtration stages such that the odorant removal function is segregated from the general removal of H2S.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 31, 2002
    Applicant: Plug Power Inc.
    Inventors: Dick J. Lieftink, Ellart K. De Wit, Joannes M. Der Kinderen
  • Patent number: 6468488
    Abstract: The present invention pertains to Mg—Al anionic clay having 3R2 stacking. This new polytype of anionic clay has a three-layer repeat, but it has a different interlayer arrangement than the conventional 3R1 hydrotalcite. Said new polytype can be applied in all applications described before for the conventional 3R1 polytype anionic clay such as in catalyst compositions, catalyst additive compositions, catalyst supports, absorbent compositions, stabilizer compositions and in medicaments.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 22, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Paul O'Connor, William Jones
  • Patent number: 6444185
    Abstract: A process is provided to recover residual H2S, SO2, COS and CS2 in the tail gas from a sulphur recovery process. The tail gas is oxidized and hydrolyzed at a temperature of from 180° C. to 700° C. to provide an oxidized and hydrolyzed gas stream containing substantially no COS or CS2 and having a concentration by volume of H2S and SO2 such that the H2S concentration minus twice the SO2 concentration is from 0.25% to 0.5%. Then the gas stream from the hydrolysis is passed over a Claus catalyst, for example based on alumina and/or titanium oxide, for the reaction of H2S with SO2 to form sulphur and provide a gas stream with substantially no SO2.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: September 3, 2002
    Assignee: Elf Exploration Production
    Inventors: Jean Nougayrede, André Philippe, Sabine Savin-Poncet
  • Patent number: 6428761
    Abstract: A process for the reduction of gaseous sulfur compounds in gaseous streams. The gaseous stream is contacted with a sorber, e.g., zinc oxide, which is cable of sorbing the sulfur compounds under sulfur sorbing conditions. The sorber is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers of the sorber have a total thickness of at least 3 g/in3 of the carrier. The process is especially useful for the removal of gaseous sulfur compounds such as H2S from gaseous streams.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Patent number: 6350422
    Abstract: A process for removing hydrogen sulfide from a fluid stream by contacting a hydrogen sulfide-containing stream with a sorbent composition wherein said sorbent composition is produced by mixing at least one zinc component which is zinc oxide or a compound convertible to zinc oxide, at least one silica component where the silica component comprises silica or a compound convertible to silica, at least one colloidal metal oxide, and optionally at least one pore generator component so as to form a mixture, extruding the mixture, sphering the resulting extrudate to form spherical particles having a size of form about 0.5 to about 15 millimeters drying the resulting spherical particles, calcining the dried particles, steaming the resulting calcined particles, sulfiding the steamed particles by contacting them with sulfides or sulfur at a temperature of about 200° C. to 1400° C.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 26, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6342651
    Abstract: A process is provided for the combustion of ammonium salts of sulfuric acid contained in aqueous media. More particularly, a reductive combustion process which produces a combustion gas containing a divalent sulfur compound having a high concentration of hydrogen sulfide. The process is suitable for combusting ammonium salts of sulfuric acid produced during manufacture of 2-hydroxy-4-methylthiobutanoic acid (HMBA) or methionine. The divalent sulfur compounds in the combustion gas may be further converted to other useful sulfur products and recycled for use in the manufacture of HMBA or methionine.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: January 29, 2002
    Assignee: Novus International, Inc.
    Inventors: Stephen J. Lorbert, James M. Willock, Lewis B. Irvine, Shubhender Kapila, Virgil J. Flanigan, Paul K. S. Nam, Yvonne M. Liske
  • Publication number: 20020009404
    Abstract: An adsorbent-catalyst for removal of sulphur compounds from sulfur compound contaminated gas and liquid feed streams, wherein the adsorbent-catalyst is a synthetic X or Y faujasite with a silica to alumina ratio from 1.8:1 to about 5:1 and wherein 40 to 90% of the cations of the faujasite include transition metals of Groups IB, IIB and VIIB with the balance of the cations being alkali or alkaline earth metals.
    Type: Application
    Filed: July 18, 2001
    Publication date: January 24, 2002
    Applicant: Zeochem LLC
    Inventors: Albert M. Tsybulevskiy, Edward J. Rode
  • Patent number: 6338831
    Abstract: A sulfur oxide storage material contains a magnesium-aluminum spinel (MgO.Al2O3) and can be used as a so-called “sulfur trap” to remove sulfur oxides from oxygen-containing exhaust gases of industrial processes. In particular, it can be used for the catalytic purification of exhaust gas from internal-combustion engines to remove the sulfur oxides from the exhaust gas in order to protect the exhaust gas catalysts from sulfur poisoning. The material displays a molar ratio of magnesium oxide to aluminum oxide in the range of over 1.1:1, and the magnesium oxide present in stoichiometric excess is homogeneously distributed in a highly disperse form in the storage material.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: January 15, 2002
    Assignee: Degussa AG
    Inventors: Wolfgang Strehlau, Ulrich Göbel, Rainer Domesle, Egbert Lox, Thomas Kreuzer
  • Patent number: 6267941
    Abstract: A catalyst system for deodorization and an apparatus for deodorization, each of which comprises a pretreating catalyst and a noble metal catalyst, the pretreating catalyst converting a sulfur atom of low oxidation state which deactivates the noble metal catalyst into a sulfur atom of high oxidation state which has little deactivation effects thereon, the noble metal catalyst oxidizing aldehyde, etc., wherein a material to be deodorized is brought into contact with the pretreating catalyst prior to being brought into contact with the noble metal catalyst. As the pretreating catalyst, a catalyst comprising at least one selected from the group consisting of vanadium, chromium, manganese, iron, cobalt, nickel, copper and oxides thereof is used, while as the noble metal catalyst, a catalyst comprising at least one selected from the group consisting of ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold is used.
    Type: Grant
    Filed: December 26, 1997
    Date of Patent: July 31, 2001
    Assignee: NEC Corporation
    Inventor: Naoaki Sata
  • Patent number: 6207127
    Abstract: The invention provides a catalyst; a method for making the catalyst and a method for using the catalyst to promote the selective oxidation of hydrogen sulfide into elemental sulfur. The catalyst may be prepared by contacting a catalyst support, such as silica, with a solution containing ammonium metal salts, such as ammonium iron citrate and ammonium zinc citrate, and an amount of chloride (e.g., ammonium chloride) that is between about 0.1 and about 20 weight percent of the metal ions in the solution, to produce a support material impregnated with ammonium metal citrate salts and ammonium chloride. This impregnated catalyst support is then dried and calcined to produce a catalyst, such as iron and zinc oxide mixture supported on silica. It has been found that by adding chloride to the impregnated catalyst support prior to calcination and drying, that the sintering of the metal oxides can be controlled and the formation of a mixed metal oxide is promoted.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: March 27, 2001
    Assignees: Gastec N.V., Stork Engineers & Contractors B.V.
    Inventors: John Wilhelm Geus, Robert Johan Andreas Maria Terörde