Treating With Acid, Or Gas Which Forms Acid In Water Patents (Class 423/449.3)
  • Patent number: 11606889
    Abstract: Provided is carbon material filler for an electromagnetic shield, which includes a graphitizable carbon material to be mixed into a molding material in order to absorb electromagnetic waves, the carbon material filler for an electromagnetic shield satisfying (1) to (3): (1) A spacing d002 of a 002 plane of the graphitizable carbon material measured through X-ray diffraction measurement (XRD) is at least 0.338 nm. (2) A relative intensity ratio (A/B) value between a peak intensity (A) of a “002 plane” detected when the graphitizable carbon material is measured through X-ray diffraction measurement (XRD) and a higher peak intensity (B) that is selected from a “100 plane” and a “004 plane” is at least 2.5 and less than 27. (3) The filler is in powder form and the average particle diameter D50 is at least 1 ?m and at most 5 mm.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: March 14, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Toshiaki Miyanaga, Kazuhisa To, Nobuyoshi Kajioka, Junichi Ogawa, Kenji Hiramoto
  • Patent number: 8895142
    Abstract: The present invention, in part, relates to a carbon black having a) a nitrogen BET surface area (BET) of from about 600 m2/g to about 2100 m2/g, b) a CDBP value in mL/100 g of from about (?2.8+(b*BET)) to about (108+(b*BET)), where b is 0.087 and BET is expressed in m2/g, and c) an apparent density (p, g/cm3) of at least about 0.820+q*BET, where q=?2.5×10?4, as determined at a compressive force (P) of 200 kgf/cm2 on dry carbon black powder. Energy storage devices, such as electrochemical double layer capacitors (EDLC's), containing the carbon black are also disclosed. Methods for making the carbon blacks and EDLC's made with them are also provided.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: November 25, 2014
    Assignee: Cabot Corporation
    Inventors: Agathagelos Kyrlidis, Raymond M. Sawka, Geoffrey D. Moeser, Pavel A. Kossyrev, Ned J. Hardman
  • Patent number: 8728432
    Abstract: A method of producing a surface-treated carbon black powder dispersion includes subjecting carbon black fine particles having a volume average particle size of 100 nm to 20 ?m to wet granulation and drying by heating to obtain granulated carbon black having a hardness of 12 cN or less and a pH of less than 7, grinding the granulated carbon black to obtain a ground product having a volume average particle size of 20 nm to 20 ?m, and subjecting the ground product to wet oxidization in an aqueous medium. The resulting surface-treated carbon black powder dispersion exhibits excellent print density, print quality, discharge stability, and storage stability when used as an inkjet printer aqueous black ink.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Tokai Carbon Co., Ltd.
    Inventors: Hironori Arai, Masanobu Maeda
  • Patent number: 8722008
    Abstract: Disclosed is a method for upgrade-processing carbon black produced by performing a pyrolysis on waste tires and, more particularly to, a method of upgrading carbon black which includes removing iron wires and fibers from carbon black produced by performing a pyrolysis on waste tires with a magnetic separator and a gravity separator and then subjecting the carbon black to micronization, heating, and acid treatment to upgrade the carbon black. The method for upgrade-processing carbon black produced by performing a pyrolysis on waste tires includes producing an inorganic salt by treating carbon black produced by performing a pyrolysis on waste tires with an acid solution to produce an inorganic salt from an inorganic substance contained in the carbon black.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: May 13, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Soo Hyun Chung, Jeong Geol Na
  • Publication number: 20120263641
    Abstract: Disclosed is a method for upgrade-processing carbon black produced by performing a pyrolysis on waste tires and, more particularly to, a method of upgrading carbon black which includes removing iron wires and fibers from carbon black produced by performing a pyrolysis on waste tires with a magnetic separator and a gravity separator and then subjecting the carbon black to micronization, heating, and acid treatment to upgrade the carbon black. The method for upgrade-processing carbon black produced by performing a pyrolysis on waste tires includes producing an inorganic salt by treating carbon black produced by performing a pyrolysis on waste tires with an acid solution to produce an inorganic salt from an inorganic substance contained in the carbon black.
    Type: Application
    Filed: December 3, 2010
    Publication date: October 18, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Soo Hyun Chung, Jeong Geol Na
  • Patent number: 8178466
    Abstract: The present disclosure provides methods for pre-treating activated carbon before it is used in a dehydrochlorination process. The methods can comprise mixing the activated carbon with an acid, an oxidizing agent in a liquid phase, or an oxidizing agent in a gas phase. Activated carbons undergoing one or more of these methods can exhibit improved stability during the dehydrochlorination process.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: May 15, 2012
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh S. Tung
  • Publication number: 20110300052
    Abstract: The present invention relates in general to a method for obtaining particulate calcium carbonate and activated carbon particles and methods for using same, and more particularly, to a method for obtaining activated carbon particles having an average particle size less than about 12 microns from a pulp mill.
    Type: Application
    Filed: March 18, 2009
    Publication date: December 8, 2011
    Inventors: Gary A. Olsen, John C. Stuever, Susan C. Stuever
  • Publication number: 20110183489
    Abstract: An improved switching material for forming a composite article over a substrate is disclosed. A first volume of nanotubes is combined with a second volume of nanoscopic particles in a predefined ration relative to the first volume of nanotubes to form a mixture. This mixture can then be deposited over a substrate as a relatively thick composite article via a spin coating process. The composite article may possess improved switching properties over that of a nanotube-only switching article. A method for forming substantially uniform nanoscopic particles of carbon, which contains one or more allotropes of carbon, is also disclosed.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 28, 2011
    Inventors: Eliodor G. GHENCIU, Thomas RUECKES, Thierry YAO, Tom KOCAB
  • Publication number: 20090232723
    Abstract: The present invention relates in general to a method for obtaining particulate calcium carbonate and activated carbon particles and methods for using same, and more particularly, to a method for obtaining activated carbon particles having an average particle size less than about 12 microns from a pulp mill.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 17, 2009
    Inventors: Gary A. Olsen, John C. Stuever, Susan C. Stuever
  • Patent number: 6835215
    Abstract: Provided is a carbon material having a superior reversibility in lithium intercalation-deintercalation reaction, and a non-aqueous secondary battery using the carbon material as an active material for a negative electrode, which has a high energy density and an excellent rapid charging and discharging characteristics. Graphite powder having a maximum particle diameter of less than 100 &mgr;m and an existing reaction of rhombohedral structure in the crystalline structure of less than 20% is used as an active material for the negative electrode of the non-aqueous secondary battery. The graphite powder can be obtained by pulverizing raw graphite with a jet mill, and subsequently treating the powder at a temperature equal to or higher than 900°C.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: December 28, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hidetoshi Honbo, Seiji Takeuchi, Hideto Momose, Tatsuo Horiba, Yasushi Muranaka, Yoshito Ishii
  • Patent number: 6780389
    Abstract: A process for the production of modified carbon black, in which a carbon black dispersion containing carbon black, water and wetting agent, is mixed with an acid, aqueous solution or suspension of a primary amine and then reacted with sodium nitrite solution.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: August 24, 2004
    Assignee: Degussa AG
    Inventors: Alfons Karl, Ralph McIntosh, Werner Kalbitz, Horst Kleinhenz, Gerd Tauber, Stephan Luedtke
  • Publication number: 20040047779
    Abstract: A system (10), process and apparatus are disclosed for purifying carbon black (15) containing sulfur and metal oxide impurities by digesting (20) the impure carbon black in an acid to extract the metal oxide (25). Sulfur (45) is then removed from the acid treated carbon black (30) by solvent extraction (35) with an organic aromatic solvent which is then recovered (50). The purified carbon black (40) is then suitable for use as a toner (60) by toner black processing (55).
    Type: Application
    Filed: June 10, 2003
    Publication date: March 11, 2004
    Inventor: Gilbert W. Denison
  • Patent number: 6494946
    Abstract: Processes for preparing a carbon black product having an organic group attached to the carbon black. In one process at least one diazonium salt reacts with a carbon black in the absence of an externally applied electric current sufficient to reduce the diazonium salt. In another process at least one diazonium salt reacts with a carbon black in a protic reaction medium. Carbon black products which may be prepared according to process of the invention are described as well as uses of such carbon black products in plastic compositions, rubber compositions, paper compositions, and textile compositions.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: December 17, 2002
    Assignee: Cabot Corporation
    Inventors: James A. Belmont, Robert M. Amici, Collin P. Galloway
  • Publication number: 20010006263
    Abstract: Methods of making a graphite material are provided. A flexible graphite is ground into a powder. The graphite powder is mixed with a resin and the mixture is hot pressed. A second method of making a graphite material is provided where the graphite is ground into a powder; the graphite powder is soaked in a cryogenic liquid; the soaked graphite powder is then expanded; the expanded soaked graphite powder is mixed with a graphite powder; and the graphite powder mixed with a resin are hot pressed. According to a third method, the flexible graphite is ground into a powder; the graphite powder is soaked into a cryogenic liquid, the soaked graphite powder is expanded; and the expanded soaked graphic powder is ground into a fine powder. The resulting graphite powder is mixed with a resin. The graphite powder mixed with the resin is hot pressed. According to a fourth method, graphite flakes are soaked into an acid; the soaked graphite flakes are expanded; and the expanded soaked graphite flakes are precompacted.
    Type: Application
    Filed: February 21, 2001
    Publication date: July 5, 2001
    Inventor: Tommie P. Hayward