Plural Metal Containing Patents (Class 423/518)
  • Patent number: 11123717
    Abstract: Disclosed is a catalyst for oxygen reduction and evolution reactions. The catalyst is in the form of nickel sulfide (NiS2) nanosheets. NiS2 molecules are cross-linked and oriented two-dimensionally in the NiS2 nanosheets. Also disclosed is a method for producing the catalyst.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: September 21, 2021
    Assignee: Korea University Research and Business Foundation
    Inventors: Dong-Wan Kim, Bobae Ju, Hee Jo Song, Hyunseok Yoon
  • Patent number: 10981839
    Abstract: The present disclosure provides a method of increasing the concentration of K2O in an aqueous solution. The method comprises reacting potassium sulfate with an acidic compound to yield a product that includes potassium hydrogen sulfate. The product can be used to supplement crops in need of potassium. The product can also have other nutrients added to it, depending on the desired end use. Advantageously, these products increase yield as compared to prior art products.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: April 20, 2021
    Assignee: Compass Minerals USA Inc.
    Inventors: Robert A. Geiger, Kristopher Lee Shelite, Steffen M. Ball, Vatren Jurin
  • Patent number: 9302324
    Abstract: The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: April 5, 2016
    Assignee: University of Puerto Rico
    Inventors: Maria M Martinez-Inesta, Jennie Feliciano, Leonel Quiñones-Fontalvo
  • Patent number: 9011810
    Abstract: An electrode material obtained using a polyol process and a synthesis method is provided. The synthesis method includes steps of preparing a mixed solution by mixing a transition metal compound, a polyacid anionic compound and a lithium compound with a polyol solvent; and obtaining a resultant product by reacting the mixed solution in a heating apparatus. There is an advantage in that the electrode material, which has crystallinity due to a structure such as an olivine structure or a nasicon structure, can be synthesized using a polyol process at a low temperature without performing a heat treatment proces. The nanoelectrode material synthesized by the method has a high crystallinity, uniform particles, and a structure having a diameter ranging from several nanometers to several micrometers. Further, the electrode material has a high electrochemical stability.
    Type: Grant
    Filed: September 23, 2006
    Date of Patent: April 21, 2015
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Jae Kook Kim, Dong Han Kim, Tae Ryang Kim
  • Publication number: 20140127117
    Abstract: A method for preparing a suspension of LDH particles comprises the steps of preparing LDH precipitates by coprecipitation to form a mixture of LDH precipitates and solution; separating the LDH precipitates from the solution; washing the LDH precipitates to remove residual ions; mixing the LDH precipitates with water; and subjecting the mixture of LDH particles and water from step (d) to a hydrothermal treatment step by heating to a temperature of from greater than 80° C. to 150° C. for a period of about 1 hour to about 48 hours to form a well dispersed suspension of LDH particles in water.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: The University of Queensland
    Inventors: GAOQING LU, ZHIPING XU
  • Patent number: 8709375
    Abstract: A method for preparing an oil extractor is provided. The method includes dissolving 0.1˜30% by weight of a potassium sulfate, 0.1˜30% by weight of a potassium persulfate, and 0.1˜30% by weight of a manganese sulfate in a solvent to form a solution; heating the solution to synthesize a compound by a microwave; cooling a temperature of the compound to a room temperature; and removing the solvent from the compound. An extractor prepared from the method is also provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 29, 2014
    Assignee: National Tsing Hua University
    Inventors: Yong-Chien Ling, Jen-Yu Liu
  • Publication number: 20130243685
    Abstract: A method for preparing an oil extractor is provided. The method includes dissolving 0.1˜30% by weight of a potassium sulfate, 0.1˜30% by weight of a potassium persulfate, and 0.1˜30% by weight of a manganese sulfate in a solvent to form a solution; heating the solution to synthesize a compound by a microwave; cooling a temperature of the compound to a room temperature; and removing the solvent from the compound. An extractor prepared from the method is also provided.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 19, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: YONG-CHIEN LING, JEN-YU LIU
  • Publication number: 20130177810
    Abstract: Provided are embodiments of a method of synthesizing nano scale electrode materials using an ultrafast combustion technique and nano scale electrode materials synthesized using the method. The method does not require a process of annealing reaction products required for synthesis of electrode materials or any other additional processes, such as cleaning, filtering, and drying processes, so that it can take only several seconds to several minutes to obtain a resultant product.
    Type: Application
    Filed: April 14, 2011
    Publication date: July 11, 2013
    Applicant: INDUSTRY FOUNDATION OF CHONNAM NATIONAL UNIVERSITY
    Inventors: Jae Kook Kim, Eun Joung Kim, In Sun Yoo, Jin Sub Lim
  • Patent number: 8367036
    Abstract: The invention provides a novel polyanion-based electrode active material for use in a secondary or rechargeable electrochemical cell, wherein the electrode active material is represented by the general formula AaMb(SO4)2Zd.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: February 5, 2013
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi
  • Publication number: 20130022875
    Abstract: The present invention is to provide an active material for a battery, which has high thermal stability and low electric potential. According to the invention, an active material for a battery comprising a M element in Group III, a Ti element, an O element, and a S element and having an M2Ti2O5S2 crystalline phase is provided to solve the problem.
    Type: Application
    Filed: February 18, 2011
    Publication date: January 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi Tojigamori, Hideki Oki
  • Patent number: 8088353
    Abstract: A process for producing a Group II metal sulfide phosphor precursor, comprising adding to an organic solvent an aqueous solution containing at least one of a Group II element compound, a sulfurizing agent, and a compound containing any of copper, silver, manganese, gold, and rare-earth elements to obtain a reaction mixture, heating the reaction mixture to produce an azeotrope of the water and the organic solvent, and removing water from the reaction mixture to produce a desired Group II metal sulfide in the reaction mixture, wherein the removal of water from the reaction mixture occurs by recovering only the water condensed from a vapor produced by the azeotropic distillation.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 3, 2012
    Assignee: Kuraray Co., Ltd.
    Inventors: Jun Takai, Yoshihisa Tsuji, Hideharu Iwasaki
  • Patent number: 7901810
    Abstract: Active materials for rechargeable batteries have a general formula Aa(MO)bM?cXO4 where A represents an alkali metal or mixture of alkali metals, a is greater than about 0.1 and less than or equal to about 2; MO is an ion containing a transition metal M not in its highest oxidation state, M? represents a metal, or mixture of metals, and b is greater than 0 and less than or equal to about 1, c is less than 1 wherein a, b and c are selected so as to maintain the electroneutrality of the compound, and X is phosphorus, arsenic, or sulfur, or mixtures thereof. Preferred active materials are alkali metal vanadyl metal phosphates of general formula Aa(VO)bM?cPO4 where a and b are both greater than 0 and c may be zero or greater. New synthetic routes are provided to alkali metal mixed metal phosphates where at least one of the starting materials is a metal-oxo group (MO)3+, where M represents a metal in a +5 oxidation state.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: March 8, 2011
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Publication number: 20110014301
    Abstract: A mixed metal compound for pharmaceutical use is free from aluminium and has a phosphate binding capacity of at least 30%, by weight of the total weight of phosphate present, over a pH range of from 2-8. The compound is especially useful for treatment of hyperphosphataemia. The metals are preferably iron (III) and at least one of calcium, magnesium, lanthanum and cerium. A metal sulphate for pharmaceutical use is selected from at least one of calcium, lanthanum and cerium sulphate compounds and has a phosphate binding capacity of at least 30% by weight of the total phosphate present, over a pH range from 2-8.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 20, 2011
    Applicant: INEOS HEALTHCARE LIMITED
    Inventors: Norman B. Roberts, Maurice Webb, Benjamin J. Rankin
  • Patent number: 7799351
    Abstract: A mixed metal compound for pharmaceutical use is free from aluminium and has a phosphate binding capacity of at least 30%, by weight of the total weight of phosphate present, over a pH range of from 2-8. The compound is especially useful for treatment of hyperphosphataemia. The metals are preferably iron (III) and at least one of calcium, magnesium, lanthanum and cerium. A metal sulphate for pharmaceutical use is selected from at least one of calcium, lanthanum and cerium sulphate compounds and has a phosphate binding capacity of at least 30% by weight of the total phosphate present, over a pH range from 2-8.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: September 21, 2010
    Assignee: INEOS Healthcare Limited
    Inventors: Norman B. Roberts, Maurice Webb, Benjamin J. Rankin
  • Patent number: 7790318
    Abstract: Disclosed in a positive active material for a lithium secondary battery including a compound represented by formula 1 and having a 10% to 70% ratio of diffracted intensity of diffraction lines in 2?=53° (104 plane) with respect to diffracted intensity of diffraction lines in the vicinity of 2?=22° (003 plane) in X-ray diffraction patterns using a CoK?-ray, LixCoO2-yAy??(1) wherein, x is from 0.90 to 1.04, y is from 0 to 0.5, and A is selected from the group consisting of F, S and P.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 7, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jung-Joon Park, Su-Ho Song, Wan-Seog Oh, Jae-Chul Um
  • Publication number: 20100135896
    Abstract: The present invention involves a process and materials for simultaneous desulfurization and water gas shift of a gaseous stream comprising contacting the gas stream with a nickel aluminate catalyst. The nickel aluminate catalyst is preferably selected from the group consisting of Ni2xAl2O2x+3, Ni(2?y)Ni0yAl2O(5?y), Ni(4?y)Ni0yAl2O(7?y), Ni(6?y)Ni0yAl2O(9?y), and intermediates thereof, wherein x?0.5 and 0.01?y?2. Preferably, x is between 1 and 3. More preferably, the nickel containing compound further comprises Ni2xAl2O2x+3?zSz wherein 0?z?2x.
    Type: Application
    Filed: December 4, 2008
    Publication date: June 3, 2010
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Kurt M. Vanden Bussche
  • Patent number: 7722787
    Abstract: Metal vanadium oxide particles have been produced with an average diameter less than about 500 nm. The particles are produced from nanocrystalline vanadium oxide particles. Silver vanadium oxide particles, for example, can be formed by the heat treatment of a mixture of nanoscale vanadium oxide and a silver compound. Other metal vanadium oxide particles can be produced by similar processes. The metal vanadium oxide particles have very uniform properties.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: May 25, 2010
    Assignee: Greatbatch Ltd.
    Inventors: Craig R. Horne, Sujeet Kumar, James P. Buckley, Xiangxin Bi
  • Patent number: 7695869
    Abstract: Disclosed in a positive active material for a lithium secondary battery including a compound represented by formula 1 and having a 10% to 70% ratio of diffracted intensity of diffraction lines in 2?=53° (104 plane) with respect to diffracted intensity of diffraction lines in the vicinity of 2?=22° (003 plane) in X-ray diffraction patterns using a CoK?-ray, LixCoO2-yAy??(1) wherein, x is from 0.90 to 1.04, y is from 0 to 0.5, and A is selected from the group consisting of F, S and P.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: April 13, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jung-Joon Park, Su-Ho Song, Wan-Seog Oh, Jae-Chul Um
  • Patent number: 7678360
    Abstract: Alunite type compound particles represented by the following general formula (I) and having a specific value of D75/D25 when D25 is the particle diameter of particles which account for 25% of the total and D75 is the particle diameter of particles which account for 75% of the total in the cumulative particle size distribution curve measured by a laser diffraction method: Ma[Al1-xM?x]3(SO42?)y(OH)z.mH2O??(I) wherein M is at least one cation selected from the group consisting of Na+, K+, NH4+ and H3O+, M? is at least one cation selected from the group consisting of Cu2+, Zn2+, Ni2+, Sn4+, Zr4+ and Ti4+, and a, m, x, y and z satisfy 0.8?a?1.35, 0?m?5, 0?x?0.4, 1.7?y?2.5, and 4?z?7, respectively. The above particles of the present invention have a small average particle diameter, are spherical, disk-like or hexagonal and have an extremely narrow particle size distribution.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: March 16, 2010
    Assignee: Kyowa Chemical Industry Co., Ltd.
    Inventors: Akira Okada, Xing Dong Wang, Takatoshi Sato
  • Patent number: 7674553
    Abstract: Disclosed in a positive active material for a lithium secondary battery including a compound represented by formula 1 and having a 10% to 70% ratio of diffracted intensity of diffraction lines in 2?=53° (104 plane) with respect to diffracted intensity of diffraction lines in the vicinity of 2?=22° (003 plane) in X-ray diffraction patterns using a CoK?-ray, LixCoO2-yAy??(1) wherein, x is from 0.90 to 1.04, y is from 0 to 0.5, and A is selected from the group consisting of F, S and P.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: March 9, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jung-Joon Park, Su-Ho Song, Wan-Seog Oh, Jae-Chul Um
  • Publication number: 20100016149
    Abstract: There is provided an oxygen storage/release material using a rare earth oxysulfate or oxysulfide, which has a high oxygen storage/release capacity even at lower temperatures. The oxygen storage/release material of the present invention comprises a compound consisting of Pr2O2SO4 and/or Pr2O2S in which at least a part of Pr is replaced with Ce.
    Type: Application
    Filed: May 16, 2008
    Publication date: January 21, 2010
    Inventors: Masato Machida, Keita Ikeue, Masahide Miura
  • Publication number: 20090324467
    Abstract: A magnetic chemical absorbent according to the present invention is provided with a composite, which is constituted of a core substance comprising magnetite fine particles and schwertmannite being precipitated around the core substance to chemically bond therewith. This magnetic chemical absorbent can be produced in a hydrolysis reaction step, in which crystal of schwertmannite is precipitated by means of hydrolysis reaction by heating a solution of ferric salt and thereafter adding a reactive substance thereto, by means of adding magnetite fine particles into the solution after the solution is heated and before the precipitation of the crystal begins. This magnetic chemical absorbent is novel and good one whose absorption capability for harmful ion is upgraded more. In accordance with a waste-liquid treating method using this magnetic chemical substance, it is possible to intend the reduction of burdens in view of environmental and economic aspects. Moreover, this magnetic chemical absorbent is recyclable.
    Type: Application
    Filed: August 27, 2007
    Publication date: December 31, 2009
    Applicant: National University Corporation Nagoya University
    Inventors: Masazumi Okido, Yoshiyuki Bando, Akbar Eskandarpour, Kensuke Sassa, Shigeo Asai
  • Publication number: 20090277828
    Abstract: Disclosed is a novel adsorbent for use in a 99Mo/99mTc generator, which is a medical diagnostic radioisotope generator, and in a 188W/188Re generator, which is a therapeutic radioisotope generator. The adsorbent composed of sulfated alumina or alumina-sulfated zirconia exhibits adsorption capacity superior to that of conventional adsorbents, and is stable and is thus loaded in a dry state in an adsorption column so that the radioisotope 99Mo or 188W can be adsorbed. Thus, it is possible to miniaturize the column, and such a miniaturized column is small, convenient to use, and highly efficient, and extracts a radioisotope satisfying the requirements for pharmaceuticals, and thus can be useful for radioisotope generators extracting 99mTc or 188Re.
    Type: Application
    Filed: May 8, 2008
    Publication date: November 12, 2009
    Applicant: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Jun Sig LEE, Hyon Soo HAN, Ul Jae PARK, Kwang Jae SON, Hyeon Young SHIN, Soon Bog HONG, Kang Duk JANG, Jong Sub LEE
  • Patent number: 7601318
    Abstract: A method for the synthesis of compounds of the formula C—LixM1?yM?y(XO4)n, where C represents carbon cross-linked with the compound LixM1?yM?y(XO4)n, in which x, y and n are numbers such as 0?x?2, 0?y?0.6, and 1?n?1.5, M is a transition metal or a mixture of transition metals from the first period of the periodic table, M? is an element with fixed valency selected among Mg2+, Ca2+, Al3+, Zn2+ or a combination of these same elements and X is chosen among S, P and Si, by bringing into equilibrium, in the required proportions, the mixture of precursors, with a gaseous atmosphere, the synthesis taking place by reaction and bringing into equilibrium, in the required proportions, the mixture of the precursors, the procedure comprising at least one pyrolysis step of the carbon source compound in such a way as to obtain a compound in which the electronic conductivity measured on a sample of powder compressed at a pressure of 3750 Kg·cm?2 is greater than 10?8 S·cm?1.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 13, 2009
    Assignees: Hydro-Quebec, CNRS, Universite de Montreal
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Patent number: 7594961
    Abstract: An inorganic pigment, the pigment comprising a compound which is an oxysulphide or oxyselenide of tin and a metal chosen from niobium or tantalum. The pigments are brightly colored in the color range from yellow, through orange to red, and are especially suitable for the coloration of glass and plastic substrates. Methods for the production of the pigments are also described.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: September 29, 2009
    Assignee: Loughborough University Enterprises Limited
    Inventors: Jonathan Charles Shepley Booth, Sandra Elizabeth Dann, Duncan Lee John O'Brien
  • Patent number: 7575735
    Abstract: The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 18, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Publication number: 20090047311
    Abstract: An antibacterial agent composed of silver-containing aluminum sulfate hydroxide particles represented by the following formula (X-I) or (Y-I). (AgaBb-a)bAlcAx(SO4)y(OH)z.pH2O??(X-I) [AgaBb-a]b[Ti3-cAlc](SO4)y(OH)z.pH2O??(Y-I) The above antibacterial agent of the present invention provides antibacterial molded articles and further antifungal agents, cosmetics, antibacterial paper, antibacterial deodorizing sprays and agricultural chemicals when it is mixed with a resin.
    Type: Application
    Filed: June 30, 2006
    Publication date: February 19, 2009
    Inventors: Takeshi Imahashi, Xing Dong Wang, Akira Okada, Yoshie Inoue
  • Patent number: 7491378
    Abstract: A powder material comprising a compound which electrochemically intercalates and deintercalates a lithium ion. The powder material is comprised mainly of a compound containing at least an oxygen element, a sulfur element and at least one transition metal element.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: February 17, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoya Yamamoto, Soichiro Kawakami, Naoya Kobayashi
  • Patent number: 7476376
    Abstract: Disclosed is metal composite oxides having the new crystal structure. Also disclosed are ionic conductors including the metal composite oxides and electrochemical devices comprising the ionic conductors. The metal composite oxides have an ion channel formed for easy movement of ions due to crystallographic specificity resulting from the ordering of metal ion sites and metal ion defects within the unit cell. Therefore, the metal composite oxides according to the present invention are useful in an electrochemical device requiring an ionic conductor or ionic conductivity.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 13, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Seung Tae Hong, Yun Ho Roh, Eung Je Lee, Mi Hyae Park
  • Publication number: 20090011448
    Abstract: A pretreatment agent for a sample to be subjected to Limulus assay comprising an alkali metal sulfate and/or an alkaline earth metal sulfate wherein the sulfate(s) has a final concentration of 20 mM or more when the sulfate(s) is allowed to contact with the sample, or an alkali metal halide and/or an alkaline earth metal halide wherein the halide(s) has a final concentration of from 0.4 M to 1.2 M or less when the halide(s) is allowed to contact with the sample, or a kit for Limulus assay reagent comprising thereof as a composing article.
    Type: Application
    Filed: January 27, 2006
    Publication date: January 8, 2009
    Applicant: SEIKAGAKU CORPORATION
    Inventors: Toshio Oda, Jun Aketagawa
  • Publication number: 20090012223
    Abstract: Alunite type compound particles represented by the following general formula (I) and having a specific value of D75/D25 when D25 is the particle diameter of particles which account for 25% of the total and D75 is the particle diameter of particles which account for 75% of the total in the cumulative particle size distribution curve measured by a laser diffraction method: Ma[Al1-xM?x]3(SO42?)y(OH)z.mH2O??(I) wherein M is at least one cation selected from the group consisting of Na+, K+, NH4+ and H3O+, M? is at least one cation selected from the group consisting of Cu2+, Zn2+, Ni2+, Sn4+, Zr4+ and Ti4+, and a, m, x, y and z satisfy 0.8?a?1.35, 0?m?5, 0?x?0.4, 1.7?y?2.5, and 4?z?7, respectively. The above particles of the present invention have a small average particle diameter, are spherical, disk-like or hexagonal and have an extremely narrow particle size distribution.
    Type: Application
    Filed: April 6, 2006
    Publication date: January 8, 2009
    Inventors: Akira Okada, Xing Dong Wang, Takatoshi Sato
  • Patent number: 7393516
    Abstract: A method of preparing metal chalcogenides from elemental metal or metal compounds has the following steps: providing at least one elemental metal or metal compound; providing at least one element from periodic table groups 13-15; providing at least one chalcogen; and combining and heating the chalcogen, the group 13-15 element and the metal at sufficient time and temperature to form a metal chalcogenide. A method of functionalizing the surface of semiconducting nanoparticles has the following steps: providing at least one metad compound; providing one chalcogenide having a cation selected from the group 13-15 (B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb and Bi); dissolving the chalcogenide in a first solution; dissolving the metal compound in a second solution; providing and dissolving a functional capping agent in at least one of the solutions of the metal compounds and chalcogenide; combining all solutions; and maintaining the combined solution at a proper temperature for an appropriate time.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 1, 2008
    Inventors: Dong-Kyun Seo, Nora Iancu, Liming Wu
  • Patent number: 7338647
    Abstract: The present invention relates to a method for preparing an electroactive metal polyanion or a mixed metal polyanion comprising forming a slurry comprising a polymeric material, a solvent, a polyanion source or alkali metal polyanion source and at least one metal ion source; heating said slurry at a temperature and for a time sufficient to remove the solvent and form an essentially dried mixture; and heating said mixture at a temperature and for a time sufficient to produce an electroactive metal polyanion or electroactive mixed metal polyanion.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Valence Technology, Inc.
    Inventors: Biying Huang, Jeffrey Swoyer, M. Yazid Saidi, Haitao Huang
  • Patent number: 7309457
    Abstract: A chain antimony oxide fine particle group comprising antimony oxide fine particles which have an average particle diameter of 5 to 50 nm, are connected in the form of a chain and have an average connection number of 2 to 30 and preferably used for forming a hard coating film. The fine particle group can be prepared by a process comprising treating an alkali antimonate aqueous solution with a cation exchange resin to prepare an antimonic acid (gel) dispersion and then treating the dispersion with an anion exchange resin and/or adding a base to the dispersion. Also provided is a substrate with a film comprising a substrate and a hard coating film. The hard coating film includes a chain inorganic oxide fine particle group, in which inorganic oxide fine particles of 2 to 30 on the average are connected in the form of a chain, and a matrix.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 18, 2007
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Ryo Muraguchi, Masayuki Matsuda, Hiroyasu Nishida, Toshiharu Hirai, Mitsuaki Kumazawa
  • Patent number: 7285260
    Abstract: Method of synthesis for a material made of particles having a core and a coating and/or being connected to each other by carbon cross-linking, the core of these particles containing at least one compound of formula LixM1?yM?y(XO4)n, in which x,y and n are numbers such as 0?x?2, 0?y?0.6 and 1?n?1.5, M is a transition metal, M? is an element with fixed valency, and the synthesis is carried out by reaction and bringing into equilibrium the mixture of precursors, with a reducing gaseous atmosphere, in such a way as to bring the transition metal or metals to the desired valency level, the synthesis being carried out in the presence of a source of carbon called carbon conductor, which is subjected to pyrolysis. The materials obtained have excellent electrical conductivity as well as very improved chemical activity.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 23, 2007
    Assignees: Hydro Quebec, CNRS, Universite de Montreal
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Patent number: 7282192
    Abstract: The invention relates to a composition of matter comprising at least one metal from Group 3, at least one metal from Group 4, sulfur and oxygen, particularly useful as a catalyst for ether decomposition to alkanols and alkenes.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: October 16, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James Clarke Vartuli, Jeffrey T. Elks, El-Mekki El-Malki, William G. Borghard, Doron Levin, Stephen John McCarthy
  • Patent number: 7264671
    Abstract: The present invention relates to particles or powders of a compound of formula Zn1?yMyO1?xSx, wherein x has a value in the range from 0.01 to 0.08, M represents a divalent metal and y has a value in the range from 0 to 0.2, the compound having a wurtzite structure.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: September 4, 2007
    Assignee: Universitat Hannover
    Inventors: Michael Binnewies, Sonja Locmelis
  • Patent number: 7255962
    Abstract: Improved solid acid electrolyte materials, methods of synthesizing such materials, and electrochemical devices incorporating such materials are provided. The stable electrolyte material comprises a solid acid in a eulytine structure capable of undergoing rotational disorder of oxyanion groups and capable of extended operation at elevated temperatures, that is, solid acids having hydrogen bonded anion groups; a superprotonic disordered phase; and capable of operating at temperatures of ˜100° C. and higher.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 14, 2007
    Assignee: California Institute of Technology
    Inventors: Calum Chisholm, Sossina M. Haile
  • Patent number: 7101527
    Abstract: The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 ° C. to 300° C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10?8 S/cm and 10?1 S/cm within a temperature range of between about ?60 and 300° C. and a relative humidity of less than about 12%.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: September 5, 2006
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Steven Andrew Poling, Carly R. Nelson, Steve W. Martin
  • Patent number: 6949233
    Abstract: A method for preparing a positive active material for a rechargeable lithium battery is provided. In this method, a lithium source, a metal source, and a doping liquid including a doping element are mixed and the mixture is heat-treated.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: September 27, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ho-Jin Kweon, Jun-Won Suh, Geun-Bae Kim
  • Patent number: 6932955
    Abstract: Disclosed herein is a powder material comprising a compound which electrochemically intercalates and deintercalates a lithium ion, wherein the powder material is comprised mainly of a compound containing at least an oxygen element, a sulfur element and at least one transition metal element.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 23, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoya Yamamoto, Soichiro Kawakami, Naoya Kobayashi
  • Patent number: 6926912
    Abstract: A non-aluminum containing mixed metal compound for pharmaceutical use, which may, for example, be a mixed metal hydroxy carbonate containing magnesium and iron, and may have a hydrotalcite structure, preferably a non-aged hydrotalcite structure. Other metals, including, for example, calcium, lanthanum and cerium, may also be used. Metal sulphate compounds, especially calcium sulphate, lanthanum sulphate and/or cerium sulphate, compounds are also useful. The mixed metal compounds have a phosphate binding capacity of at least 30%, by weight, based on the test methods 1, 2 or 3, described in the specification, over a pH range from 3 to 7, such as from 2 to 8. The compound is especially useful in the treatment of hyperphosphataemia.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: August 9, 2005
    Assignee: Ineos Silicas Limited
    Inventors: Norman B Roberts, Maurice Webb, Benjamin J Rankin
  • Patent number: 6838413
    Abstract: A photocatalyst which comprises an oxysulfide containing at least one transition metal; a preferable photocatalyst which also comprises a rare earth element such as Sm in addition to the above and wherein the transition metal is at least one selected from the group consisting of Ti and Nb; a more preferable photocatalyst which further comprises a promoter comprising a transition metal such as Pt loaded on each of the above photocatalyst; and a catalyst for use in the decomposition of water by a light which comprises one of the above oxysulfide photocatalysts.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 4, 2005
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara, Tsuyoshi Takata, Akio Ishikawa
  • Publication number: 20040262571
    Abstract: Active materials for rechargeable batteries have a general formula
    Type: Application
    Filed: May 17, 2004
    Publication date: December 30, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6835320
    Abstract: A composite metal polybasic salt containing a trivalent metal, zinc metal and a divalent metal as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, exhibiting peaks at 2&thgr;=2 to 15°, 2&thgr;=19.5 to 24° and 2&thgr;=33 to 50°, and a single peak at 2&thgr;=60 to 64° in the X-ray diffraction (Cu-&agr;).
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: December 28, 2004
    Assignee: Mizusawa Industrial Chemicals, Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Publication number: 20040234442
    Abstract: A composite metal polybasic salt containing a trivalent metal, zinc metal and a divalent metal as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, exhibiting peaks at 2&thgr;=2 to 15°, 2&thgr;=19.5 to 24° and 2&thgr;=33 to 50°, and a single peak at 2&thgr;=60 to 64° in the X-ray diffraction (Cu-&agr;).
    Type: Application
    Filed: May 3, 2004
    Publication date: November 25, 2004
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Patent number: 6737195
    Abstract: Disclosed is a positive active material for a rechargeable lithium battery. The positive active material includes at least one compound represented by formulas 1 to 4 and a metal oxide or composite metal oxide layer formed on the compound.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: May 18, 2004
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ho-Jin Kweon, Hyun-Sook Jung, Yong-Chul Park, Geun-Bae Kim
  • Publication number: 20040086445
    Abstract: Method of synthesis for a material made of particles having a core and a coating and/or being connected to each other by carbon cross-linking, the core of these particles containing at least one compound of formula LixM1−yM′y(XO4)n, in which x,y and n are numbers such as 0≦x≦2, 0≦y≦0.6 and 1≦n≦1.5, M is a transition metal, M′ is an element with fixed valency, and the synthesis is carried out by reaction and bringing into equilibrium the mixture of precursors, with a reducing gaseous atmosphere, in such a way as to bring the transition metal or metals to the desired valency level, the synthesis being carried out in the presence of a source of carbon called carbon conductor, which is subjected to pyrolysis. The materials obtained have excellent electrical conductivity as well as very improved chemical activity.
    Type: Application
    Filed: June 19, 2003
    Publication date: May 6, 2004
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Publication number: 20040072069
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−.
    Type: Application
    Filed: December 20, 2002
    Publication date: April 15, 2004
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Patent number: 6706249
    Abstract: A composite metal polybasic salt containing a trivalent metal and magnesium as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, and further has a degree of orientation (Io) of not smaller than 1.5.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Mizusawa Industrial Chemicals Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato