Hydrogen Or Compound Thereof Patents (Class 423/644)
  • Patent number: 8845768
    Abstract: In one embodiment, a membrane of proton-electron conducting ceramics that is useful for the conversion of a hydrocarbon and steam to hydrogen has a porous support of M?-Sr1-z?M?z?Ce1-x?-y?Zrx?M??y?O3-?, Al2O3, mullite, ZrO2, CeO2 or any mixtures thereof where: M? is Ni, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Zn, Pt, Ru, Rh, Pd, alloys thereof or mixtures thereof; M? is Ba, Ca, Mg, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Yb; M?? is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, or Yb; z? is 0 to about 0.5; x? is 0 to about 0.5; y? is 0 to about 0.5; and x?+y?>0; for example, Ni—SrCe1-x?Zrx?O3-?, where x? is about 0.1 to about 0.3. The porous support is coated with a film of a Perovskite-type oxide of the formula SrCe1-x-yZrxMyO3-? where M is at least one of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, x is 0 to about 0.15 and y is about 0.1 to about 0.3.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: September 30, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Eric D. Wachsman, Heesung Yoon, Takkeun Oh, Jianlin Li
  • Patent number: 8845772
    Abstract: A process and system suitable for producing syngas from biomass materials. The process and system entail the compaction of a loose biomass material to remove air therefrom and form a compacted biomass material. The compacted biomass material is then introduced into a reactor and heated in the substantial absence of air so as not to combust the compacted biomass material. Instead, the compacted biomass material is heated to a temperature at which organic molecules within the compacted biomass material break down to form ash and gases comprising carbon monoxide and hydrogen gas. Thereafter, the carbon monoxide and hydrogen gas are released from the reactor, and the ash is removed from the reactor.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: September 30, 2014
    Inventors: Peter J. Schubert, Charles Ogborn
  • Patent number: 8840692
    Abstract: Techniques, systems and material are disclosed for transport of energy and/or materials. In one aspect a method includes generating gaseous fuel (e.g., from biomass dissociation) at a first location of a low elevation. The gaseous fuel can be self transported in a pipeline to a second location at a higher elevation than the first location by traveling from the first location to the second location without adding energy of pressure. A liquid fuel can be generated at the second location of higher elevation by reacting the gaseous fuel with at least one of a carbon donor, a nitrogen donor, and an oxygen donor harvested from industrial waste. The liquid fuel can be delivered to a third location of a lower elevation than the second location while providing pressure or kinetic energy.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 23, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8840805
    Abstract: The invention relates to a solution of lithium aluminum hydride in 2-methyltetrahydrofuran or a solvent mixture containing 2-methyltetrahydrofuran, a method for producing said solution and use of the same.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: September 23, 2014
    Assignee: Chemetall GmbH
    Inventors: Uwe Lischka, Alexander Murso, Ulrich Wietelmann
  • Patent number: 8834834
    Abstract: Processes for producing synthesis gas from biomass in which char particles, which are formed during the production of synthesis gas from biomass, are employed as catalysts. The char particles may be used as catalysts in a gasifier or in a thermal reformer, whereby gaseous components, formed as a result of the gasification of the biomass, such as methane, light alkyl and aromatic compounds, and phenolics, as well as tar, may be reformed and/or converted into synthesis gas.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 16, 2014
    Assignee: Enerkem, Inc.
    Inventors: Antonin Paquet, Esteban Chornet
  • Patent number: 8834587
    Abstract: Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: September 16, 2014
    Assignee: Virent, Inc.
    Inventors: Randy D. Cortright, Robert T. Rozmiarek, Charles C. Hornemann
  • Patent number: 8828106
    Abstract: Inexpensive heating fuel is used to generate heat required for completion of reformation of raw material to be reformed such as hydrocarbon gas, heavy oil or oil refining pitch so that the raw material may be reformed economically and stably. A reformer has a raw material feeder that feeds a predetermined amount of raw material to be reformed to a fluidized-bed reforming furnace; a fuel feeder feeds heating fuel to a fluidized-bed combustion furnace; and a controller regulates the fuel to be fed to the combustion furnace so as to impart heat to the circulating particles in the combustion furnace such that the raw material fed to the reforming furnace can be completely reformed in the reforming furnace.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 9, 2014
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Tetsuya Hirata, Toshiro Fujimori, Hideto Ikeda
  • Patent number: 8821600
    Abstract: A reactor vessel includes an entrained-flow gasifier and a dry solids discharge beneath the gasifier.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: September 2, 2014
    Inventors: Alan Darby, Steven P. Fusselman
  • Patent number: 8815207
    Abstract: The present invention concerns a method of activating or regenerating a hydrogen storage material which contains at least one metal hydride. The at least one metal hydride is brought into contact with an inert solvent and the inert solvent is subsequently removed again. After contacting with and removal of the inert solvent, there is not only an increase in the reaction rate but surprisingly the hydrogenation also proceeds more completely. The present method is particularly advantageous when the hydrogen storage material contains at least components which interact with one another during absorption and desorption.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: August 26, 2014
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Gagik Barkhordarian, Claudio Pistidda, Martin Dornheim, Rüdiger Bormann
  • Patent number: 8814964
    Abstract: The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: August 26, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Shabbir Ahmed, Dionissios D. Papadias, Sheldon H. D Lee, Rajesh K. Ahluwalia
  • Patent number: 8814962
    Abstract: Techniques, systems and material are disclosed for thermochemical regeneration of biomass into renewable engineered fuel, storage of the renewable engineered fuel, respeciation of the renewable engineered fuel and transport. In one aspect, a method includes generating low density hydrogen fuel from biomass dissociation at a first location of a low elevation. The low density hydrogen fuel is self-transported in a pipeline to a second location at a higher elevation than the first location by traveling from the first location to the second location without adding energy of pressure. A high density hydrogen carrier is generated at the second location of higher elevation by reacting the low density hydrogen fuel with at least one of a carbon donor, a nitrogen donor and an oxygen donor harvested from industrial waste. The high density hydrogen carrier is delivered to a third location of a lower elevation than the second location while providing pressure or kinetic energy.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 26, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8815209
    Abstract: The present disclosure is directed to generating hydrogen using thermal energy. In some implementations, a method includes concentrating solar energy on an absorption element to heat the absorption element to about 2,000° C. or greater. The absorption element is in thermal contact with a reservoir of water. The water is at a pressure of, for example, approximately 760 Torr or less, and at least a portion of the water disassociates based on heat from the absorption element. The hydrogen and the oxygen are rapidly cooled to substantially avoid recombination. After cooling, the hydrogen gas and oxygen gas are pressurized and then separated using a size-selective membrane.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: August 26, 2014
    Assignee: Stellar Generation, LLC
    Inventor: Jerry Elkind
  • Patent number: 8814963
    Abstract: A system for production of high-quality syngas comprising a first dual fluidized bed loop having a fluid bed conditioner operable to produce high quality syngas comprising a first percentage of components other than carbon monoxide and hydrogen from a gas feed, wherein the conditioner comprises an outlet for a first catalytic heat transfer stream comprising a catalytic heat transfer material and having a first temperature, and an inlet for a second catalytic heat transfer stream comprising catalytic heat transfer material and having a second temperature greater than the first temperature; a fluid bed combustor operable to combust fuel and oxidant, wherein the fluid bed combustor comprises an inlet connected with the outlet for a first catalytic heat transfer stream of the conditioner, and an outlet connected with the inlet for a second catalytic heat transfer stream of the conditioner; and a catalytic heat transfer material.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 26, 2014
    Assignee: Rentech, Inc.
    Inventors: George Apanel, Harold A. Wright
  • Patent number: 8808410
    Abstract: A hydrogen generator that includes a solid fuel mixture, a liquid reactant, a liquid delivery medium (LDM), a movable boundary interface (MBI), a reaction zone, wherein the MBI provides constant contact between a reacting surface of the solid fuel mixture and the liquid reactant delivered by the LDM to form the reaction zone, and a product separation media, fluidly coupled to the reaction zone by a fluid junction, that degasses a product. The hydrogen generator may further include auxiliary LDMs disposed throughout the hydrogen generator, wherein said auxiliary LDMs may be operated based on a ratio of the liquid reactant flow rate to the hydrogen generation rate.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 19, 2014
    Assignee: Intelligent Energy Limited
    Inventors: Daniel Braithwaite, Matthieu Jonemann, Tibor Fabian
  • Patent number: 8801815
    Abstract: A method of producing a high quality synthesis gas comprising less than a desired percentage of non-synthesis gas components and a desired mole ratio of hydrogen to carbon monoxide by providing a low quality synthesis gas comprising greater than the desired percentage; introducing the low quality synthesis gas into a conditioner; introducing a flue gas into a combustor; extracting a first catalytic heat transfer stream from the conditioner, and introducing at least a portion of the first catalytic heat transfer stream into the combustor; extracting a second catalytic heat transfer stream from the combustor, and introducing at least a portion of the second catalytic heat transfer stream into the conditioner; extracting a spent flue gas from the combustor; and extracting from the conditioner the high quality synthesis gas comprising the desired percentage and the desired mole ratio.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 12, 2014
    Assignee: RENTECH, Inc.
    Inventors: George Apanel, Harold A. Wright
  • Patent number: 8784771
    Abstract: The present invention provides a process for the preparation of Ti-doped alkali metal and/or alkaline-earth metal aluminum hydride, comprising intimately mixing: an alkali metal and/or alkaline-earth metal aluminum hydride, or at least one alkali metal hydride and/or alkaline-earth metal hydride, metallic aluminum and H2, with in the range of from 0.5 to 20 mol % of Ti(OCH3)4, based on the moles of Al in the prepared Ti-doped alkali metal and/or alkaline-earth metal aluminum hydride.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: July 22, 2014
    Assignee: Shell Oil Company
    Inventors: Jacobus Johannes Cornelis Geerlings, Peter Marie Paulus, Hans Arie Stil
  • Patent number: 8771386
    Abstract: A system is set forth for the exothermic generation of soot depleted syngas comprising (i) reacting a hydrocarbon-containing fuel with an oxygen containing gas in a first reactor to produce the syngas and byproducts comprising CO2, H2O and soot; and (ii) introducing the syngas and byproducts into a second reactor containing a non-carbonaceous material that traps the soot for a sufficient time such that the majority of the byproduct soot is gasified via reaction with the byproduct CO2 and/or H2O to produce a syngas stream that is depleted in the soot. The system is particularly suitable for the practice of heat exchange reforming wherein a portion of the heat is recovered from the soot depleted syngas stream and used as at least a portion of the heat to facilitate the additional production of syngas via the (endothermic) catalytic reforming of natural gas and steam.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 8, 2014
    Assignee: National Institute for Strategic Technology Acquisition and Commercialization
    Inventors: William Robert Licht, Shankar Nataraj, Xiang-Dong Peng, John Michael Repasky
  • Patent number: 8771388
    Abstract: A method for producing high levels of methane based on a combination of steam hydrogasification and a shift reactor is provided. Hydrogen produced by the shift reactor can be recycled back into the steam hydrogasifier.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: July 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Joseph M. Norbeck, Chan Seung Park, Arun S K Raju
  • Patent number: 8771635
    Abstract: A hydrogen release material includes a complex metal hydride and an ionic liquid wherein the hydrogen release material has a lower hydrogen release temperature in comparison to the complex metal hydride alone. Also disclosed is a process of releasing hydrogen from a storage material including the steps of: providing a complex metal hydride; combining the metal hydride with an ionic liquid in a desired amount forming a mixture; and heating the mixture to a temperature releasing hydrogen wherein the temperature is lower in comparison to the complex metal hydride alone.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: July 8, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Rana F. Mohtadi, PremKumar Sivasubramanian
  • Patent number: 8771634
    Abstract: The present subject matter provides heat management while generating hydrogen gas from a hydride achieved by coupling a hydride with a hydrate. The present subject matter unexpectedly provides improved methods so that the heat released by the hydride during hydrolysis is accurately balanced by the heat absorbed by the hydrate as the hydrate undergoes a phase transition to a less hydrated or to an anhydrous form. Examples of heat-moderated hydrogen generating systems are provided, and include, among others: NaBH4/Na2SO4.10H2O, NaBH4/CoSO4.7H2O, and NaBH4/FeSO4.7H2O. The subject matter provides a methodology for determining the correct proportions of hydride/hydrate to use in preparing a hydrogen generator capable of operating at a nearly constant temperature at or near a phase transition temperature of the hydrate or at a higher temperature that is still within a desired temperature range, such as, for example, 30-90° C.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 8, 2014
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Carol A. Becker, Brandon J. Wiedemeier, Jeffrey M. Lloyd, Jack Y. Dea, Rosteslaw M. Husar
  • Patent number: 8758459
    Abstract: A multiple adiabatic bed reforming apparatus and process are disclosed in which stage-wise combustion, in combination with multiple reforming chambers with catalyst, utilize co-flow and cross-flow under laminar flow conditions, to provide a reformer suitable for smaller production situations as well as large scale production. A passive stage by stage fuel distribution network suitable for low pressure fuel is incorporated and the resistances in successive fuel distribution lines control the amount of fuel delivered to each combustion stage.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: June 24, 2014
    Assignee: Meggitt (UK) Limited
    Inventor: Anthony M. Johnston
  • Patent number: 8758458
    Abstract: A gasifier includes a combustion chamber in which a fuel is burned to produce a syngas and a particulated solid residue. A quench chamber is disposed downstream of the combustion chamber. A dip tube is disposed coupling the combustion chamber to the quench chamber. The syngas is directed to contact liquid coolant in the quench chamber and produce a cooled syngas. A draft tube is disposed surrounding the dip tube such that an annular passage is formed. A baffle is disposed proximate to an exit path of the quench chamber. The cooled syngas is directed through the annular passage and impacted against the baffle so as to remove entrained liquid content from the cooled syngas before it is directed through the exit path. A cross sectional area of the annular passage is larger towards the bottom of the quench chamber and smaller towards the top of the quench chamber.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 24, 2014
    Assignee: General Electric Company
    Inventors: Prashant Tiwari, Gregory Michael Laskowski, Judeth Brannon Corry, Helge Burghard Herwig Klockow, Allyson Joy Jimenez-Huyke, Shailesh Singh Bhaisora, Steven Craig Russell, Karl Hardcastle, Jennifer Lynn Moyer, Scott Reginald Parent, Yulianto Salahuddin Mohsin
  • Patent number: 8747805
    Abstract: The disclosed invention relates to a process for conducting an equilibrium limited chemical reaction in a microchannel reactor. The process involves the use of active heat exchange and is suitable for conducting exothermic and endothermic reactions. The process is particularly suitable for synthesizing methanol and dimethyl ether.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: June 10, 2014
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Kai Tod Paul Jarosch, Terry Mazanec, Francis P. Daly, Rachid Taha, Enrique Aceves de Alba
  • Patent number: 8741004
    Abstract: A reaction hydrogen production control mechanism is provided that includes, a solid sodium borohydride mixture, a liquid fuel reactant, at least one liquid delivery medium (LDM), a movable boundary interface (MBI) and a reaction zone, where the MBI is disposed to provide a constant contact between a reacting surface of the solid fuel mixture and the primary LDM to form the reaction zone. A reaction in the reaction zone includes a hydrolysis reaction. The MBI moves according to a spring, gas pressure, or an elastic membrane. Product paths are disposed to transfer reactants from the system. The product paths can include a channel on a surface of the solid fuel mixture, a channel disposed through the solid fuel mixture, a channel disposed about the solid fuel mixture, a contained region disposed about the solid fuel mixture, or a conduit abutting the solid fuel mixture.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Intelligent Energy Limited
    Inventors: Daniel Braithwaite, Wonhyoung Ryu, Courtney Aline Helland, Kei E. Yamamoto, Andrew Philip Peterson, Matthieu Jonemann, Adam Naegeli Rodriguez, Gabriel Parisi-Amon
  • Patent number: 8741258
    Abstract: Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: June 3, 2014
    Assignee: University of Massachusetts
    Inventors: George W. Huber, Tushar P. Vispute, Kamalakanta Routray
  • Patent number: 8734546
    Abstract: Systems and methods for heating a non-combustion chemical reactor with thermal energy from a geothermal heat source are described. A working fluid is directed from the geothermal heat source to the chemical reactor to transfer heat. The working fluid can be circulated in a closed system so that it does not contact material at the geothermal heat source, or in an open system that allows the working fluid to intermix with material at the geothermal heat source. When intermixing with material at the geothermal heat source, the working fluid can transport donor substances at the geothermal heat source to the chemical reactor.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 27, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8728180
    Abstract: A reformer is disclosed in one embodiment of the invention as including a channel to convey a preheated plurality of reactants containing both a feedstock fuel and an oxidant. A plasma generator is provided to apply an electrical potential to the reactants sufficient to ionize one or more of the reactants. These ionized reactants are then conveyed to a reaction zone where they are chemically transformed into synthesis gas containing a mixture of hydrogen and carbon monoxide. A heat transfer mechanism is used to transfer heat from an external heat source to the reformer to provide the heat of reformation.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: May 20, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Joseph J. Hartvigsen, Singaravelu Elangovan, Piotr Czernichowski, Michele Hollist, Michael Boettcher
  • Patent number: 8721750
    Abstract: A process for producing hydrocarbon products onboard a marine vessel for carbonaceous feedstock includes the steps gasification of the feedstock in a thermal conversion plant connected to an onboard power plant and forming hydrocarbons in a chemical reaction plant.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: May 13, 2014
    Inventor: How Kiap Gueh
  • Patent number: 8715380
    Abstract: A method for deep desulfurization of synthesis gas comprising introducing carbonaceous material and optionally steam into a gasifier comprising a heat transfer media, extracting a first heat transfer stream comprising heat transfer media and optionally unconverted carbonaceous material from the gasifier, and introducing at least a portion of the first heat transfer stream into a combustor, introducing oxidant and optionally a fuel into the combustor, extracting a second heat transfer stream comprising heat transfer media from the combustor, and introducing at least a portion of the second heat transfer stream into the gasifier, introducing a compound capable of reacting with sulfur to produce sulfate, sulfide or both, extracting a purge stream comprising ash, sulfate, halide, or a combination thereof from the second heat transfer stream, extracting a flue gas from the combustor, and extracting a gasifier product synthesis gas stream comprising less than 1000 ppm sulfur from the gasifier.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 6, 2014
    Assignee: Rentech, Inc.
    Inventors: George Apanel, Harold A. Wright
  • Patent number: 8709377
    Abstract: The present invention relates to a process for reversible hydrogen storage, to a material for reversible hydrogen storage and to the use of the material for reversible hydrogen storage.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: April 29, 2014
    Assignee: Universitat Heidelberg
    Inventors: Hans-Jörg Himmel, Elisabeth Kaifer, Oxana Ciobanu, Pascal Roquette, Walter Siebert
  • Patent number: 8702823
    Abstract: A method of shutting down a hydrogen generation apparatus for limiting degradation in a catalyst due to dew condensation at the time of shutdown is provided. The method of shutting down the hydrogen generation apparatus comprising, a combustor which supplies heat necessary to a reforming device, a first air supplier which supplies air to the combustor, a combustion exhaust gas path formed such that the combustion exhaust gas produced in the combustor makes heat exchange with the reforming device and then with a CO reducing device, and a controller which operates the first air supplier so that the temperature of the gas in the CO reducing device does not become equal to or lower than a dew point after shutdown of the combustion operation of the combustor and before a start of a purging operation to purge the interiors of the reforming device and the CO reducing device with a replacement gas.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 22, 2014
    Assignee: Panasonic Corporation
    Inventors: Yukimune Kani, Seiji Fujihara
  • Patent number: 8696771
    Abstract: A compact integrated combustion reactor is described. In a preferred embodiment, the combustion catalyst is disposed in a staggered configuration such that the hot spot in an adjacent endothermic reaction chamber is substantially less than would occur with a conventional, unstaggered configuration. The integrated reactor may also include a methanation chamber for methanation of a reformate product. Systems containing reactant and product streams, and methods of conducting integrated combustion reactions are also described. A staggered catalyst conformation can be used more broadly for thermal chemical reactions requiring heat transfer in a layered device.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: April 15, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Daniel R. Palo, Jamelyn D. Holladay, Robert A. Dagle, Robert T. Rozmiarek
  • Patent number: 8696772
    Abstract: Systems and methods for producing hydrogen gas with a fuel processing system that includes a hydrogen-producing region that produces hydrogen gas from a feed stream and a heating assembly that consumes a fuel stream to produce a heated exhaust stream for heating the hydrogen-producing region. In some embodiments, the heating assembly heats the hydrogen-producing region to at least a minimum hydrogen-producing temperature. In some embodiments, the rate at which an air stream is delivered to the heating assembly is controlled to selectively increase or decrease the temperature of the heated exhaust stream. In some embodiments, the feed stream and the fuel stream both contain a carbon-containing feedstock and at least 25 wt % water. In some embodiments, the feed and fuel streams have the same composition.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 15, 2014
    Assignee: DCNS SA
    Inventors: David J. Edlund, Darrell J. Elliott, Alan E. Hayes, William A. Pledger, Curtiss Renn, Redwood Stephens, R. Todd Studebaker
  • Patent number: 8690974
    Abstract: A pyrolytic hydrogen generator comprising a pressure vessel containing a plurality of cardboard receptacles for the thermally decomposable hydrogen generating material and an associated ignition system. Also, a modular pellet tray assembly for use in the generator comprises a plurality of trays having pellet holders and associated igniters and held in a stack by support rods that also provide electrical connectivity to the trays. Also, a pellet tray assembly comprises a plurality of pellet holders, wherein some of more outwardly disposed pellet holders contain only outwardly facing vents and are fired first. Also, the generator has an array of hydrogen generating elements arranged side by side and separated from one another into cells by partitioning provided with directional venting that only permits laterally exiting gases to vent outwardly. Alternatively, the elements can be separated into cells by a baffle system comprising gas confining and gas venting elements, which may be heat conductive.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: April 8, 2014
    Assignee: Qinetiq Limited
    Inventors: Darren Paul Scattergood, Graham Manton, Gareth Thomas Flegg, Robert John Vere Churton, Philip Nicholas Barnes, William Ranulf Slee
  • Patent number: 8673035
    Abstract: In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 18, 2014
    Assignees: The Regents of the University of Colorado, a body corporate, Alliance for Substainable Energy, LLC
    Inventors: Alan W Weimer, Jaimee K Dahl, Allan A Lewandowski, Carl Bingham, Karen J Raska Buechler, Willy Grothe
  • Patent number: 8668897
    Abstract: The present invention relates to compositions and methods for producing hydrogen from water involving reacting metal particles with water in the presence of an effective amount of activator. In particular the invention pertains to compositions and methods for producing hydrogen upon reaction of metal particles selected from the group consisting of aluminum (Al), magnesium (Mg), boron (B), silicon (Si), iron (Fe), and zinc (Zn) with water, in the presence of an effective amount of an activator catalyst, wherein the activator is selected from the group consisting of: alkali metals, earth alkali metals, hydrides of alkali metals, hydrides of earth alkali metals, hydroxides of alkali metals, and hydroxides of earth alkali metals.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 11, 2014
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Valery Rosenband, Alon Gany
  • Patent number: 8658126
    Abstract: Nanomaterials of the JT phase of the titanium oxide TiO2-x, where 0?x?1 having as a building block a crystalline structure with an orthorhombic symmetry and described by at least one of the space groups 59 Pmmn, 63 Amma, 71 Immm or 63 Bmmb. The nanomaterials are in the form of nanofibers, nanowires, nanorods, nanoscrolls and/or nanotubes and are obtained from a hydrogen titanate and/or a mixed sodium and hydrogen titanate precursor compound that is isostructural to the JT crystalline structure. The titanates are the hydrogenated, the protonated, the hydrated and/or the alkalinized phases of the JT crystalline phase that are obtained from titanium compounds such as titanium oxide with an anatase crystalline structure, amorphous titanium oxide, and titanium oxide with a rutile crystalline structure, and/or directly from the rutile mineral and/or from ilmenite.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 25, 2014
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Jose Antonio Toledo Antonio, Carlos Angeles Chavez, Maria Antonia Cortes Jacome, Fernando Alvarez Ramirez, Yosadara Ruiz Morales, Gerardo Ferrat Torres, Luis Francisco Flores Ortiz, Esteban Lopez Salinas, Marcelo Lozada y Cassou
  • Patent number: 8651268
    Abstract: Hydrogen energy systems for obtaining hydrogen gas from a solid storage medium using controlled laser beams. Also disclosed are systems for charging/recharging magnesium with hydrogen to obtain magnesium hydride. Other relatively safe systems assisting storage, transport and use (as in vehicles) of such solid storage mediums are disclosed.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: February 18, 2014
    Inventor: Paul H. Smith, Jr.
  • Patent number: 8647401
    Abstract: A gasification system and method for converting organic materials into a usable syngas are provided. The gasification system includes a kiln for receiving a feedstock; a means for heating the kiln; a steam reforming reactor; and means for inductively heating the steam reforming reactor to drive the gasification reactions. In one preferred embodiment, the fuel processing system includes a steam reforming reactor that is at least partially filled with thermal transmitters which receive electromagnetic energy and generate heat within the steam reforming reactor. The organic material to be used as feedstock may include but will not be limited to petrochemical streams, refinery streams, natural gas, crude oil, coal, plastics, municipal wastes, toxic and hazardous wastes, biomass, medical wastes, and automobile wastes. The syngas that is produced in this process may consist primarily of hydrogen, carbon monoxide, carbon dioxide and methane.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: February 11, 2014
    Assignee: Shaw Intellectual Property Holdings, Inc.
    Inventors: John Self, Robert A. Olexy, Steve Cochran
  • Patent number: 8647403
    Abstract: Methods and systems for gasifier fines recycling system are provided. The system includes a gasifier slag removal system configured to separate first fines from a particulate slag removed from a gasifier by at least one of settling and filtering, a second fines handling system configured to receive second fines from a source other than the gasifier, and an injection system configured to mix the first fines and the second fines and a fuel for injection into the gasifier.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Patent number: 8642002
    Abstract: Disclosed are a hydrogen energy production system utilizing silicon wastewater and a method for production of hydrogen energy using the same. More particularly, the disclosed system includes: a UF treatment bath wherein the silicon wastewater is treated through UF film filtration to separate UF treated water and a concentrated silicon waste solution therefrom; a line mixer connected to the UF treatment bath in order to admix the separated silicon waste solution with an alkaline material fed from the outside; and a hydrogen production bath connected to the line mixer, wherein the concentrated silicon waste solution in the mixture reacts with the alkaline material, in order to produce hydrogen gas. Additionally, a hydrogen energy production method using the foregoing system is also disclosed.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 4, 2014
    Assignee: Woongjin Coway Co., Ltd.
    Inventors: Chae-Seok Choi, Ji-Hyeon Hwang, Youn-Kook Kim
  • Patent number: 8636818
    Abstract: An apparatus which includes: a carbonizer (1) which pyrolyzes a biomass to yield a pyrolysis gas and a carbonization product; a furnace (2) in which the carbonization product supplied from the carbonizer (1) is burned; a closed vessel (3) which is disposed in the furnace (2) and holds therein a carbonate (4) which has been melted by the heat generated by the carbonization product burned in the furnace (2); an introduction pipe (5) disposed so that the pyrolysis gas is introduced into the molten carbonate (4) in the closed vessel (3); and a fuel gas supply pipe (6) disposed so that a fuel gas, which is the pyrolysis gas sent through the introduction pipe (5), passed through the molten carbonate (4), and purified by reaction with the molten carbonate (4), is sent from the closed vessel (3) to the outside of the furnace (2).
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: January 28, 2014
    Assignee: Central Research Institute of Electric Power Industry
    Inventors: Makoto Kawase, Kazuyoshi Ichikawa, Maromu Ohtaka, Hiroshi Morita
  • Patent number: 8636961
    Abstract: The present invention increases the amount of hydrogen produced or released from reactions between a metal hydride fuel and liquid reactant. The present invention also decreases the volume of a hydrogen generating cartridge by reducing the pH of the liquid reactant.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 28, 2014
    Assignee: Societe BIC
    Inventors: Anthony Sgroi, Jr., Constance R. Stepan, Andrew J. Curello, Michael Curello
  • Patent number: 8632615
    Abstract: The invention relates to a method and a system for producing synthetic gas from biomass by high temperature gasification, including: feeding raw material, carbonizing, pulverizing the charcoal, and transporting charcoal powder to the gasification furnace for gasification. Prior to pulverizing, the charcoal is reduced to a normal pressure by a decompression feeding system of charcoal, pulverized into powders, and transported to a supercharging feeding system of charcoal powder by normal pressure transport gas. The pressurized charcoal powder is transported to gasifier. The high-temperature charcoal at an outlet of carbonization furnace is cooled to 60-200° C. by a cooler, and transported into the decompression feeding system to be depressurized. The charcoal powder with pressurized is ejected to gasifier by an ejector, pyrolysis gas produced from carbonization furnace is used as carrier gas, and the ratio of solid to gas in the transportation pipe for charcoal powder is controlled at between 0.03 and 0.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 21, 2014
    Assignee: Wuhan Kaidi Engineering Technology Research Institute Co., Ltd.
    Inventors: Haiqing Zhang, Shirong Zhang, Qin Sun, Peng Qiu, Shenghua Zheng
  • Patent number: 8623107
    Abstract: In one embodiment, a gas hydrate conversion system is provided comprising a floating factory, an appendage for harvesting a gas hydrate from an oceanic hydrate deposit, and one or more storage tanks. The floating factory comprises one or more heat exchange assemblies, one or more heat pump assemblies and an engine. In another embodiment, a method for harvesting hydrocarbon hydrate deposits is provided, the method comprising providing a gas hydrate conversion system; inducing release of methane from an oceanic hydrate deposit; capturing the methane from a primary methane capture zone and/or a secondary methane capture zone; and converting the methane to hydrogen and carbon.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: January 7, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy E. McAlister
  • Patent number: 8617268
    Abstract: An equipment for carrying out a process for producing synthesis gas (S) from biomass, includes a storage unit (1) for biomass and means (3; 5, 6) to carry out pyrolysis and combustion of the biomass. The equipment further includes first or second heat exchanging means (7, 9; 15) to receive outgoing gases (CO2, N2 and H2O) from the means (3; 5, 6) to carry out pyrolysis and combustion of the biomass, a gas purification unit (10) to receive the outgoing gases (CO2, N2 and H2O) that are cooled in the first or second heat exchanging means (7, 9; 15), means (11) to supply a process gas (P) from the gas purification unit (10) to the first heat exchanging means (7, 9), and a reduction shaft (12) to carry out reduction of the process gas (P) discharged from the first heat exchanging means (7, 9).
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 31, 2013
    Assignee: Cortus AB
    Inventor: Rolf Ljunggren
  • Patent number: 8617267
    Abstract: A reformer having high durability and including a heating unit and a reforming unit. The heating unit has a hollow cylindrical shape or polygonal shape and a first combustor and a second combustor that receives and oxidizes heating unit fuel and anode off gas (AOG) at both ends thereof. The reforming unit includes a first reforming portion formed to surround the exterior of the heating unit, a second reforming portion formed to surround the exterior of the first reforming portion and a flow path portion connecting the first reforming portion and the second reforming portion to provide fluid communication therebetween. The flow path portion includes a pre-deformed portion extending along a direction substantially perpendicular to the central axis of the heating unit.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: December 31, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: In-Hyuk Son
  • Patent number: 8608814
    Abstract: Hydrogen-producing fuel processing assemblies and methods for delivering feedstock to a hydrogen-producing region of a hydrogen-producing fuel processing assembly. In some embodiments, the fuel processing assemblies include a feedstock delivery system that includes a pump assembly and a stall prevention mechanism that is adapted to reduce pressure in an outlet conduit during periods in which the pump assembly is not emitting a liquid outlet stream within or above a hydrogen-producing pressure range. In some embodiments, pressure in the outlet conduit is isolated from pressure in the hydrogen-producing region of the fuel processing assembly and is reduced during periods in which a liquid stream is not being pumped within or above a hydrogen-producing pressure range.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 17, 2013
    Assignee: DCNS SA
    Inventor: Vernon Wade Popham
  • Patent number: 8603203
    Abstract: A burner nozzle assembly includes: a nozzle plate having an anode off-gas (AOG) nozzle at the center of the nozzle plate and a plurality of oxidation fuel nozzles surrounding the AOG nozzle; and a channel unit coupling the AOG nozzle with an AOG introducer to allow an AOG to flow therebetween and coupling the oxidation fuel nozzles with an oxidation fuel introducer to allow an oxidation fuel to flow therebetween.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: December 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woo-Cheol Shin, In-Hyuk Son, Jin-Goo Ahn, Jong-Rock Choi, In-Seob Song
  • Patent number: 8603204
    Abstract: The present invention relates to a device for generating a synthesis gas (SG) from biomass (BM) by entrained-flow gasification. The device comprises a treatment plant (1), in which the biomass (BM) is supplied to a coarse crushing device (2), which is connected downstream via a first lock (3) to a pressurized carbonization plant (4) for the hydrothermal generation of carbonization char (KK) from the biomass (BM). The carbonization plant (4) comprises at least one preheating device (5) and a carbonization reactor (6) arranged downstream of the preheating device (5) and is connected downstream via a second lock (11) to at least one solid-liquid separation device (12, 13) for providing a fuel. A drying device (16) for drying the fuel is provided downstream of the solid-liquid separation device (12, 13), with a crushing device (18) for crushing the fuel to form pulverized fuel (BS) having particle sizes in the range of 55 ?m to 500 ?m being connected downstream of the drying device.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: December 10, 2013
    Assignee: Linde AG
    Inventors: Dietmar Rüger, Olaf Schulze, Anton Althapp, Christian Eichhorn, Horst Kretschmer