Binary Compound Patents (Class 423/645)
  • Patent number: 7837976
    Abstract: In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 23, 2010
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Gary Sandrock, James Reilly, Jason Graetz, James E. Wegrzyn
  • Patent number: 7790911
    Abstract: The present invention relates to an advanced preparation method of organic-transition metal hydride used as hydrogen storage materials, the method including: preparing organic-transition metal-aluminum hydride complexes by reacting the organic-transition metal halide with metal aluminum hydride compounds; and preparing the organic-transition metal hydride by reacting the organic-transition metal aluminum hydride complexes with Lewis bases. Since the preparation method of the organic-transition metal hydride according to the present invention does not use catalysts, it has advantages that it does not cause problems due to poisoning and can prepare the organic-transition metal hydride at high yield under less stringent conditions. The hydrogen storage materials containing the organic-transition metal hydride prepared from the preparation method can safely and reversibly store a large amount of hydrogen.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: September 7, 2010
    Assignee: Hanwha Chemical Corporation
    Inventors: Jong Sik Kim, Jeasung Park, Hyo Jin Jeon, Hee Bock Yoon, Dong Wook Kim, Gui Ryong Ahn, Dong Ok Kim, Jisoon Ihm, Moon-Hyun Cha
  • Publication number: 20100183500
    Abstract: A method for producing germane gas from a germanium-containing solid. The germanium-containing solid may be an oxidic or non-oxidic form of germanium and may further include silicon, metals, or other elements in combination with germanium. The process includes oxidizing the germanium-containing solid phase starting material, where the oxidation may be effected by contacting the germanium-containing solid phase starting material with an oxidizing solution. The oxidizing solution may be a basic solution comprising a hydroxide or an acidic solution. The oxidation product of the germanium-containing solid phase starting material is converted to germane through an electrochemical or chemical reduction process.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 22, 2010
    Inventor: Henry Lee
  • Patent number: 7754641
    Abstract: Disclosed herein is a composition comprising a complex hydride and a borohydride catalyst wherein the borohydride catalyst comprises a BH4 group, and a group IV metal, a group V metal, or a combination of a group IV and a group V metal. Also disclosed herein are methods of making the composition.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Matthew John Andrus
  • Publication number: 20100166643
    Abstract: The cost-effective hydrogenated, purified titanium powder is manufactured by the semi-continuous process including: (a) magnesium-thermic reduction of titanium chlorides at 830-880° C. in the hydrogen atmosphere characterized by the formation of a hollow porous block of the reaction mass having an open cavity in the center of the block, (b) full thermal-vacuum separation of the hollow block from excessive Mg and MgCl2 at 850-980° C. and residual pressure of 26-266 Pa using a multi-step cycle including: (i) purging hydrogen at 800-950° C. into the reactor at the pressure 10 kPa to 24.
    Type: Application
    Filed: December 29, 2008
    Publication date: July 1, 2010
    Inventors: Sergey A. Kasparov, Andrey G. Klevtsov, Aleksandr I Cheprasov, Vladimir S. Moxson, Volodymyr A. Duz
  • Publication number: 20100135898
    Abstract: Disclosed is a method for producing a metal hydride, which enables to obtain a metal hydride from a metal imide or a metal amide. Specifically, in an air current containing a hydrogen gas having a hydrogen partial pressure of 0.1 MPa or greater, hydrogen is reacted with one or both of a metal imide and a metal amide, thereby producing a metal hydride. The metal constituting the metal amide and the metal imide is preferably lithium, sodium or potassium.
    Type: Application
    Filed: March 14, 2008
    Publication date: June 3, 2010
    Applicants: TAIHEIYO CEMENT CORPORATION, HIROSHIMA UNIVERSITY
    Inventors: Yoshitsugu Kojima, Hironobu Fujii, Takayuki Ichikawa, Satoshi Hino, Haiyan Leng, Kyoichi Tange, Chie Omatsu
  • Patent number: 7700069
    Abstract: Some metal hydrides permit reversible storage and release of hydrogen for a hydrogen using power-generator. But the surfaces of some metal hydrides or metal hydride precursors may be oxidized or have other coatings that inhibit hydrogen absorption or release. Such materials may be suspended in a suitable liquid of supercritical carbon dioxide or liquid nitrogen and subjected to cavitation processing to break up such hydrogen impermeable surfaces or to fracture the particles so as to provide fresh hydrogen penetratable surfaces.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: April 20, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Robert D. Stephens
  • Publication number: 20100068129
    Abstract: The present invention relates to a method for the preparation of material of the type AlH3 in one its structure modifications or structurally related aluminium containing hydrides. The invention also relates to a material prepared by this method. The invention also relates to uses of the material for reversible or irreversible hydrogen storage, for rocket fuel, pyrotechnic components, reduction agent, metal coating and polymerization catalyst, and as starting substance for making new metal hydrides.
    Type: Application
    Filed: May 15, 2007
    Publication date: March 18, 2010
    Inventors: Bjom C. Hauback, Hendrik W. Brinks
  • Publication number: 20100061925
    Abstract: It is an object of the present invention to provide a method of manufacturing titanium hydride powder that is capable of manufacturing titanium hydride by using titanium scrap generated during machining as a raw material. Further, according to the method of manufacturing titanium hydride powder, since the titanium scrap is hydrogenated and changed into powder at the same time for a short time, it is possible to reduce the number of processes and manufacturing cost and to improve productivity. In order to achieve the object, according to an embodiment of the present invention, a method of manufacturing titanium hydride powder includes charging titanium scrap into a reaction container, removing air in the reaction container and supplying hydrogen gas to the reaction container, and performing ball milling.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 11, 2010
    Inventors: Wonsik Lee, Jinman Jang, Sehyun Ko, Sangyong Park
  • Patent number: 7665328
    Abstract: A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: February 23, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, Bruce M. Wilding
  • Publication number: 20090317317
    Abstract: A method of storing and dispensing a fluid includes providing a vessel configured for selective dispensing of the fluid therefrom. A solvent mixture comprising an ionic liquid and a cosolvent is provided within the vessel. The fluid is contacted with the solvent mixture for take-up of the fluid by the solvent mixture. The fluid is released from the ionic liquid and dispensed from the vessel.
    Type: Application
    Filed: September 1, 2009
    Publication date: December 24, 2009
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Carrie L. Wyse, Robert Torres, JR., Joseph V. Vininski
  • Publication number: 20090291045
    Abstract: The present invention provides methods and materials for the formation of hydrogen storage alanes, AlHx, where x is greater than 0 and less than or equal to 6 at reduced H2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.
    Type: Application
    Filed: April 20, 2009
    Publication date: November 26, 2009
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Jason Allan Graetz, James J. Reilly, James E. Wegrzyn
  • Patent number: 7608233
    Abstract: A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH4)2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl3, TiCl3, or a mixture of TiCl3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400° C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 27, 2009
    Assignee: Sandia Corporation
    Inventors: Ewa Carin Ellinor Rönnebro, Eric H. Majzoub
  • Patent number: 7601329
    Abstract: In one aspect, the invention provides a hydrogen storage composition having a hydrogenated state and a dehydrogenated state. In the hydrogenated state, such composition comprises a hydride and a hydroxide. In a dehydrogenated state, the composition comprises an oxide. The present invention also provides methods of and compositions for regenerating a species of a hydroxide and a hydride material.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: October 13, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: John J Vajo, Florian O Mertens, Scott W Jorgensen
  • Patent number: 7591985
    Abstract: In one aspect, the crude gas is contacted with a cold caustic solution to reduce levels of carbon dioxide and water. The partially purified gas is chilled in direct-contact with a hydrogen refrigerant to induce homogenous condensation of water impurity. Liquid and ice particles formed by lower temperatures are removed across an aerosol phase separating medium to produce a cooled and partially purified gas mixture which is further dried and de-carbonated across a zeolitic molecular sieve adsorbent to achieve very low concentrations of moisture and carbon dioxide in the bulk gas. In one aspect, the purified gas mixture obtained is partially liquefied, phase-separated and distilled to obtain germanium hydride, digermanium hexahydride and hydrogen gas as products. A portion of the hydrogen product can be compressed, chilled and re-used as a direct-contact refrigerant in the purification process.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: September 22, 2009
    Assignee: Metaloid Precursors, Inc.
    Inventor: Mathias Tezock
  • Publication number: 20090226355
    Abstract: Methods of producing semiconductor materials via polymerization techniques are provided. The methods include reacting a precursor compound containing a metalloid semiconductor element, such as silicon or germanium, with a catalyst to form a polymer composition. The polymer precursor is then decomposed to form an electrically conductive hydrogenated composition containing silicon or germanium. The methods employ relatively safe raw materials and products and result in high yield reactions. Moreover, the polymers can be applied in liquid form and can be used as an “ink” or liquid to selectively coat a substrate.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 10, 2009
    Inventors: Richard M. Laine, Daniel Nielsen, Max Shtein
  • Publication number: 20090208406
    Abstract: Hydrogen storage alloys, especially as newly formed, have often required high temperature (e.g., >700° C.) activation before the solids will absorb an amount of hydrogen normally storable by the composition. Now, such alloys may be activated by a low temperature (typically below zero degrees Celsius) soak in pressurized hydrogen followed by desorption of the hydrogen at a temperature above about 100° C. Such low temperature hydrogen absorption and higher temperature hydrogen desorption may be repeated a few times until the hydrogen storage alloy material readily absorbs and holds hydrogen for release on demand, and subsequent hydrogen refilling.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gholam-Abbas Nazri, Vinay Venkatraman Bhat
  • Publication number: 20090162709
    Abstract: Compounds are provided comprising at least one neutral, positive, or negative hydrogen species having a binding energy greater than its corresponding ordinary hydrogen species, or greater than any hydrogen species for which the corresponding ordinary hydrogen species is unstable or is not observed. Compounds comprise at least one increased binding energy hydrogen species and at least one other atom, molecule, or ion other than an increased binding energy hydrogen species. One group of such compounds contains one or more increased binding energy hydrogen species selected from the group consisting of Hn, Hn?, and Hn+ where n is a positive integer, with the proviso that n is greater than 1 when H has a positive charge.
    Type: Application
    Filed: June 11, 2008
    Publication date: June 25, 2009
    Inventor: Randell L. Mills
  • Patent number: 7550513
    Abstract: It is to provide fine particles of copper, nickel or palladium hydride having an average particle diameter of at most 50 nm, which are hardly oxidized in the atmosphere and are excellent in storage stability and are thereby very suitable for formation of metallic materials, and their production process. Further, it is to provide a dispersion containing fine particles of copper, nickel or palladium hydride, which is excellent in storage stability, and a metallic material obtained by applying the dispersion, followed by baking. The fine particles of copper, nickel or palladium hydride and the dispersion thereof, to be obtained by the present invention, are applicable to various applications, and they can be used for e.g. formation and repair of printed wiring, etc. employing a dispersion, interlayer wiring in semiconductor packages, and joining of printed wiring boards and electronic components.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: June 23, 2009
    Assignee: Asahi Glass Company, Limted
    Inventors: Hideyuki Hirakoso, Keisuke Abe, Yasuhiro Sanada, Kentarou Tsunozaki
  • Publication number: 20090142257
    Abstract: Compounds are provided comprising at least one neutral, positive, or negative hydrogen species having a binding energy greater than its corresponding ordinary hydrogen species, or greater than any hydrogen species for which the corresponding ordinary hydrogen species is unstable or is not observed. Compounds comprise at least one increased binding energy hydrogen species and at least one other atom, molecule, or ion other than an increased binding energy hydrogen species. One group of such compounds contains one or more increased binding energy hydrogen species selected from the group consisting of Hn, Hn?, and Hn+ where n is an integer from one to three.
    Type: Application
    Filed: June 19, 2008
    Publication date: June 4, 2009
    Inventor: Randell L. Mills
  • Patent number: 7537747
    Abstract: A system comprising solid media and a gaseous atmosphere, said solid media having a first condition which is hydrogenated and a second condition which is partially or fully dehydrogenated relative to said first condition, and wherein said gaseous atmosphere comprises nitrogen.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: May 26, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Martin S Meyer, Frederick E Pinkerton, Gregory P Meisner
  • Publication number: 20090130016
    Abstract: Provided is a thermionic cathode doped with an increased binding energy hydrogen species and a method of making the doped thermionic cathode.
    Type: Application
    Filed: May 21, 2008
    Publication date: May 21, 2009
    Inventor: Randell L. Mills
  • Publication number: 20090123360
    Abstract: Compounds are provided comprising at least one neutral, positive, or negative hydrogen species having a binding energy greater than its corresponding ordinary hydrogen species, or greater than any hydrogen species for which the corresponding ordinary hydrogen species is unstable or is not observed. Compounds comprise at least one increased binding energy hydrogen species and at least one other atom, molecule, or ion other than an increased binding energy hydrogen species. One group of such compounds contains one or more increased binding energy hydrogen species selected from the group consisting of Hn, Hn?, and Hn+ where n is an integer from one to three.
    Type: Application
    Filed: June 18, 2008
    Publication date: May 14, 2009
    Inventor: Randell L. Mills
  • Patent number: 7521037
    Abstract: The present invention provides methods and materials for the formation of hydrogen storage alanes, AlHx, where x is greater than 0 and less than or equal to 6 at reduced H2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: April 21, 2009
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Jason Allan Graetz, James J. Reilly
  • Patent number: 7521036
    Abstract: In one aspect, the invention provides a hydrogen storage composition having a hydrogenated state and a dehydrogenated state. In the hydrogenated state, such composition comprises a hydride and a hydroxide. In a dehydrogenated state, the composition comprises an oxide. The present invention also provides methods of producing hydrogen, including for mobile fuel cell device applications.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 21, 2009
    Assignee: General Motors Corporation
    Inventors: John J Vajo, Florian O Mertens, Scott W Jorgensen
  • Patent number: 7498015
    Abstract: A method of making hydrogenated Group IVA compounds having reduced metal-based impurities, compositions and inks including such Group IVA compounds, and methods for forming a semiconductor thin film. Thin semiconducting films prepared according to the present invention generally exhibit improved conductivity, film morphology and/or carrier mobility relative to an otherwise identical structure made by an identical process, but without the washing step. In addition, the properties of the present thin film are generally more predictable than those of films produced from similarly prepared (cyclo)silanes that have not been washed according to the present invention.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: March 3, 2009
    Assignee: Kovio, Inc.
    Inventors: Klaus Kunze, Wenzhuo Guo, Fabio Zurcher, Mao Ito, Laila Francisco, Joerg Rockenberger, Brent Ridley
  • Patent number: 7462344
    Abstract: The invention provides a method of reversibly storing hydrogen at industrially practicable temperature and pressure conditions. A stable hydrogen storage hydride is mixed with a destabilizing hydride. The stable hydride is capable of releasing hydrogen at a first energy level. When the stable hydride is in the presence of the destabilizing hydride, the stable hydride releases hydrogen at a second energy level. The second energy level is significantly reduced from the first energy level.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: December 9, 2008
    Assignee: GM Global Technology Operations, Inc.
    Inventors: John J. Vajo, Florian O. Mertens, Sky Skeith, Michael P. Balogh, Frederick E. Pinkerton, Martin S. Meyer
  • Publication number: 20080241056
    Abstract: An apparatus and a method for controllably converting aluminum into alane. In the system of the invention, a reaction between aluminum and hydrogen to form alane is performed at temperatures below 100° C. using a supercritical fluid such as CO2 as a reaction medium, with the optional inclusion of a co-solvent, such as an ether, in the reaction vessel. Inert gas is used to exclude unwanted gases such as oxygen. The reaction of aluminum and hydrogen has been observed to proceed at approximately 60° C. using Me2O as an added solvent in CO2 at supercritical pressures.
    Type: Application
    Filed: December 6, 2007
    Publication date: October 2, 2008
    Applicant: HSM Systems, Inc.
    Inventor: Gerard Sean McGrady
  • Publication number: 20080206129
    Abstract: A compound, such as an organic compound, can be transformed utilizing a melted metal alloy by generating an energy gradient in a system that includes the compound and the alloy. Accordingly, provided are methods for transforming compounds and related apparatuses.
    Type: Application
    Filed: January 15, 2008
    Publication date: August 28, 2008
    Inventors: Alexandr Ivanovich Vygonyaylo, Alec Y. Fesenko
  • Publication number: 20080166265
    Abstract: The system is based on a recirculating Carbon Flow Loop, within which toxins in municipal waste or other feedstock are neutralized in a plasma reactor, by using an electric arc in ionized gas to generate ultra high temperatures. This breaks down substances into their basic molecules, and transforms the feedstock into syngas (which is comprised predominantly of hydrogen and carbon monoxide). This can be processed by a water shift reactor, an engine driven electric generator or another exothermic device where carbon monoxide is transformed into carbon dioxide. This continues flowing in the carbon loop to an Algae Bioreactor. Here photosynthesis of the algae transforms the carbon dioxide to become part of an oil rich carbohydrate. This can either continue to the next stage as feedstock and recirculate again around the Carbon Loop and/or exit, and be used to manufacture biofuel or other substances.
    Type: Application
    Filed: January 10, 2007
    Publication date: July 10, 2008
    Inventor: Andrew Eric Day
  • Publication number: 20080146442
    Abstract: After AlH3 is synthesized, ball milling is performed under a condition in which a force of 2 G to 20 G (G represents the acceleration of gravity) is applied, to thereby provide AlH3 having an X-ray diffraction pattern in the form of a halo pattern. That is, for example, nanostructured AlH3 is provided, in which a grain boundary phase intervenes in a matrix phase, a side length t2 of the matrix phase is not more than 20 nm, and a width w2 of the grain boundary phase is not more than 10 nm. Alternatively, amorphous AlH3 may be provided. Further, hydrogen is released from AlH3 on which ball milling has been completed, and then the hydrogen is absorbed to induce a change into AlHx (provided that 0<x?3 is satisfied). A dopant may also be added. A hydrogen storage container is constructed accommodating the hydrogen absorbing material, which is obtained as described above, inside the container.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 19, 2008
    Applicant: Honda Motor Co., Ltd.
    Inventors: Mitsuya Hosoe, Yusuke Sogawa
  • Publication number: 20080138273
    Abstract: Disclosed herein are wall flow reactors that are suitable for the production of hydrogen gas from hydrocarbon and/or its derivative feed streams. The wall flow reactors are generally comprised a monolithic honeycomb substrate defining a plurality of cell channels bounded by porous channel walls that extend longitudinally from an upstream inlet end to a downstream outlet end; wherein a first portion of the plurality of cell channels are plugged at the downstream outlet end to form inlet cell channels and a second portion of the plurality of cell channels are plugged at the upstream inlet end to form outlet cell channels. A plurality of catalyst layers are positioned within at least a portion of the plurality of cell channels and comprise at least a first catalyst layer and a second catalyst layer. Also disclosed are methods for treating reactant feed streams.
    Type: Application
    Filed: December 11, 2006
    Publication date: June 12, 2008
    Inventor: Yi Jiang
  • Patent number: 7384574
    Abstract: A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: June 10, 2008
    Assignees: Westinghouse Savannah River Co., University of South Carolina
    Inventors: Ragaiy Zidan, James A. Ritter, Armin D. Ebner, Jun Wang, Charles E. Holland
  • Patent number: 7344690
    Abstract: In one aspect, the invention provides a hydrogen storage composition having a hydrogenated state and a dehydrogenated state. In the hydrogenated state, such composition comprises an amide and a hydride. In a dehydrogenated state, the composition comprises an imide.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: March 18, 2008
    Assignee: General Motors Corporation
    Inventors: Gregory P Meisner, Frederick E Pinkerton, Martin S Meyer, Michael P Balogh, Matthew D Kundrat
  • Patent number: 7316788
    Abstract: The invention relates to materials for storing and releasing hydrogen and methods for preparing and using same. The materials exhibit fast release rates at low release temperatures and are suitable as fuel and/or hydrogen sources for a variety of applications such as automobile engines.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: January 8, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Thomas S. Autrey, Anna Gutowska, Yongsoon Shin, Liyu Li
  • Patent number: 7294323
    Abstract: A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: November 13, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Kerry M. Klingler, William T. Zollinger, Bruce M. Wilding, Dennis N. Bingham, Kraig M. Wendt
  • Publication number: 20070240997
    Abstract: A method for generating a hydride gas of metal M1 in an electrochemical cell comprising a cathode comprising metal M1, a sacrificial anode comprising metal M2, an initial concentration of aqueous electrolyte solution comprising a metal hydroxide, M3OH, wherein the sacrificial metal anode electrochemically oxidizes in the presence of the aqueous electrolyte solution comprising M3OH to form a metal salt, and the hydride gas of metal M1 is formed by reducing the metal M1 of the cathode. The method comprises the steps of determining solubility profile curves of the metal salt as the M3OH is consumed and the metal oxide is formed by the oxidation reaction at various concentrations of M3OH; determining a maximum concentration of M3OH that, as it is consumed, does not yield a concentration of metal salt that precipitates out of the electrolyte solution; and choosing a concentration of M3OH that is in the range of at and within 5% less than the maximum concentration of M3OH to be the initial concentration of M3OH.
    Type: Application
    Filed: March 19, 2007
    Publication date: October 18, 2007
    Inventors: Reinaldo Mario Machado, Christopher L. Hartz, James E. Hollen, Rebecca J. Mohr, George L. Ryals
  • Patent number: 7238336
    Abstract: A method of forming ?-alane. The method includes reacting aluminum trichloride and an alkali metal hydride to form an alane-ether complex solution. An aqueous diethyl ether solution is optionally added to the alane-ether complex solution to form a partially hydrolyzed ether/alane-ether complex solution. A solution of a first crystallization additive is added to the alane-ether complex solution or to the aqueous ether/alane-ether complex solution to form a crystallization solution. The first crystallization additive is selected from the group consisting of polystyrene, polybutadiene, polystyrene-co-polybutadiene, polyisoprene, poly-alpha-methylstyrene, polystyrene-co-polyindene, poly-alpha-pinene, and mixtures thereof. Optionally, a second crystallization additive is added to the crystallization solution.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: July 3, 2007
    Assignee: Alliant Techsystems Inc.
    Inventors: Gary K. Lund, Jami M. Hanks, Harold E Johnston
  • Patent number: 7175826
    Abstract: Disclosed herein is a hydrogen storage composition comprising a catalyst composition disposed upon a storage composition; wherein the catalyst composition comprises an alloy of calcium, barium, platinum, palladium, nickel, titanium, chromium, manganese, iron, cobalt, copper, silicon, germanium, rhodium, rhodium, ruthenium, molybdenum, niobium, zirconium, yttrium, barium, lanthanum, hafnium, tungsten, rhenium, osmium, iridium, or a combination comprising at least one of the foregoing metals.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: February 13, 2007
    Assignee: General Electric Company
    Inventors: John Patrick Lemmon, William Paul Minnear, Luke Nathaniel Brewer, Susan Holt Townsend
  • Patent number: 7157401
    Abstract: A catalyst for the hydroprocessing of organic compounds, composed of an interstitial metal hydride having a reaction surface at which monatomic hydrogen is available. The activity of the catalyst is maximized by avoiding surface oxide formation. Transition metals and lanthanide metals compose the compound from which the interstitial metal hydride is formed. The catalyst's capabilities can be further enhanced using radio frequency (RF) or microwave energy.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 2, 2007
    Assignee: Carnegie Mellon University
    Inventors: David A. Purta, Marc A. Portnoff, Faiz Pourarian, Margaret A. Nasta, Jingfeng Zhang
  • Patent number: 7153489
    Abstract: A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: December 26, 2006
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, Bruce M. Wilding, William T. Zollinger
  • Patent number: 7128997
    Abstract: Representative embodiments provide for a fuel activation device including a fuel storage chamber configured to store a plurality of fuel pellets arranged as a stack. A fuel dispensing device is configured to transport a fuel pellet to a fuel activation chamber. A spring is configured to advance the fuel pellets toward the fuel dispensing device as one or more fuel pellets are removed from the stack. A fuel initiator is configured to activate a release of hydrogen gas from the transported fuel pellet. The fuel activation device is configured to provide the hydrogen gas to a fuel cell through a gas vent. A method is provided including providing a plurality of fuel pellets arranged as a spring-loaded stack, transporting a fuel pellet from the stack, activating a release of hydrogen gas from the transported fuel pellet, and providing the hydrogen gas to a fuel cell.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: October 31, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Philip H. Harding, Louis C. Barinaga, John C. Greeven, Paul H. McClelland, Joseph W. Tsang, Makarand Gore
  • Patent number: 7094387
    Abstract: A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50° C. and 90° C.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: August 22, 2006
    Assignee: Washington Savannah River Company LLC
    Inventor: Ragaiy Zidan
  • Patent number: 7087102
    Abstract: A process and system for the synthesis and/or purification of crude germane to provide a purified germane product are disclosed herein. In one aspect of the present invention, there is provided a process for making a purified germane product containing less than 1 volume percent of one or more germanium-containing impurities comprising: providing a crude germane fluid; passing at least a portion of the crude germane fluid through a first adsorbent which selectively adsorbs water and carbon dioxide contained therein and withdrawing therefrom a partially purified germane fluid; passing at least a portion of the partially purified germane fluid through a second adsorbent which selectively adsorbs the one or more germanium-containing impurities contained therein and withdrawing therefrom a hydrogen-enriched purified germane fluid; and separating the purified germane product hydrogen from the hydrogen-enriched purified germane fluid.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: August 8, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Howard Paul Withers, Jr., Philip Bruce Henderson
  • Patent number: 7037622
    Abstract: A hydrogen-storing carbonaceous material is provided. The hydrogen-storing carbonaceous material is obtained by heating a carbonaceous material at lower than about 800° C. before hydrogen is stored under the pressure of hydrogen of about 50 atmospheric pressure or higher. The present invention also provides hydrogen-stored carbonaceous material that is obtained by hydrogen storage in the hydrogen-storing carbonaceous material under the pressure of hydrogen of about 50 atmospheric pressure or higher. This hydrogen-stored carbonaceous material is used for a battery or a fuel cell. The hydrogen-stored carbonaceous material is heated at lower than about 800° C. before the hydrogen is stored under the pressure of hydrogen of about 50 atmospheric pressure or higher, so that the hydrogen-storing carbonaceous material whose hydrogen storage capacity is greatly enhanced can be produced.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 2, 2006
    Assignee: Sony Corporation
    Inventors: Eisuke Negishi, Masashi Shiraishi, Hisashi Kajiura
  • Patent number: 7033568
    Abstract: A palladium hydride superconductor, PdyHx where yHx is 1Hx, 2Hx, or 3Hx, having a critical temperature Tc?11K and stoichiometric ratio x?1. The critical temperature is proportional to a power of the stoichiometric ratio, which is stable over periods exceeding 24 hours, temperature variations from 4K to 400K, and pressures down to 1 mbar. The palladium hydride is coated with a stabilizing material such as a metal, metal oxide, ceramic, or polymer that can bond to palladium. It can be made by electrochemically loading a palladium lattice with isotopic hydrogen in an electrolytic solution, by allowing isotopic hydrogen to diffuse into a palladium thin film in a pressure chamber, or by injecting isotopic hydrogen into a palladium thin film in a vacuum chamber. The stabilizing material can be electrochemically bonded to the surface of the palladium hydride, or deposited using chemical vapor deposition or molecular beam epitaxy.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: April 25, 2006
    Inventor: Paolo Tripodi
  • Patent number: 7014951
    Abstract: A hydrogen-stored carbonaceous material is provided. The present invention relates to a hydrogen-stored carbonaceous material obtained by storing hydrogen in a carbonaceous material heated at more than about 230° C. under pressure in a reducing atmosphere, a battery and a fuel cell using same. The carbonaceous material is heated at more than about 230° C. under pressure in a reducing atmosphere so that its surface can be efficiently cleaned and an area where the surface of the carbonaceous material comes into contact with hydrogen atoms or hydrogen molecules is increased.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 21, 2006
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Masashi Shiraishi, Eisuke Negishi, Masafumi Ata
  • Patent number: 7014952
    Abstract: A hydrogen-storing carbonaceous material is provided. The hydrogen-storing carbonaceous material is obtained by heating a carbonaceous material in a gas atmosphere including hydrogen gas and substantially including no reactive gas as impurity gas to store hydrogen. According to the present invention, since the surface of the carbonaceous material can be cleaned and hydrogen can be stored in the carbonaceous material in the same gas atmosphere and a hydrogen-stored carbonaceous material can be produced by controlling a heating process time in the gas atmosphere including the hydrogen gas and substantially including no reactive gas as the impurity gas. This can facilitate the use of the hydrogen-stored carbonaceous material as applied to devices, systems, processes and/or the like.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 21, 2006
    Assignee: Sony Corporation
    Inventors: Masashi Shiraishi, Hisashi Kajiura, Eisuke Negishi, Masafumi Ata
  • Patent number: 7008725
    Abstract: A hydrogen-storing carbonaceous material is provided. The present invention provides a hydrogen-storing carbonaceous material obtained by heating a carbonaceous material at more than about 50° C. under the atmosphere of reducing gas, a hydrogen-stored carbonaceous material obtained by hydrogen storage in the carbonaceous material heated at more than about 50° C. under the atmosphere of reducing gas, and a battery or a fuel cell using the hydrogen-stored carbonaceous material.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 7, 2006
    Assignee: Sony Corporation
    Inventors: Hisashi Kajiura, Masashi Shiraishi, Eisuke Negishi, Masafumi Ata
  • Patent number: 6984746
    Abstract: A method of forming ?-alane. The method includes reacting aluminum trichloride and an alkali metal hydride to form an alane-ether complex solution. An aqueous ether solution is optionally added to the alane-ether complex solution to form a partially hydrolyzed ether/alane-ether complex solution. A solution of a crystallization additive is added to the alane-ether complex solution or to the aqueous ether/alane-ether complex solution to form a crystallization solution. The crystallization additive is selected from the group consisting of squalene, cyclododecatriene, norbornylene, norbornadiene, a phenyl terminated polybutadiene, 2,4-dimethyl anisole, 3,5-dimethyl anisole, 2,6-dimethyl anisole, polydimethyl siloxane, and mixtures thereof. Ether is removed from the crystallization solution to crystallize the ?-alane.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: January 10, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Gary K. Lund, Jami M. Hanks, Harold E. Johnston