Miscellaneous Process Patents (Class 423/659)
  • Patent number: 6987079
    Abstract: The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophillic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 17, 2006
    Assignee: W.R. Grace & Co.-Conn.
    Inventor: Richard Franklin Wormsbecher
  • Patent number: 6969506
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Superior results were achieved for combustion chambers which contained a gap for free flow through the chamber. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: November 29, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Tonkovich, Gary L. Roberts, Steven T. Perry, Sean P. Fitzgerald
  • Patent number: 6969505
    Abstract: This invention relates to a process for conducting an equilibrium limited chemical reaction in a single stage process channel. A process for conducting a water shift reaction is disclosed. A multichannel reactor with cross flow heat exchange is disclosed.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: November 29, 2005
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Wayne W. Simmons, Kai Tod Paul Jarosch, Terry Mazanec, Eric Daymo, Ying Peng, Jennifer Lynne Marco
  • Patent number: 6960333
    Abstract: Disclosed are means for improving the service-life of indirect tubesheet type heat exchangers used in chemical reactors, particularly those exposed to reducing, nitridizing and/or carburizing environments. Such means include the use of certain ferrules within the heat exchange tubes and/or weld types used in construction of these heat exchangers.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: November 1, 2005
    Assignee: Rohm and Haas Company
    Inventors: Paul Joseph Blanda, Jr., Michael Stanley DeCourcy
  • Patent number: 6946113
    Abstract: A method for processing separate fluid flows in a micro component system for the production of hydrogen gas used in fuel cells in which a first fluid flow is directed to micro channels formed on one side of a conductive separator maintained in an enclosure, a second fluid flow is directed to micro channels formed on the opposite side of the separator, and laminar flow is maintained in the fluids such that heat transfer between the fluids on the opposite sides of the micro channels is by conduction through the separator and heat transfer within the fluids on the opposite sides of the micro channels is predominantly by convection within the fluids.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: September 20, 2005
    Assignee: Honda Motor Co., Ltd.
    Inventors: James Seaba, Lea-Der Chen
  • Patent number: 6869586
    Abstract: A process for the preparation of nanostructured materials in high phase purities using cavitation is disclosed. The method comprises mixing a metal containing solution with a precipitating agent and passing the mixture into a cavitation chamber. The chamber consists of a first element to produce cavitation bubbles, and a second element that creates a pressure zone sufficient to collapse the bubbles. The process is useful for the preparation of mixed metal oxide catalysts and materials for piezoelectrics and superconductors.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: March 22, 2005
    Assignees: Five Star Technologies, Inc., Worcester Polytechnic Institute
    Inventors: William R. Moser, Oleg V. Kozyuk, Josef Find, Sean Christian Emerson, Ivo M. Krausz
  • Patent number: 6861038
    Abstract: A method of continuously producing a non-oxide ceramic formed of a metal constituent and a non-metal constituent. A salt of the metal constituent and a compound of the non-metal constituent and a compound of the non-metal constituent are introduced into a liquid alkali metal or a liquid alkaline earth metal or mixtures to react the constituents substantially submerged in the liquid metal to form ceramic particles. The liquid metal is present in excess of the stoichiometric amount necessary to convert the constituents into ceramic particles to absorb the heat of reaction to maintain the temperature of the ceramic particles below the sintering temperature. Ceramic particles made by the method are part of the invention.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: March 1, 2005
    Assignee: International Titanium Powder, LLC.
    Inventors: Donn Reynolds Armstrong, Stanley S. Borys, Richard Paul Anderson
  • Patent number: 6843976
    Abstract: An apparatus and a process for producing zinc oxide from a zinc-bearing material are provided. The process comprises the steps of leaching the complex sulfide material with hydrochloric acid, ferric chloride, and oxygen; precipitating iron from the leach solution using lime and oxygen; removing copper, silver, cadmium, cobalt and lead from the leach solution by cementation with zinc dust; precipitating zinc oxide from the leach solution using lime; and regenerating HCl from a calcium chloride leach filtrate solution to regenerate hydrochloric acid and precipitate gypsum. Related processes for recovering copper, silver, lead, and iron from complex sulfide materials and for recovering lead from residue by solubilizing lead chloride and precipitating it with lime are also provided.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: January 18, 2005
    Assignee: Noranda Inc.
    Inventors: Carole Allen, Serge Payant, Peter Kondos, Gezinus Van Weert
  • Publication number: 20040253175
    Abstract: A milling apparatus is modified by electrically insulating the milling chamber to enhance the efficiency of tribochemical reactions between reactive compositions during milling. The enhanced level of tribochemical reactivity is attributed to the buildup of electrostatic charge in and on the milled chamber during mill operation. The insulated mills in accordance with the invention can be used in a wide variety of commercial applications generally involving tribomechanically induced redox chemistry, including ore extraction, precious metal extraction, production of ferrites and pigments, and waste processing.
    Type: Application
    Filed: August 21, 2002
    Publication date: December 16, 2004
    Inventor: Donald R. Stiffler
  • Publication number: 20040238747
    Abstract: An inorganic scintillator material, a method for growing the monocrystalline scintillator material, and the use of the scintillator material as component of a scintillating detector in particular for industrial and medical purposes and in the oil industry. The inorganic scintillator material has the general composition M1-xCexCl3, wherein: M is selected among lanthanides or lanthanide mixtures, preferably among the elements or mixtures of elements of the group consisting of Y, La, Gd, Lu, in particular among the elements or mixtures of elements of the group consisting of La, Gd and Lu; and x is the molar rate of substitution of M with cerium, x being not less than 1 mol% and strictly less than 100 mol%.
    Type: Application
    Filed: November 25, 2002
    Publication date: December 2, 2004
    Inventors: Pieter Dorenbos, Carel Wilhelm Eduard Van Eijk, Hans-Ulrich Gudel, Karl Wilhelm Kramer, Edgar Valentijn Dieuwer Van Loef
  • Patent number: 6824752
    Abstract: This invention is directed to a system and a process for protecting a gas purification system from damage comprising passing a stream of impure gas through a catalyst bed and measuring the temperature difference before and after the catalyzed bed reaction through a data analyzer to determine the impurity of the gas prior to controlling the feed of impure gas into or out of a reactor for producing a purified gas. In a preferred embodiment, the catalytic beds may be in parallel form, and the plurality of temperature measurements before and after the catalytic beds is considered by a data analyzer for controlling the impure gas for feeding into the purification reactor.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: November 30, 2004
    Assignee: Praxair Technology, Inc.
    Inventors: Charles Edward Terbot, Andrew Christopher Mackie
  • Patent number: 6811765
    Abstract: The invention relates to a method for heat-treating fine-grained materials which tend to agglomerate at high temperatures and which have an average grain size of preferably 0 to 1000 &mgr;m within temperature ranges around and above the agglomeration temperature, in a fluidized bed of another, coarse-grained material. The temperature range in which the coarse-grained material tends to agglomerate and sinter to the reactor walls is higher than that of the fine-grained material. The coarse-grained material used is a material of the same type, a similar type or a different type with an average grain size of 1 to 10 mm. The fine-grained material is fed in directly over the tuyere bottom of a closed furnace chamber containing the fluidized bed, performs a circulating movement in said fluidized bed and once the heat treatment has been carried out, is pneumatically withdrawn from the fluidized bed into the top section of the furnace, and cooled immediately.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: November 2, 2004
    Assignee: Epion Corporation
    Inventors: Rolf Maiwald, Hans Zeiringer
  • Publication number: 20040202608
    Abstract: The invention relates to a precipitation method and corresponding precipitation capsules for the precipitation of poorly-soluble materials such as barium sulphate for example, whereby the desired poorly-soluble material is obtained by mixing two individual components in a precipitation capsule and reaction together of said individual components. According to the invention, precipitates with defined particle sizes in the range from 0.1-2 &mgr;m with high throughput may be achieved, whereby the precipitation is carried out continuously in one of the precipitation capsules with differing precipitation volumes (residence times) with subsequent homogenisation in a static mixer.
    Type: Application
    Filed: May 27, 2004
    Publication date: October 14, 2004
    Inventor: Udo Selter
  • Patent number: 6780390
    Abstract: A method of producing high purity germanium tetrafluoride comprising the step of flowing a mixture of inert gas and fluorine gas through a reactor chamber preferably containing germanium powder. The reactor effluent stream is conducted through at least one product trap effective for condensing and retaining at least a portion of the germanium tetrafluoride product. The product is preferably then purified by repeatedly subliming the product as necessary to remove volatile impurities.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: August 24, 2004
    Assignee: Advance Research Chemicals, Inc.
    Inventors: Sudhir Solomon Bhagat, Dayal T. Meshri, Sanjay D. Meshri, Michale Shane Petty
  • Patent number: 6770216
    Abstract: A method is disclosed for producing a titanium-containing aqueous solution by reacting a titanium alkoxide with water in the presence of at least one of ammonia, and amines selected from a primary amine, a secondary amine, and a tertiary amine, provided that when ammonia and/or the primary amine only is used, at least one selected from the group consisting of an &agr;-diketone, a &bgr;-diketone, an &agr; hydroxyketone and a carboxylic acid is used in combination.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: August 3, 2004
    Assignee: Gifu University
    Inventors: Yasutaka Takahashi, Yutaka Oya, Takayuki Ban
  • Patent number: 6768013
    Abstract: A novel process for the direct oxidation of hydrogen and hydrocarbons is disclosed, where the explosion risks inherent in gas phase oxidations are substantially eliminated. Gaseous oxidation reactants are soluble in a first reaction solvent phase such as a perfluorocarbon (e.g. C8F18) and the oxidation product is preferentially soluble in a second product solvent phase such as water or a dilute acid. A solid catalyst such as palladium on alumina is then contacted with the dissolved reactants. The oxidation product such as hydrogen peroxide may be separated from the reaction solvent phase by extraction into the immiscible product solvent phase and then separated from it by distillation, thereby allowing re-use of the aqueous phase. The present invention may be carried out using a two-phase reaction system whereby both the reaction solvent and product solvent are contained within a reaction vessel into which the solid catalyst is slurried and mechanically agitated to promote the reaction.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: July 27, 2004
    Assignee: UOP LLC
    Inventor: Peter R. Pujado
  • Patent number: 6759027
    Abstract: A gas siphon type reactor (10) is used to carry out a three phase chemical reaction under pressure, such as the reduction of uranyl nitrate to uranous nitrate by hydrogen, in the presence of a catalyst made up of platinum on a silica carrier. The control of the pressure in the reactor (10) is provided by regulating the liquid and gas flow rates from a high pressure separator (52), into which the liquid and the gas leaving the reactor (10) are routed. The liquid in the reactor (10) is tapped from a lateral branch pipe (32) fitted with a filter (36) and emerging in the upper area (30), behind a profiled wall (34).
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: July 6, 2004
    Assignee: Compagnie Generale des Matieres Nucleaires
    Inventors: Pietro Bilardello, Nicolas Durupt, Renaud Pontier
  • Publication number: 20040105813
    Abstract: A novel process for continuously mixing and reacting at least two fluids are disclosed. Excellent mixing and superior pressure drop characteristics are achieved using cyclone mixing where at least two supply channels feed a mixing chamber to create a vortex of the fluids to be mixed. The alignment of the supply channels is such that fluids are introduced into the chamber at both tangential and radial directions. In the case of gas/liquid mixing, particularly advantageous is the injection of the liquid stream tangentially and the gas stream radially. Reaction of the fluids can take place within the mixing chamber or in a separate reactor in fluid communication with the mixing chamber outlet. The process is especially useful for reacting potentially explosive mixtures of reactants where a homogeneous reactor feed mixture is critical to maintaining a non-explosive environment.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Kurt M. Vanden Bussche, Suheil F. Abdo, Anil R. Oroskar
  • Patent number: 6730281
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 4, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Patent number: 6726851
    Abstract: Process for carrying out non-adiabatic reactions comprising the steps of: introducing in parallel a first stream of reactants into a first reaction space and a second stream of reactants into a second reaction space; at reaction conditions contacting the first reactant stream with a catalyst in the first reaction space in indirect heat exchange with a heat exchanging medium and contacting the second reactant stream with a catalyst in the second reaction space in indirect heat exchange with a heat exchanging medium, and withdrawing a first and second steam reformed product gas; and the catalyst in the first reaction space being arranged within a tubular reactor in indirect heat exchanging relationship with the heat exchanging medium by introducing the medium into tubular heat exchange space concentrically surrounding the tubular reactor with the first reaction space, the catalyst in the second reaction space being arranged on shell side of a heat exchange space in indirect heat exchanging relationship with
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 27, 2004
    Assignee: Haldor Topsoe A/S
    Inventor: Søren Gyde Thomsen
  • Publication number: 20040076562
    Abstract: The present invention provides new microreactor systems, catalysts, and chemical processes. Methods of making novel catalysts and reaction apparatus are also described.
    Type: Application
    Filed: October 22, 2002
    Publication date: April 22, 2004
    Inventors: Terry J. Manzanec, Yong Wang, Laura J. Silva, David P. Vander Wiel
  • Patent number: 6713036
    Abstract: A novel process for continuously mixing and reacting at least two fluids are disclosed. Excellent mixing and superior pressure drop characteristics are achieved using cyclone mixing where at least two supply channels feed a mixing chamber to create a vortex of the fluids to be mixed. The alignment of the supply channels is such that fluids are introduced into the chamber at both tangential and radial directions. In the case of gas/liquid mixing, particularly advantageous is the injection of the liquid stream tangentially and the gas stream radially. Reaction of the fluids can take place within the mixing chamber or in a separate reactor in fluid communication with the mixing chamber outlet. The process is especially useful for reacting potentially explosive mixtures of reactants where a homogeneous reactor feed mixture is critical to maintaining a non-explosive environment.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: March 30, 2004
    Assignee: UOP LLC
    Inventors: Kurt M. Vanden Bussche, Suheil F. Abdo, Anil R. Oroskar
  • Patent number: 6696030
    Abstract: A method is provided for reducing the chemical conversion of oxidizable or disproportionable compounds contained in liquid or gaseous process media which contact carbonaceous chars. In this method the carbonaceous char contacting the oxidizable or disproportionable compounds is first treated with a non-nitrogen-containing Bronsted acid. The acid-treated char is then heated to temperatures greater than 750° C. In this manner the inherent catalytic reactivity of the carbon in the char is reduced effectively and largely irreversibly.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: February 24, 2004
    Assignee: Calgon Carbon Corporation
    Inventor: Richard A. Hayden
  • Patent number: 6689334
    Abstract: The production of foam which occurs in many chemical and physical materials conversion processes can be avoided by performing the materials conversion process in an ascending jet reactor, including a baffle-free container with a tapering lower section, preferably a conical lower section, and a device for gas injection, and the contents of the reactor are thoroughly mixed by means of ascending jet circulation caused by gas injection.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: February 10, 2004
    Assignee: Degussa AG
    Inventors: Rüdiger Schütte, Alexander Ruhs, Ivan Pelgrims
  • Publication number: 20040014826
    Abstract: Embodiments include methods and apparatus for arranging multiple reaction zones such that at least one hot spot in one of the reaction zones is moderated by a cooler spot in an adjacent reaction zone.
    Type: Application
    Filed: July 16, 2002
    Publication date: January 22, 2004
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Bang Cheng Xu, Yi Jiang
  • Publication number: 20030232005
    Abstract: A method for manufacturing a phosphor precursor by using a mixing device comprising:
    Type: Application
    Filed: June 11, 2003
    Publication date: December 18, 2003
    Inventors: Hisatake Okada, Satoshi Ito, Takayuki Suzuki, Hideki Hoshino, Naoko Furusawa
  • Patent number: 6649137
    Abstract: A conical reactor head for use in chemical processes or other systems is provided. The reactor head includes a robust internal insulator to boost efficiency while maintaining safety by allowing the reactor head to self-radiate at high temperatures. The reactor head also includes a plurality of support lugs to protect its bottom flange from scratches or other damage when the reactor head is set on the ground. The reactor head is adapted to connect to a catalyst-containing barrel which is specially designed to facilitate easy installation and removal of catalysts or other equipment from outside the barrel.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: November 18, 2003
    Assignee: Rohm and Haas Company
    Inventors: David Mark Bergeron, Michael Stanley DeCourcy, Aaron Angel Quintanilla, Paul Francis Valerio, James Woodrow Vinson, Jr., David Alec Williams
  • Patent number: 6632414
    Abstract: Three-phase chemical hydrogenation reactions involving the processing of gas-liquid reactant feed streams over “mini-structured” solid catalyst beds formed e.g., of channeled honeycomb monoliths incorporating solid catalysts achieve reaction efficiencies suitable for effective integral reactor operation by utilizing low superficial liquid linear velocities and high feedstream gas:liquid ratios; single-pass conversion efficiencies in excess of 50%, typically 80-100%, are achieved.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventor: Wei Liu
  • Patent number: 6627174
    Abstract: An axial conveyor is described, in particular for conveying gas/liquid dispersions, wherein the conveying elements comprise a wall-sweeping edge pointing in the direction of the pressure side of the conveying elements. The axial conveyor is particularly suitable as a circulating member in loop reactors. A process comprising conveying gas/liquid dispersions as well as a process for carrying out chemical reactions directly reacting gas with gases not completely dissolved in a liquid medium, or optionally in the presence of finely divided solids, through the use of an axial conveyor, is also disclosed.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: September 30, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Helmut Judat, Wolfgang Hemmerle, Reinhold Rose
  • Publication number: 20030180216
    Abstract: Microchannel devices and method of use are disclosed wherein a reaction microchamber 52 is in thermal contact with a heat exchange channel 61. An equilibrium limited exothermic chemical process occurs in the reaction microchamber 52. Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber 52 down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel 61 which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber 52 and the heat exchange channel 61 can be of micro dimension. Catalyst 75 can be provided in the microchamber 52 in sheet form such that reactants flow by the catalyst sheet.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 25, 2003
    Inventors: Ward E. TeGrotenhuis, David L. King, Greg A. Whyatt, Christopher M. Fischer, Robert S. Wegeng, Kriston P. Brooks
  • Patent number: 6616909
    Abstract: Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 9, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Robert S. Wegeng, Yufei Gao
  • Publication number: 20030161786
    Abstract: In a method for catalytic oxidation of a gas, the outlay required is kept at a low level for reliably treating even relatively large quantities of gas and/or high concentrations of the gas fraction that needs to be treated. For this purpose, a gas stream including the gas being treated is circulated through a reaction zone and a return-flow zone, which is in communication with the inlet and outlet sides of the reaction zone. The circulation of the gas stream can be maintained effectively in the form of a passive system if the gas stream which includes the gas to be treated is guided in the upward direction in the reaction zone and the upward flow is assisted by convection resulting from the heat released during the oxidation reaction. Furthermore, the gas stream is preferably cooled locally in the return-flow zone by spray cooling.
    Type: Application
    Filed: February 4, 2003
    Publication date: August 28, 2003
    Inventor: Bernd Eckardt
  • Patent number: 6605266
    Abstract: Separable nanotubes are made from a transition metal oxide, preferably from a vanadium oxide of variable valence. They show a greater oxidation resistance than the carbon-based nanotubes known so far and offer many new and economic applications. The inventive nanotubes clearly show oxidation-reduction activities and are particularly suited as an active material for catalytic reactions.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: August 12, 2003
    Assignee: Eidg. Technische Hochschule Zurich
    Inventors: Reinhard Nesper, Michael Spahr, Markus Niederberger, Petra Bitterli
  • Publication number: 20030143156
    Abstract: The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophillic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto.
    Type: Application
    Filed: February 3, 2003
    Publication date: July 31, 2003
    Inventor: Richard Franklin Wormsbecher
  • Patent number: 6589501
    Abstract: A process for the preparation of nanostructured materials in high phase purities using cavitation is disclosed. The method comprises mixing a metal containing solution with a precipitating agent and passing the mixture into a cavitation chamber. The chamber consists of a first element to produce cavitation bubbles, and a second element that creates a pressure zone sufficient to collapse the bubbles. The process is useful for the preparation of mixed metal oxide catalysts and materials for piezoelectrics and superconductors.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: July 8, 2003
    Assignees: Five Star Technologies, Inc., Worcester Polytechnic Institute
    Inventors: William R. Moser, Oleg V. Kozyuk, Josef Find, Sean Christian Emerson, Ivo M. Krausz
  • Patent number: 6589500
    Abstract: Solvent containing a product (or precursor for the product) and anti-solvent are introduced via tangential inputs respectively 17,18 of a fluidic vortex mixer 11. The emerging mix from axial outlet 20 is supplied directly to a precipitate entrapment device such as filter bed 12 so that precipitate is removed from the solution before the precipitated particles have time to grow. Filtrate is treated in a reduced pressure evaporator 13 to recover anti-solvent and return concentrated solution for combining with a product make up stream at 19 and return to tangential input 17 of the fluidic vortex mixer.
    Type: Grant
    Filed: August 16, 1999
    Date of Patent: July 8, 2003
    Assignee: Accentus PLC
    Inventors: Glyn Jeffrey Buckley, John William Stairmand
  • Publication number: 20030109746
    Abstract: A process for reacting in a fluid bed reactor at least one oxidisable reactant with molecular oxygen in the presence of a catalytically active fluidised bed of solid particles. In the process a molecular oxygen-containing gas having an oxygen concentration greater than that of air is introduced into the fluidised bed whilst the fluidised bed is maintained in a turbulent regime. The process is suitable for oxidation, ammoxidation and carboxylation processes, including the production of maleic anhydride, acrylonitrile, ethylene, acetic acid and vinyl acetate.
    Type: Application
    Filed: November 26, 2002
    Publication date: June 12, 2003
    Applicant: BP Chemicals Limited
    Inventors: Michele Fiorentino, David Newton, George Fredrick Salem, Bruce Leo Williams
  • Patent number: 6555083
    Abstract: A method of filling a sealed elastomer chamber (2, 6, 8) with gas is provided, wherein the chamber is filled with the gas chemically produced by thermal decomposition of a gas producing material (12, 14, 16) inside of the chamber itself using a usual means of a high frequency electromagnetic heating. This method is easier than a conventional gas filling method by charging a compressed gas from outside of the chamber to obtain a desired internal pressure in the chamber, and makes it possible to fill more than two sealed elastomer chambers individually with gas at one time.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: April 29, 2003
    Assignee: Technostar Co., LTD
    Inventors: Keiun Kodo, Yasumasa Kodo
  • Publication number: 20030072708
    Abstract: The present invention is a method for operating a fuel-rich catalytic reactor in a catalytic combustion system, wherein two different fuels having dissimilar reactivity are consecutively used. In this method, a fuel-rich fuel/air mixture comprising a first fuel contacts a catalyst to create a product stream and a heat of reaction. The reactor is operated such that mass transfer of oxygen to the catalyst surface limits the rate of catalytic reaction. The catalyst is backside cooled by a cooling stream comprising air that extracts at least a portion of the heat of reaction before contacting the product stream. The cooling stream flow is sufficient to completely combust all of the remaining fuel. A second fuel is then substituted for the first fuel, and the steps are repeated.
    Type: Application
    Filed: September 18, 2002
    Publication date: April 17, 2003
    Inventors: Lance L. Smith, Shahrokh Etemad, Marco J. Castaldi, Hasan Ul Karim, William C. Pfefferle
  • Publication number: 20030064519
    Abstract: A substance in a condensed state, for example a powdered solid, is in continuous movement in the longitudinal direction (6) of a furnace (4, 5). A reactive gas mixture is brought into contact with the substance in the condensed state. A plurality of samples of the gaseous mixture are removed at a plurality of reference points (14) spaced apart from one another along the longitudinal direction (6) of the furnace (4, 5); each of the gas samples is analyzed outside the furnace to determine the composition of the gas mixture and for each point (14), the extent of a chemical reaction between the condensed substance and the reactive gas mixture is deduced from the composition of the gas mixture at each of the reference points (14). In particular, the apparatus comprises a sampling and injection rod (10) introduced into the furnace (4, 5) and disposed in its longitudinal direction (6).
    Type: Application
    Filed: August 8, 2002
    Publication date: April 3, 2003
    Inventor: Andre Fuegier
  • Patent number: 6541676
    Abstract: The present invention relates to gas separation membranes including a metal-based layer having sub-micron scale thicknesses. The metal-based layer can be a palladium alloy supported by ceramic layers such as a silicon oxide layer and a silicon nitride layer. By using MEMS, a series of perforations (holes) can be patterned to allow chemical components to access both sides of the metal-based layer. Heaters and temperature sensing devices can also be patterned on the membrane. The present invention also relates to a portable power generation system at a chemical microreactor comprising the gas separation membrane. The invention is also directed to a method for fabricating a gas separation membrane. Due to the ability to make chemical microreactors of very small sizes, a series of reactors can be used in combination on a silicon surface to produce an integrated gas membrane device.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: April 1, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Aleksander J. Franz, Klavs F. Jensen, Martin A. Schmidt, Samara Firebaugh
  • Patent number: 6540975
    Abstract: The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.
    Type: Grant
    Filed: July 27, 1998
    Date of Patent: April 1, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Robert S. Wegeng, Yufei Gao
  • Publication number: 20030059354
    Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.
    Type: Application
    Filed: September 13, 2002
    Publication date: March 27, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Isao Matsui
  • Patent number: 6534028
    Abstract: A reactor for performing endothermic catalytic reactions is disclosed formed of a monolithic counterflow reactor with parallel heating and reaction channels. The internal walls of the reaction channels are coated with a catalyst for the catalytic reaction to be performed, while the internal walls of the heating channels have a catalyst for the catalytic combustion of a fuel gas/air mixture.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 18, 2003
    Assignee: Degussa AG
    Inventors: Lukas von Hippel, Dietrich Arntz, Bernd Kuttruf, Brigitta Walter
  • Patent number: 6533714
    Abstract: Method for treating waste material contaminated with heavy metals so as to make it inert, characterized in that the material to be made inert, optionally at least in part neutralized, is subjected to the following operations, optionally under stirring: addition of a concentrate aqueous solution of orthophosphoric acid and an alkaline or alkaline earth salt thereof in a molar ration ranging from 1:5 to 5:1; optionally addition of water to give the homogeneous paste thus obtained a sufficient moisture content; addition of calcium hydroxide and/or calcium oxide; the resulting homogeneous paste being placed in the open air to help it dry out. The material thus obtained is fit to be disposed according to local environmental legislation.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: March 18, 2003
    Assignee: Ecotec S.r.l.
    Inventor: Graziano Sarritzu
  • Patent number: 6531107
    Abstract: The invention relates to structural subunits called “synthons” which are suitable for use in the design and manufacture of molecular nanostructures, machines, and devices. The synthon comprises polyhedra units and other species which exhibit rigid structural frameworks, the availability of stereo- and regiochemically directed substitution patterns, synthetic availability and accessability with substitutional control, diversity of available structural arrangements with said polyhedra units and related species, and connecting means which function to join adjacent synthons.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: March 11, 2003
    Assignee: Syracuse University
    Inventors: James T. Spencer, Damian G. Allis
  • Publication number: 20030031613
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Application
    Filed: October 4, 2002
    Publication date: February 13, 2003
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Patent number: 6517805
    Abstract: An apparatus for producing hydrogen from hydrocarbons or alcohol, particularly methanol, by feeding a reaction mixture comprising a hydrocarbon or alcohol and water onto a catalyst. The catalyst is formed by compressing at least one catalyst powder into a compressed layer to form a shaped body. The reaction mixture flows under pressure through the catalyst layer while the pressure drops. Furthermore, the apparatus is suitable for a use in a hydrogen shift phases for reducing carbon monoxide, in carbon monoxide oxidizers and catalytic burners. A process for producing the catalyst is also disclosed.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: February 11, 2003
    Assignee: Ballard Power Systems AG
    Inventors: Martin Schuessler, Tomas Stefanovski, Detlef zur Megede
  • Patent number: 6514908
    Abstract: In the case where a carbon steel shell and tube type reactor is used and, for example, ethylene is subjected to catalytic gaseous oxidation to manufacture ethylene oxide, if rust is formed on the internal surface of the tubes, impurities such as aldehydes are formed. The cause of formation of the rust is that when the catalyst in the reactor is exchanged, dew is formed on the internal surface of the tubes. The present invention provides, as a method for preventing the rust formation, a method which comprises, in conducting the catalyst exchange work, maintaining the temperature of the internal surface of the tubes higher than the dew point at the work atmosphere (for example, filling the shell side with water and maintaining the temperature of the water higher than the temperature of the atmosphere).
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: February 4, 2003
    Assignee: Nippon Shokubai Co Ltd
    Inventors: Yukihiko Kakimoto, Yoshihisa Oka, Kenji Muraoka
  • Publication number: 20030021746
    Abstract: An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which “freezes” the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.
    Type: Application
    Filed: February 12, 2001
    Publication date: January 30, 2003
    Inventors: James R. Fincke, Brent A. Detering