Synthesized From Naturally Occurring Product Patents (Class 423/712)
  • Patent number: 6350429
    Abstract: This invention relates to the synthesis of large pore composite molecular sieves and to the synthetic large pore composite molecular sieves so produced. The molecular sieves of the invention have the same general utilities of the comparable molecular sieves of the prior art but have been found to be superior catalysts and absorbents. This invention relates to a hydrothermal synthesis of large pore molecular sieves from nutrients, at least one of which contains an amorphous framework-structure, and which framework-structure is essentially retained in the synthetic molecular sieve. This invention stems from a discovery that the intrinsic porosity characteristics of a nutrient that possesses an amorphous cation oxide-framework can be substantially retained in the final molecular sieve containing product formed by a hydrothermal process by carefully controlling the conditions under which the hydrothermal process is conducted.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: February 26, 2002
    Assignee: ABB Lummus Global Inc.
    Inventors: Lawrence L. Murrell, Rudolf A. Overbeek, Yun-feng Chang, Nelleke Van Der Puil, Chuen Y. Yeh
  • Patent number: 6350428
    Abstract: This invention relates to a process for producing zeolite-bound FAU structure type zeolite having excellent mechanical strength and containing reduced amounts of zeolite P and the use of the zeolite-bound FAU structure type zeolites produced by the process. The zeolite-bound FAU structure type zeolite is prepared by converting the silica of a silica-bound FAU structure type aggregate in an aqueous mixture containing an effective amount of crown ether, e.g., 15-crown-5 and 18-crown-6, to suppress the formation of zeolite P and sufficient hydroxy ions to cause the silica to be converted to the zeolite. The zeolite-bound FAU structure type zeolite finds particular application in adsorption processes and hydrocarbon conversion processes such as catalytic cracking, hydrocracking, and reforming.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: February 26, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Johannes Petrus Verduijn, by Jannetje Maatje van den Berge, Machteld Mertens
  • Patent number: 6299854
    Abstract: The topic of the present invention is the development of a method of producing inexpensive artificial zeolite of the desired quality employing unused resources, such as descended pyroclastic materials, incineration ash, glass waste, diatomaceous earth waste, aluminum dross, etc., as the starting materials. The present invention is a method whereby artificial zeolite is produced by heat treatment in the presence of water and alkali of an inorganic component comprising silicic acid or aluminum, or a mixture that has been obtained by adding glass, diatomaceous earth and aluminum dross, etc., to an inorganic component comprising silicic acid or aluminum. It is preferred that the alkali is sodium hydroxide or potassium hydroxide, the water and alkali are an aqueous alkali solution, the concentration of this aqueous alkali solution is 2 to 4 N, and heat treatment exceeds 100° C.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: October 9, 2001
    Inventors: Teruo Henmi, Etsuro Sakagami
  • Patent number: 6258768
    Abstract: P-type zeolite having the oxide formula M2/nAl2O3 (1.8-2.66) SiO2 y H2O and having a Calcium Binding Capacity of between 100 and 145 mg/g, preferably between 110 and 140 and a Calcium uptake rate of between 12 and 100 seconds, preferably below 50 seconds can be prepared from metakaolin.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: July 10, 2001
    Assignee: Imperial Chemical Industries PLC
    Inventor: Abraham Araya
  • Patent number: 6187283
    Abstract: Hydrothermal synthesis of the natural, alkaline earth zeolites via the alteration of Y-zeolite is presented. Synthetic versions of the zeolites harmotome, heulandite, brewsterite and gmelinite are synthesized from Y-zeolite using alkaline earth cations containing solutions. The effect of the composition of the starting zeolite, the composition of the solution phase, the presence or absence of seeds and the experimental conditions are discussed.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: February 13, 2001
    Assignee: California Institute of Technology
    Inventors: Osamu Chiyoda, Mark E. Davis
  • Patent number: 6103215
    Abstract: An aluminosilicate zeolite is disclosed which has a silica/alumina mole ratio of about 500 or less and pores with at least one cross-sectional dimension greater than 7.5 Angstroms. Also disclosed is a zeolite comprising a first oxide selected from the group consisting of silicon oxide, germanium oxide and mixtures thereof and a second oxide selected from the group consisting of aluminum oxide, gallium oxide, iron oxide, indium oxide and mixtures of aluminum oxide, boron oxide, gallium oxide, iron oxide, indium oxide, titanium oxide, and vanadium oxide, the zeolite having, after calcination, the X-ray diffraction lines of Table I, and having a mole ratio of the first oxide to the second oxide of about 500 or less. The zeolites are useful in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: August 15, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Cong-Yan Chen
  • Patent number: 6027708
    Abstract: The present invention relates to a process for the synthesis of flyash based zeolite-Y (FAZ-Y), comprising grainding and mixing of flyash with caustic soda in a ratio ranging between 1:0.4-1:1.2 to obtain a fine homogenous fusion mixture, heating the said fusion mixture in an invert vessel at about 500-600.degree. C. for about 1-2 hours to obtain a fused mass, cooling, milling, and mixing of the said fused mass in distilled water for about 8-12 hours, subjecting the said slurry to hydrothermal crystallization at about 90-110.degree. C. for 8 to 12 hours to obtain FAZ-Y crystals, washing the said crystals with water and then subjecting the washed crystals to oven drying at 50-60.degree. C. to obtain the desired FAZ-Y crystals.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: February 22, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Sadhana Rayalu, Nitin Kumar Labhasetwar, Purushottam Khanna
  • Patent number: 6004527
    Abstract: This invention relates to the synthesis of large pore composite molecular sieves and to the synthetic large pore composite molecular sieves so produced. The molecular sieves of the invention have the same general utilties of the comparable molecular sieves of the prior art but have been found to be superior catalysts and absorbents. This invention relates to a hydrothermal synthesis of large pore molecular sieves from nutrients, at least one of which contains an amorphous framework-structure, and which framework-structure is essentially retained in the synthetic molecular sieve. This invention stems from a discovery that the intrinsic porosity characteristics of a nutrient that possesses an amorphous cation oxide-framework can be substantially retained in the final molecular sieve containing product formed by a hydrothermal process by carefully controlling the conditions under which the hydrothermal process is conducted.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: December 21, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Lawrence L. Murrell, Rudolf A. Overbeek, Yun-feng Chang, Nelleke Van der Puil, Chuen Y. Yeh
  • Patent number: 5993642
    Abstract: There is provided a process for converting hydrocarbons which utilizes a zeolite bound zeolite catalyst that has enhanced performance when utilized in hydrocarbon conversion processes, e.g., catalytic cracking, alkylation, disproportionation of toluene, isomerization, and transalkylation reactions. The catalyst comprises a first zeolite having particles of greater than about 0.1 micron average particle size and a binder comprising second zeolite particles having an average particle size less than said first particles.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: November 30, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Gary David Mohr, Tan Jen Chen, Kenneth Ray Clem, Mechilium Johannes Geradus Janssen, Phillip Andrew Ruziska, Johannes Petrus Verduijn, Jannetje Maatje van den Berge
  • Patent number: 5976490
    Abstract: The present invention concerns zeolitic cation exchangers consisting of expanded ceramic, zeolitic pellets with macro- and microporosity, in the form of sintered, light, expanded clay aggregates which are partly transformed to zeolite by means of hydrothermal treatment with an alkaline solution for a period of at least 2 hours at a temperature of between 50 and 300 degrees C. The invention also concerns a procedure for producing said cation exchangers, and applications of the same as ion exchangers and adsorbents.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: November 2, 1999
    Assignee: Norsk Leca AS
    Inventor: Rune Wendelbo
  • Patent number: 5965105
    Abstract: The present invention relates to a process for synthesis of flyash based Zeolite-A, said process comprising grinding and mixing of flyash and caustic soda in a ratio of 1:1.2 and optionally adding sodium aluminate or aluminium hydroxide to obtain a fine homogeneous fusion mixture; heating the said mixture in an inert vessel at about 500-600.degree. C. for about 1-2 hrs. to obtain a fused mass; cooling, milling, and mixing the said fused mass in distilled water for about 8-10 hrs. with simultaneous optional additon of sodium aluminate or alum solution, in the present or absence of NaC1 followed by optional addition of zeolite-A seeding to obtain amorphous alumino -silicate slurry; subjecting the said slurry to hydrothermal crystallisation at about 90-110.degree. C. for 2 to 4 hrs. to obtain Zeolite-A crystals; and washing the said crystals with water and then subjecting the washed crystals to oven drying at about 50-60.degree. C. to obtain the FAZ-A crystals.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: October 12, 1999
    Assignee: Council of Scientific and Industrial Research
    Inventors: Sadhana Rayalu, Nitin Kumar Labhasetwar, Purushottam Khanna
  • Patent number: 5958370
    Abstract: The present invention relates to new crystalline zeolite SSZ-39 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: September 28, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Yumi Nakagawa, Susan T. Evans, Gregory S. Lee
  • Patent number: 5951963
    Abstract: The present invention discloses a phosphorus-containing zeolite having MFI type structure. The anhydrous composition (based on the mole ratios of oxides) of the above zeolite is0.01-0.3Na.sub.2 O.Al.sub.2 O.sub.3.0.2-1.5P.sub.2 O.sub.5.30-90SiO.sub.2Said zeolite possesses a X-ray diffraction pattern listed in Table 1. The pore volume ratio of 1.0-10 nm mesopore to 10-membered ring pore is no less than 0.5. The crystal particle size of said zeolite is in the range of 0.8-2.0 micron. Said zeolite exhibits superior hydrothermal stability in catalytic conversion of hydrocarbons. Especially, when said zeolite is applied in catalytic cracking of hydrocarbons, it will enhance the crackability of large molecules, improve gasoline octane value and stability, and reduce the sulfur content in the gasoline as well.
    Type: Grant
    Filed: March 24, 1998
    Date of Patent: September 14, 1999
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Mingyuan He, Xiaoming Yang, Xingtian Shu, Jinge Luo
  • Patent number: 5948383
    Abstract: This invention relates to zeolitic molecular sieve compositions characterized by outstanding capability to complex multivalent cations, especially calcium. In particular, the invention relates to novel zeolitic molecular sieve compositions, especially those based on molecular sieves having a high alumina-to-silica ratio, in which crystals of the zeolite are modified by the inclusion of occluded silicate.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: September 7, 1999
    Assignee: Engelhard Corporation
    Inventors: Steven M. Kuznicki, Tadeusz W. Langner, Jacqueline S. Curran, Valerie A. Bell
  • Patent number: 5942207
    Abstract: This invention relates to zeolitic molecular sieve compositions characterized by outstanding capability to complex multivalent cations, especially calcium. In particular, the invention relates to novel zeolitic molecular sieve compositions, having a high alumina-to-silica ratio, with additional occluded non-zeolitic silicate, and solid particulate alumina is the source of alumina in the zeolite.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: August 24, 1999
    Inventors: Ahmad Moini, Christopher R. Castellano, Steven M. Kuznicki
  • Patent number: 5939044
    Abstract: The present invention relates to new crystalline zeolite SSZ-36 prepared using a cyclic or polycyclic quaternary ammonium cation templating agent.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: August 17, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Yumi Nakagawa, Susan T. Evans, Gregory S. Lee, Stacey I. Zones
  • Patent number: 5935551
    Abstract: New synthetic zeolites incorporating alkaline earth elements and routes for preparing those zeolites by hydrothermal alteration of zeolite P1 are disclosed. New methods for producing P1 zeolites are also identified. Synthetic heulandite, brewsterite, epistilbite and harmotome, among other zeolites can be prepared.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: August 10, 1999
    Assignee: California Institute of Technology
    Inventors: Mark E. Davis, Shervin Khodabandeh
  • Patent number: 5882624
    Abstract: A novel crystalline titanium silicate designated ETS-14 molecular sieve is disclosed and characterized. ETS-14 may be prepared by heating ETS-10 molecular sieve in the form of an aqueous gel or incorporating crystals of ETS-10 with an aqueous source of sodium that is essentially free from potassium.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: March 16, 1999
    Assignee: Englehard Corporation
    Inventors: Steven M. Kuznicki, Jacqueline S. Curran, Xiaolin Yang
  • Patent number: 5665325
    Abstract: Silica-bound extruded zeolites may be converted into binder-free zeolite aggregates by aging the zeolite in an aqueous ionic solution which contains hydroxy ions such that the initial molar ratio of OH.sup.- :SiO.sub.2 is up to 1.2 and which causes the silica binder to be converted substantially to zeolite of the type initially bound. Such extrudates have excellent mechanical strength and show advantageous properties such as adsorption comparable with non-extruded zeolite powder.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: September 9, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Johannes Petrus Verduijn
  • Patent number: 5514362
    Abstract: A process is disclosed for preparing a non-zeolitic molecular sieve from a dense gel containing sufficient liquid that the dense gel may be formed into self-supporting particles if desired prior to crystallization. In the process, the dense gel, which is optionally in the form of particles, is heated at crystallization conditions and in the absence of an external liquid phase, so that excess liquid need not be removed at the conclusion of the crystallization step.
    Type: Grant
    Filed: May 3, 1994
    Date of Patent: May 7, 1996
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 5409687
    Abstract: Gallosilicates can be formed in the absence of structure-guiding organic hydrocarbons or amines by(a) combining water, a base, a gallium material selected from the group consisting of alkali metal gallates, Ga.sub.2 O.sub.3 and hydrated derivatives of Ga.sub.2 O.sub.3, and gallium salts optionally in aqueous solution, with a powder consisting essentially of particles of silicon dioxide or a hydrated derivative thereof having a diameter of 0.1 to 5 microns and a specific surface area of 20-22 m.sup.2 /g in amounts such that the atomic ratio of silicon to gallium is at least 10 to form an alkaline aqueous reaction mixture; and(b) heating the reaction mixture to produce zeolite-like gallosilicates. These materials are advantageously recovered from the reaction mixture and subjected to ion exchange to replace any alkali metal or alkaline-earth metal ions present with protons.
    Type: Grant
    Filed: June 7, 1994
    Date of Patent: April 25, 1995
    Assignee: Vereinigte Aluminum-Werke Aktiengesellschaft
    Inventors: Martin Wallau, Arno Tissler, Roland Thome, Klaus K. Unger
  • Patent number: 5401487
    Abstract: The invention purpose is a process to obtain gel to elaborate Zeolite 4A, to be used in detergents due to its capacity for calcium absortion; the process lies on the obtention of an alkaline aluminum solution starting from bauxite provided by tank 3 which is attacked in digestor 1 with sodium hydroxide provided by tank 4, with a concentration of 11% minimum, with a filtration of the reacting mass and a purification 13 before the gel formation step in whose reactor 14 is also introduced an alkaline solution of SiO2 to obtain by agitation and temperature a gel which is treated in a crystallizer 15, cooling and concentrating the crystalline mass in 16, filtered in 17, and passed to a dryer 20 from where the product Zeolite 4A passes to storage 21. Bauxite residues are attacked with boiling sulphuric acid in reactor 9, filtering the resulting mass in 11 to recycle the silica and to recover the metal sulphates in solution for using them in water treatments.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: March 28, 1995
    Assignee: Foret S.A.
    Inventors: Ramon A. Puerto, Juan F. Benito
  • Patent number: 5268107
    Abstract: An ion exchange material for the removal of radioisotope cations such as the cations of caesium and strontium from an aqueous environment containing the radioisotope cation comprises a modified clinoptilolite produced by treating a natural clinoptilolite with sodium hydroxide at a concentration of approximately 2M or with hydrochloric acid at a concentration of from 0.1 to 5M for a suitable treatment time and at a suitable treatment temperature. The modified clinoptilolite is especially effective in the removal of radioisotope cations from an aqueous environment.
    Type: Grant
    Filed: December 30, 1991
    Date of Patent: December 7, 1993
    Assignee: Zeofuels Research (Proprietary) Limited
    Inventors: Graham J. Hutchings, Themistoclis Themistocleous, Richard G. Copperthwaite
  • Patent number: 5215737
    Abstract: There is provided a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. This material may have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of a least about 13 Angstrom units. The reaction mixture for preparing this material contains silica-alumina hydrogel.
    Type: Grant
    Filed: February 27, 1992
    Date of Patent: June 1, 1993
    Assignee: Mobil Oil Corp.
    Inventors: Cynthia T. Chu, Charles T. Kresge, Kenneth G. Simmons
  • Patent number: 5211934
    Abstract: There is provided a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. This material may have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom Units. The reaction mixture for preparing this material contains a hydrolyzable source of alumina such as aluminum (isopropoxide).sub.2 acetoacetic ester chelate, and a hydrolyzable source of silica, such as tetraethylorthosilicate.
    Type: Grant
    Filed: February 12, 1992
    Date of Patent: May 18, 1993
    Assignee: Mobil Oil Corp.
    Inventors: Charles T. Kresge, Michael E. Leonowicz, Wieslaw J. Roth, James C. Vartuli