Fuel Cell Part Patents (Class 427/115)
  • Patent number: 9029046
    Abstract: One embodiment disclosed includes a product comprising: a fuel cell component comprising a substrate and a first coating overlying the substrate, the coating comprising a compound comprising at least one Si—O group, at least one polar group and at least one group including a saturated or unsaturated carbon chain.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: May 12, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Gerhard Winter, Gayatri Vyas Dadheech, Thomas A. Trabold, Reena L. Datta
  • Publication number: 20150125777
    Abstract: A separator for fuel cells is provided. The separator includes: a base material; an underlying alloy layer formed on the base material; and a gold plate layer formed on the underlying alloy layer. The separator is characterized in that the underlying alloy layer is formed of an M1-M2-M3 alloy (where M1 is at least one element selected from Ni, Fe, Co, Cu, Zn and Sn, M2 is at least one element selected from Pd, Re, Pt, Rh, Ag and Ru, and M3 is at least one element selected from P and B).
    Type: Application
    Filed: January 13, 2015
    Publication date: May 7, 2015
    Inventor: Nobuaki MUKAI
  • Publication number: 20150125594
    Abstract: Polymer electrolyte membrane fuel cell membrane electrode assemblies are provided having multilayer cathodes, where a first layer of the cathode which is more proximate to the polymer electrolyte membrane is more hydrophilic than a second more distal layer of the cathode. In some embodiments, the first layer includes a polymer electrolyte having a lower equivalent weight than a polymer electrolyte included in the second layer.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventor: Andrew T. Haug
  • Publication number: 20150118597
    Abstract: Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.
    Type: Application
    Filed: January 13, 2014
    Publication date: April 30, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung-Il LEE, Ji-Won SON, Jong Ho LEE, Hae June JE, Kyung Joong YOON, Hae-Weon LEE, Byung Kook KIM
  • Patent number: 9017757
    Abstract: A method of manufacturing a hydrogen separation membrane with a carrier is characterized by including a first step of providing, between the hydrogen separation membrane and the carrier that supports the hydrogen separation membrane, a low-hardness metal membrane having a hardness that is lower than the hardness of the hydrogen separation membrane, and a second step of joining the hydrogen separation membrane, the low-hardness metal membrane, and the carrier by a cold joining method. In this case, it is possible to suppress the deformation of the hydrogen separation membrane, the low-hardness metal membrane, and the carrier and, as a result, it is possible to prevent damaging of the hydrogen separation membrane. The adhesion of the contact between the hydrogen separation membrane and the carrier is also improved. The result is that it is not necessary to increase the severity of the cold joining conditions.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 28, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Kohan Co., Ltd.
    Inventors: Satoshi Aoyama, Yasuhiro Izawa, Kenji Kimura, Shinji Ohsawa, Kazuo Yoshida, Kouji Nanbu
  • Patent number: 9005847
    Abstract: A method for fabricating a fuel cell component includes the steps of providing a mask having a plurality of radiation transparent apertures, a radiation-sensitive material having a sensitivity to the plurality of radiation beams, and a flow field layer. The radiation-sensitive material is disposed on the flow field layer. The radiation-sensitive material is then exposed to the plurality of radiation beams through the radiation transparent apertures in the mask to form a diffusion medium layer with a micro-truss structure.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: April 14, 2015
    Assignees: GM Global Technology Operations LLC, HRL Laboratories, LLC
    Inventors: Jeffrey A. Rock, Yeh-Hung Lai, Keith E. Newman, Gerald W. Fly, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer
  • Publication number: 20150099209
    Abstract: The present embodiment describes a method of forming different layers in a solid oxide fuel cell. The method begins by preparing slurries which are then delivered to a spray nozzle. The slurries are then atomized and sprayed subsequently onto a support to produce a layer which is then dried. In this embodiment different layers can comprise an anode, an electrode and a cathode. Also the support can be a metal or a metal oxide which is later removed.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Ying Liu, Mingfei Liu, David M. Bierschenk, Ting He
  • Publication number: 20150099063
    Abstract: A method of forming layers of a solid oxide fuel cell. The method begins by pumping a volume of a slip form a slip reservoir to a separator reservoir. A separator and a blade are provided upon a carrier to form the separator reservoir with a gap formed between the blade and the carrier. The carrier is operated so that the carrier is transported from the separator to the blade. A layer of slip is then deposited from the separator reservoir onto the carrier. The layer of slip is then dried on the carrier.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 9, 2015
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Ying Liu, Timothy L. Sirmon, Ralph Melton, Ting He
  • Publication number: 20150099062
    Abstract: A method for manufacturing a film electrode is disclosed, which comprises the following steps: (A) providing a polymer substrate, and forming a micro-structure array comprising a plurality of micro holes on the polymer substrate; and (B) depositing sequentially an electron-conductive layer, a catalyst layer, and a proton exchange membrane on the array comprising a plurality of micro holes to form a film electrode; wherein the aspect ratio of the plurality of micro holes is ranging from 2:1 to 5:1.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 9, 2015
    Inventors: Fan-Gang TSENG, Yi-Shiuan WU, Chia-Lien LU, Liang-You LIN
  • Patent number: 8999434
    Abstract: A process is provided whereby a membrane/electrode assembly for polymer electrolyte fuel cells whereby a high output voltage is obtainable within a wide range of current densities.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: April 7, 2015
    Assignees: Asahi Glass Company, Limited, Panasonic Corporation
    Inventors: Hiroshi Shimoda, Hirokazu Wakabayashi, Shinji Kinoshita, Toshihiro Tanuma, Hideki Nakagawa
  • Publication number: 20150093683
    Abstract: A fuel cell includes a chromium-containing metal support, a ceramic electrode layer on the metal support and an electroconductive ceramic layer between the chromium-containing metal support and the ceramic electrode layer. The electroconductive ceramic layer includes a ceramic material selected from lanthanum-doped strontium titanate and perovskite oxides.
    Type: Application
    Filed: May 5, 2014
    Publication date: April 2, 2015
    Inventors: Jean Yamanis, Tianli Zhu, Neal Magdefrau, Mark A. Hermann
  • Patent number: 8993197
    Abstract: A bipolar plate for a fuel cell comprises a substrate formed of stainless steel; an oriented amorphous carbon film formed at least on a surface of the substrate facing an electrode, and containing C as a main component, 3 to 20 at. % of N, and more than 0 at. % and not more than 20 at. % of H, and when the total amount of the C is taken as 100 at. %, the amount of C having an sp2 hybrid orbital (Csp2) being not less than 70 at. % and less than 100 at. %, and (002) planes of graphite being oriented along a thickness direction; a mixed layer generated in an interface between the substrate and the oriented amorphous carbon film and containing at least one kind of constituent atoms of each of the substrate and the oriented amorphous carbon film; and a plurality of projections protruding from the mixed layer into the oriented amorphous carbon film and having a mean length of 10 to 150 nm.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: March 31, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takashi Iseki, Kazuyuki Nakanishi, Yasuhiro Ozawa, Yuka Yamada, Hajime Hasegawa, Masafumi Koizumi, Katsutoshi Fujisawa, Naoki Ueda, Hirohiko Hisano
  • Patent number: 8986907
    Abstract: Provided is a porous electrode substrate having high mechanical strength, good handling properties, high thickness precision, little undulation, and adequate gas permeability and conductivity. Also provided is a method for producing a porous electrode substrate at low costs. A porous electrode substrate is produced by joining short carbon fibers (A) via mesh-like of carbon fibers (B) having an average diameter of 4 ?m or smaller. Further provided are a membrane-electrode assembly and a polymer electrolyte fuel cell that use this porous electrode membrane. A porous electrode substrate is obtained by subjecting a precursor sheet, in which short carbon fibers (A) and short carbon fiber precursors (b) having an average diameter of 5 ?m or smaller have been dispersed, to carbonization treatment after optional hot press forming and optional oxidization treatment.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 24, 2015
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kazuhiro Sumioka, Yoshihiro Sako
  • Publication number: 20150074989
    Abstract: Methods of making electrodes that mitigate water flooding, wherein the porous electrodes are made of hydrophobic cage structured materials that repel water, and provide for mechanisms that reduce water flooding.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Applicant: University of Houston System
    Inventor: Anima Bose
  • Patent number: 8980367
    Abstract: A method for making an anode active material is described. The anode active material includes a phosphorus composite material. In the method, a solid-state red phosphorus and a porous conductive carbon material are provided. The solid-state red phosphorus and the porous conductive carbon material are spaced disposed in a vessel and the vessel is sealed. The solid-state red phosphorus is sublimed by heating the vessel to make the sublimed red phosphorus diffused in the porous conductive carbon material. The sublimed red phosphorus is condensed. The condensed red phosphorus adsorbs in the porous conductive carbon material to form the phosphorus composite material.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: March 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Li Wang, Xiang-Ming He, Wen-Ting Sun, Jian-Jun Li
  • Publication number: 20150064602
    Abstract: Disclosed are a polymer electrolyte membrane, a method for manufacturing the same and a membrane-electrode assembly comprising the same, the polymer electrolyte membrane includes a hydrocarbon-containing ion conductive layer; and a fluorine-containing ion conductor discontinuously dispersed on the hydrocarbon-containing ion conductive layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 5, 2015
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Moo Seok Lee, Yong Cheol Shin, Na Young Kim, Dong Hoon Lee
  • Publication number: 20150064596
    Abstract: A process for forming a metal supported solid oxide fuel cell is provided. The process can include the steps of: a) applying a green anode layer including nickel oxide and a rare earth-doped ceria to a metal substrate; b) prefiring the anode layer under non-reducing conditions to form a composite; c) firing the composite in a reducing atmosphere to form a sintered cermet; d) providing an electrolyte; and e) providing a cathode; wherein the reducing atmosphere comprises an oxygen source, a metal supported solid oxide fuel cell formed during this process, fuel cell stacks and the use of these fuel cells.
    Type: Application
    Filed: October 14, 2013
    Publication date: March 5, 2015
    Applicant: Ceres Intellectual Property Company Limited
    Inventors: Robert Leah, Mike Lankin, Robin Pierce, Adam Bone
  • Publication number: 20150064604
    Abstract: Atomic mixed metal electrodes, including electrodes containing a conductive polymer-mixed metal complex, as well as methods of making and using the same, are disclosed. In some embodiments, the atomic mixed metal electrode can be described as a conductive polymer-coated electrode having mixed metal clusters complexed to the conductive polymer at levels of between 2 and 10 metal atoms. A method for preparing the conductive polymer-mixed metal complexes is disclosed that can deposit metal atoms one at a time into a complex with the conductive polymer, allowing for highly tailored atomic clusters. A method of oxidizing alcohols, and the application to devices such as fuel cells are also disclosed.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 5, 2015
    Inventors: Alex P. Jonke, Miroslawa A. Josowicz, Jiri Janata
  • Patent number: 8968961
    Abstract: A process for producing proton-conducting membrane, the process comprising: mixing (i) 5% to 60% by volume of an electrically nonconductive inorganic powder having a good acid absorption capacity, the powder comprising essentially nanosize particles; (ii) 5% to 50% by volume of a polymeric binder that is chemically compatible with acid, oxygen and the fuel; and (iii) 10 to 90% by volume of an acid or aqueous acid solution, wherein the mixing is conducted at various rate steps, thereby producing a proton-conducting mixture; continuously casting the proton-conducting mixture on rolled paper, non-woven matrix or the like at ambient temperature; drying the casted proton-conducting mixture at a temperature of greater than 100° C.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: March 3, 2015
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon
  • Patent number: 8969234
    Abstract: A method of preparing a fuel cell electrode catalyst by preparing a platinum-carbon core-shell composite, which has a platinum nanoparticle core and a graphene carbon shell, using a simultaneous evaporation process, a method for preparing a fuel cell electrode comprising the catalyst prepared thereby, and a fuel cell comprising the same. A fuel cell comprising an electrode catalyst consisting of the core-shell composite prepared by simultaneously evaporating the platinum precursor and the organic precursor can have high performance and high durability, because the platinum particles are not agglomerated or detached and corroded even under severe conditions, including high-temperature, long use term, acidic and alkaline conditions.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Hee-Yeon Kim, Seok-yong Hong
  • Patent number: 8956509
    Abstract: The invention relates to a method for producing carbon electrodes by deposition on a substrate, to produce a fuel cell. The method comprises the steps of alternately and/or simultaneously depositing porous carbon and a catalyst onto the substrate by plasma spaying in a vacuum chamber. The catalyst is used to accelerate at least one of the chemical reactions that takes place in the fuel cell. The thickness of each layer of porous carbon is chosen so that the catalyst deposited on this carbon layer is distributed essentially throughout this layer, thereby by providing a layer of catalyzed carbon. The total thickness of catalyzed carbon in the electrode is less than 2 micrometers, and preferably equal to no more than 1 micrometer.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: February 17, 2015
    Assignees: CNRS, Universite d'Orleans, Aprim Vide
    Inventors: Pascal Brault, Amael Caillard, Alain Leclerc
  • Patent number: 8956688
    Abstract: A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: February 17, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Jianlin Li, Beth L. Armstrong, Claus Daniel, David L. Wood, III
  • Patent number: 8945782
    Abstract: The present invention provides a method of producing a multilayer barrier structure in a solid oxide cell stack, comprising the steps of: —providing a metal interconnect; —applying a first metal oxide layer on said metal interconnect; —applying a second metal oxide layer on top of said first metal oxide layer; —applying a third metal oxide layer on top of said second metal oxide layer; —forming a solid oxide cell stack comprising said metal interconnect having said metal oxide layers thereon; and —reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialization, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialization step, which is carried out under controlled conditions for atmosphere composition and current
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 3, 2015
    Assignees: Technical University of Denmark, Topsoe Fuel Cell A/S
    Inventors: Karsten Agersted Nielsen, Søren Linderoth, Peter Vang Hendriksen, Åsa Persson, Lars Mikkelsen, Niels Christiansen, Jørgen Gutzon Larsen
  • Patent number: 8940438
    Abstract: A negative electrode and a lithium battery including the same, the negative electrode including nanotubes including a Group 14 metal/metalloid, disposed on a conductive substrate.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: January 27, 2015
    Assignees: Samsung Electronics Co., Ltd., Industry-University Cooperation Foundation Hanyang University
    Inventors: Han-su Kim, Un-gyu Paik, Jae-man Choi, Moon-seok Kwon, Tae-seob Song, Won-il Park
  • Patent number: 8940452
    Abstract: A method for producing an electrode catalyst substrate is provided herein, which comprises a carbon film forming step of forming a porous carbon film on a base, a hydrophilization step of hydrophilizing the porous carbon film, an immersion step of immersing the base in a solution prepared by dissolving catalytic metal ions in a polar solvent, and a reduction step of adding a reducing agent to the solution and thus reducing the catalytic metal ions. An electrode catalyst substrate obtained by the method and a polymer electrolyte fuel cell in which the electrode catalyst obtained by the method is used for anodes and/or cathodes are also provided herein. In the electrode catalyst of the present invention, fine catalyst particles are loaded in a uniform and highly dispersed manner.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: January 27, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Kazuma Shinozaki, Atsuhito Okamoto, Tatsuya Hatanaka, Hiroaki Takahashi, Tomoaki Terada, Takahiro Nagata
  • Patent number: 8940112
    Abstract: A method of making a solid oxide fuel cell (SOFC) includes forming a first sublayer of a first electrode on a first side of a planar solid oxide electrolyte and drying the first sublayer of the first electrode. The method also includes forming a second sublayer of the first electrode on the dried first sublayer of the first electrode prior to firing the first sublayer of the first electrode, firing the first and second sublayers of the first electrode during the same first firing step, and forming a second electrode on a second side of the solid oxide electrolyte.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: January 27, 2015
    Assignee: Bloom Energy Corporation
    Inventors: Emad El Batawi, Patrick Munoz, Dien Nguyen
  • Publication number: 20150017566
    Abstract: A catalyst electrode layer includes an anion conductive elastomer in which a quaternary base type anion exchange group is introduced into at least a part of an aromatic ring of a copolymer of an aromatic vinyl compound, and a conjugated diene compound or a copolymer where a double bond of a main chain is partially or completely saturated by hydrogenating a conjugated diene part of the copolymer, and in which at least a part of the quaternary base type anion exchange group forms a cross-linked structure; and an electrode catalyst.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 15, 2015
    Inventors: Shin Watanabe, Kenji Fukuta, Fumie Inoue
  • Patent number: 8921009
    Abstract: An improved approach toward manufacture of a sealed fuel cell stack configuration including electrostatic deposition of materials onto substrate surfaces of the fuel cell stack.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Zephyros, Inc.
    Inventors: Michael Czaplicki, Karsten Scholz
  • Patent number: 8920868
    Abstract: A process for preparing a ceramic body having a surface roughness, said process comprising the step of depositing particles of a ceramic material on the surface of a ceramic basic body. The process is characterized in that separate agglomerates comprising at least two particles and a binder binding the particles together are deposited on the surface of the basic body by projecting the agglomerates towards the basic body.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 30, 2014
    Assignee: Straumann Holding AG
    Inventor: Marc Stephan
  • Patent number: 8921005
    Abstract: A uniform and dense resin coat is formed on a surface of a peripheral region of a fuel cell separator. However, the formed resin coat may contain defects (holes). With the present invention, however, any such defects in the resin coat are coated with a metal coat. That is, when depositing metal in complex ions on the fuel cell separator by an electrodeposition process, the metal is adhered not only to a power generation region but also to a portion where the surface (separator base material surface) is exposed by the defects of the resin coat, thereby forming the metal coat on the defects. Thus, it is possible to improve the corrosion resistance of the fuel cell separator as compared to the case that the surface of the separator base material is exposed at the portions of the defects of the resin coat.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hirofumi Onishi, Jin Hak Kim, Yusuke Watanabe, Makoto Yoshida
  • Publication number: 20140377689
    Abstract: An electrode (31c) for fuel cell comprises: a catalyst carrier (110) that is an electrically-conductive carrier (130) with a catalyst (120) supported thereon; a first electrolyte resin (141); and a second electrolyte resin (142). the first electrolyte resin has oxygen permeability of less than 2.2×10?14 mol/(m s Pa) in an environment having temperature of 80 degrees Celsius and relative humidity of 50%. the second electrolyte resin has oxygen permeability of not less than 2.2×10?14 mol/(m s Pa) in the environment having temperature of 80 degrees Celsius and relative humidity of 50%.
    Type: Application
    Filed: August 7, 2012
    Publication date: December 25, 2014
    Applicants: E. I. DU PONT DE NEMOURS AND COMPANY, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Andri E. Elia
  • Publication number: 20140377478
    Abstract: A method of making a solid oxide fuel cell (SOFC) includes forming a first sublayer of a first electrode on a first side of a planar solid oxide electrolyte and drying the first sublayer of the first electrode. The method also includes forming a second sublayer of the first electrode on the dried first sublayer of the first electrode prior to firing the first sublayer of the first electrode, firing the first and second sublayers of the first electrode during the same first firing step, and forming a second electrode on a second side of the solid oxide electrolyte.
    Type: Application
    Filed: September 4, 2014
    Publication date: December 25, 2014
    Inventors: Emad El Batawi, Patrick Munoz, Dien Nguyen
  • Patent number: 8916311
    Abstract: A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600° C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 23, 2014
    Assignee: University of Rochester
    Inventors: Matthew Yates, Wei Xue
  • Patent number: 8911918
    Abstract: A method for creating a formed-in-place seal on a fuel cell plate is disclosed. The method includes first dispensing a flowable seal material along a first sealing area of a fuel cell plate requiring the seal material. Next, a preformed template is located adjacent to at least a portion of the fuel cell plate, the template including predetermined apertures corresponding with a second sealing area of the plate, such that the apertures are coextensive with at least a portion of the first sealing area. Flowable seal material is applied into the apertures, and is then cured to a non-flowable state.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: December 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Mark W. Keyser
  • Patent number: 8911820
    Abstract: Disclosed is a method for manufacturing an electrode, that is, a large-sized cathode, used for a molten carbonate fuel cell. In the disclosed method, a substrate and a pressure plate, used for electrolyte impregnation, are surface-treated so as to control the bending and cracking of the electrode during the impregnation of an electrolyte.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: December 16, 2014
    Assignee: Doosan Heavy Industries & Construction Co., Ltd.
    Inventors: Jang Yong Yoo, Bo Hyun Ryu, Hwan Moon, Ju Young Youn, Mi Young Shin, Ju Heung Kim, Dae Gyo O, Kong Taek Lim, In Gap Jang, Tae Won Lee, Kil Ho Moon
  • Publication number: 20140363756
    Abstract: A membrane electrode assembly for a polymer electrolyte fuel cell having higher power-generating characteristics in a high-temperature, low-humidity environment, and a polymer electrolyte fuel cell using the same. In this membrane electrode assembly for a polymer electrolyte fuel cell provided with electrode catalyst layers, which include at least a proton-exchange polymer and carbon-supported catalyst, on both surfaces of a polymer electrolyte membrane, the resistance (Ri) of the proton-exchange polymer of the electrode catalyst layers is at least about 2 ?cm2 but not more than about 5 ?cm2 under measurement conditions of 20% relative humidity and an AC impedance of 10 kHz to 100 kHz.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventor: Madoka OZAWA
  • Patent number: 8906448
    Abstract: An exemplary method of treating a material such as carbon or graphite to render at least some surfaces of the material hydrophilic includes coating at least a portion of the at least some surfaces with an oxygenated element and controlling a rate of a breakdown of the oxygenated element to leave a corresponding elemental oxide on the surfaces. In one example, the material is treated before being incorporated into an article comprising the material. Another example method includes treating an article comprising the material. Disclosed examples include precipitation or decomposition as the breakdown of the oxygenated element.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: December 9, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Gennady Resnick, Glenn M. Allen, Zebulon D. Vance, Jr., Ned E. Cipollini
  • Patent number: 8906579
    Abstract: A bipolar plate to reduce electrical contact resistance between the plate and a diffusion layer used in a fuel cell. The opposing surfaces of the plate define flow channels with upstanding lands interspersed between them. The lands of the plate form an electrically-conductive contact with a diffusion layer in the fuel cell. At least a portion of the electrically-conductive contact is made up of a nickel-based alloy that reduces the contact resistance between the plate and the diffusion layer as a way to achieve improved electric current density. In one form, the alloy can be used as the primary material in the plate, while in another, it can be used as a coating deposited onto a conventional stainless steel plate.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: December 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech, Arianna T. Morales, Maria C. Militello
  • Patent number: 8906447
    Abstract: Disclosed is a method of producing a hybrid nano-filament composition for use in a lithium battery electrode. The method comprises: (a) providing an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a porous network of electrically conductive filaments, wherein the filaments comprise electro-spun nano-fibers that have a diameter less than 500 nm (preferably less than 100 nm); and (b) depositing micron- or nanometer-scaled coating onto a surface of the electro-spun nano-fibers, wherein the coating comprises an electro-active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 ?m (preferably less than 1 ?m). The same method can be followed to produce an anode or a cathode. The battery featuring an anode or cathode made with this method exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: December 9, 2014
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 8906449
    Abstract: A method for making a cathode composite material of a lithium ion battery is disclosed. In the method, a composite precursor is formed. The composite precursor includes a cathode active material precursor and a coating layer precursor coated on a surface of the cathode active material precursor. The composite precursor is reacted with a lithium source chemical compound, to lithiate both the cathode active material precursor and the coating layer precursor in the composite precursor.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Jun Lu, Wei-Yang Wang, Qing Peng
  • Publication number: 20140356767
    Abstract: An improved catalyst support can be provided by a process for producing a carbon fiber composite which comprises: a step of subjecting metal fine particles of either at least one metal or a compound containing the metal to reductive deposition on fine cellulose having carboxyl groups on the crystal surface to make a composite composed of both the fine cellulose and the metal fine particles; and a step of carbonizing the fine cellulose of the composite to prepare a carbon fiber composite. The invention also relates to a carbon fiber composite made by the process, a catalyst support, and a polymer electrolyte fuel cell.
    Type: Application
    Filed: August 12, 2014
    Publication date: December 4, 2014
    Inventors: Mitsuharu KIMURA, Yumiko OOMORI, Takuya ISOGAI
  • Publication number: 20140356755
    Abstract: A method of forming a catalyst ink is disclosed. The method can include: polymerising an ionic monomer and at least one non-ionic monomer to form a hydrophilic polymer; dissolving the hydrophilic polymer in a suitable solvent to form a polymer solution; and mixing a catalyst with the polymer solution to make a catalyst ink. Also disclosed are catalyst inks formed from this method, as well as membranes including the catalyst inks and methods for forming the same.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: ITM Power (Research) Limited
    Inventors: Nick Van Dijk, Kevin Yeomans
  • Publication number: 20140356765
    Abstract: In at least one embodiment, a method of forming a platinum thin film is provided, including performing a first atomic layer deposition (ALD) process on a substrate using a first platinum organometallic precursor in a first step and an oxidizing precursor in a second step to form an at least partially coated substrate. A second ALD process is then performed on the at least partially coated substrate using a second platinum organometallic precursor in a first step and a reducing precursor in a second step to form a thin film of platinum on the substrate. The first ALD process may be performed for 5 to 150 cycles to nucleate platinum on the substrate surface and the second ALD process may be performed thereafter to grow the thin film and remove surface oxides. A conformal platinum thin film having a thickness of 1 to 10 monolayers may be deposited.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Patrick Pietrasz, Jun Yang
  • Publication number: 20140356752
    Abstract: A method of fabricating a fuel cell component for use with or as part of a fuel cell in a fuel cell stack, the method comprising: providing a fuel cell component, providing a deposition assembly for depositing loading material particles onto the fuel cell component, and actuating the deposition assembly to cause the deposition assembly to deposit said loading material particles onto said fuel cell component.
    Type: Application
    Filed: July 9, 2014
    Publication date: December 4, 2014
    Inventors: Salvador E. Correa, Thomas M. Lucas, Lawrence J. Novacco
  • Publication number: 20140356744
    Abstract: In one aspect, a method to convert a fuel into energy and specialized fuel includes, in a reactor, dissociating a fuel to produce hot carbon and hydrogen, the hot carbon having a temperature state in a range of 700 to 1500° C., in which the dissociating includes providing heat and/or electric energy to produce the hot carbon and the hydrogen; and removing the hot carbon and the hydrogen from the reactor, the removing including depositing the hot carbon to a chamber, in which the hot carbon includes an increased chemical potential energy and is capable of storing energy from an external source. In some implementations, the method can further include supplying an oxygen- and hydrogen-containing reactant to contact the hot carbon to produce carbon monoxide (CO) and hydrogen (H2); and obtaining the produced CO and H2, which, after the supplying, remaining deposited carbon forms a durable carbon-based good or product.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: MCALISTER TECHNOLOGIES, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8900773
    Abstract: An electrode for an electrochemical system, such as a fuel cell, is formed by an active layer including: pores; at least one catalyst; at least one ionomer; and electrically-conductive particles. The catalyst content per pore ranges between 30 and 500 mg/cm3 with respect to the pore volume.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 2, 2014
    Assignee: Commisariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Remi Vincent, Sylvie Escribano, Alejandro Franco
  • Patent number: 8900653
    Abstract: A method of producing an electrode for an electricity storage device includes producing a paste to form an electrode active material layer, in which aggregates of a solids fraction material that contains at least an electrode active material and a binder are dispersed in a solvent, coating the paste on a surface of a current collector, and drying the current collector coated with the paste, to form the electrode active material layer formed of the solids fraction material. The paste is produced in such a manner that a content ratio of the solids fraction material in the paste is 60 to 80 mass %, an abundance ratio for the aggregates with a particle size that is equal to or smaller than 20 ?m is at least 99%, and a viscosity at 25° C. and a shear rate of 40 s?1 is 200 to 5,000 mPa·s.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 2, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Junya Mori, Hideki Hagiwara
  • Publication number: 20140349203
    Abstract: The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Inventors: Barbara Klose-Schubert, Daniel Herein, Marco Lopez, Carsten Becker
  • Publication number: 20140349216
    Abstract: A composite electrode structure and methods of making and using thereof are disclosed. The structure has a metal substrate with a metal oxide layer. The average thickness of the metal oxide layer is less than 150 nm, and comprises at least a first metal and a second metal, wherein the first metal and the second metal are different elements. A plurality of carbon nanotubes is disposed on a first surface of the metal oxide layer. At least a portion of the carbon nanotubes are disposed such that one end of the carbon nanotube is positioned at least 5 nm below the surface of the metal oxide layer.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Applicant: ULTORA, INC.
    Inventors: Cattien V. NGUYEN, You LI, Hoang Nguyen LY, Darrell L. NIEMANN, Bevan VO, Philip A. Kraus
  • Publication number: 20140338799
    Abstract: Eutectic fuel cells are prepared by depositing a metal-semiconductor eutectic alloy over non-platinum electrodes on a substrate. In some embodiments the electrodes are the same metal and in other cases the electrodes are dissimilar.
    Type: Application
    Filed: August 4, 2014
    Publication date: November 20, 2014
    Applicant: Solar-Tectic, LLC
    Inventors: Ashok Chaudhari, Karin Chaudhari, Pia Chaudhari