With Post-treatment Of Coating Or Coating Material Patents (Class 427/130)
  • Patent number: 8883249
    Abstract: By improving sliding durability while ensuring a high SNR, an improvement in reliability and a further increase in recording density are to be achieved.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: November 11, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Toshiaki Tachibana, Takahiro Onoue, Keiichi Kajita
  • Patent number: 8858809
    Abstract: A manufacturing method of a magnetic recording medium includes steps of forming a magnetic recording layer, a first mask layer, a second mask layer containing silicon as primary component, a strip layer, a third mask layer, and a resist layer, a step of patterning the resist layer to provide a pattern, steps of transferring the pattern to the third mask layer, to the strip layer, and to the second mask layer, a step of removing the strip layer by wet etching and of stripping the third mask layer and the resist layer above the magnetic recording layer, steps of transferring the pattern to the first mask layer and to the magnetic recording layer, and a step of stripping the first mask layer remaining on the magnetic recording layer.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Watanabe, Kaori Kimura, Kazutaka Takizawa, Takeshi Iwasaki, Tsuyoshi Onitsuka, Akihiko Takeo
  • Patent number: 8852676
    Abstract: A spin toque transfer magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B), annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer, the annealing causing a second free sub-layer to be formed on top of the first free sub-layer and being made partially of B, the amount of B of the second free sub-layer being greater than the amount of B in the first free sub-layer.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 7, 2014
    Assignee: Avalanche Technology, Inc.
    Inventor: Yuchen Zhou
  • Publication number: 20140295073
    Abstract: A method of fabricating a magnetic recording medium by sequentially forming a magnetic recording layer, a protection layer, and a lubricant layer on a stacked body, includes forming the lubricant by depositing a first lubricant on the stacked body after forming the protection layer, by vapor-phase lubrication deposition, without exposing the stacked body to atmosphere, and depositing a second lubricant on the stacked body after depositing the first lubricant, by vapor-phase lubrication deposition, without exposing the stacked body to atmosphere. The first lubricant has a lower molecular mass and a higher chemical polarity than those of the second lubricant.
    Type: Application
    Filed: March 18, 2014
    Publication date: October 2, 2014
    Applicant: SHOWA DENKO K.K.
    Inventors: Takehiko OKABE, Katsuaki To
  • Patent number: 8846137
    Abstract: On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 30, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Koichi Shimokawa, Katsushi Hamakubo, Kae Itoh
  • Patent number: 8840955
    Abstract: A method of manufacturing a magnetic recording medium is disclosed, as well as a magnetic recording medium manufactured by the method. In the manufacturing method, the uneven pattern has magnetic recording elements in protruding portions formed above a substrate, and depressed portions between the recording elements are filled with a filling material. The method allows a high quality magnetic recording medium to be manufactured inexpensively by eliminating the process of removing excess filling material used to fill depressions between magnetic recording elements, because the method allows material to be filled only in the depressed portions of an uneven pattern. The method includes a technique rendering the wettability of the protruding portion surfaces and the depressed portion surfaces different prior to the process of filling with the filling material.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: September 23, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Narumi Sato
  • Publication number: 20140264142
    Abstract: A method is described for inserting or dispersing quartz within a substrate containing polymers polarizable by an electromagnetic field having electrical resistivity, from an insulator to conductor or vice versa, modifiable by said field. The method involves dispersing in the substrate particles having a sandwich structure including two conductive layers and a layer with piezoelectric characteristics in the middle.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 18, 2014
    Applicant: SPF LOGICA S.R.L.
    Inventors: Giorgio Eberle, Fabio Cappelli, Giuseppe Paronetto
  • Patent number: 8828483
    Abstract: Disclosed is a method of manufacturing a magnetic recording medium having a clear magnetic recording pattern through a simple process. The method includes: forming a magnetic layer on the non-magnetic substrate; forming a mask layer which covers a surface of the magnetic layer; forming a resist layer on the mask layer; patterning the resist layer using a stamp; patterning the mask layer using the resist layer, forming a recess by partially removing a portion of the magnetic layer not covered by the mask layer; forming a non-magnetic layer which covers a surface where a recess is formed; flattening a surface of the non-magnetic layer until the mask layer is exposed; removing an exposed mask layer; removing a protruding portion of the non-magnetic layer; and forming a protective layer which covers a surface where the protruding portion was removed.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 9, 2014
    Assignee: Showa Denko K.K.
    Inventors: Shinichi Ishibashi, Manabu Ueda, Akira Sakawaki
  • Publication number: 20140242379
    Abstract: To produce a ferroelectric film formed of a lead-free material. The ferroelectric film according to an aspect of the present invention includes a (K1-XNaX)NbO3 film or a BiFeO3 film having a perovskite structure and a crystalline oxide preferentially oriented to (001) formed on at least one of the upper side and lower side of the (K1-XNaX)NbO3 film or BiFeO3 film, and X satisfies the formula below 0.3?X?0.7.
    Type: Application
    Filed: July 29, 2011
    Publication date: August 28, 2014
    Applicant: YOUTEC CO., LTD.
    Inventors: Takeshi Kijima, Yuuji Honda
  • Publication number: 20140231351
    Abstract: The invention provides permeable magnetically responsive filtration membranes that include a filtration membrane polymer base suitable for fluid filtration; hydrophilic polymers conjugated to the surface of the filtration membrane polymer; and magnetic nanoparticles affixed to the ends of a plurality of the hydrophilic polymers, wherein the hydrophilic polymers are movable with respect to the surface of the filtration membrane polymer surface in the presence of an oscillating magnetic field.
    Type: Application
    Filed: August 8, 2012
    Publication date: August 21, 2014
    Applicants: Colorado State University Research Foundation, The Board of Trustees of the University of Arkansas, Lehrstuhl fur Technische Chemie II, Universitat Duisburg-Essen
    Inventors: Sumith Ranil WICKRAMASINGHE, Xianghong QIAN, Heath H. HIMSTEDT, Mathias ULBRICHT, Michael J. SEMMENS
  • Publication number: 20140225024
    Abstract: The present invention relates to a core-shell structured nanoparticle having hard-soft heterostructure, magnet prepared from the nanoparticle, and preparing method thereof. The core-shell structured nanoparticle having hard-soft magnetic heterostructure of present invention has some merits such as independence from resource supply problem of rare earth elements and low price and can overcome physical and magnetic limitations possessed by the conventional ferrite mono-phased material.
    Type: Application
    Filed: January 9, 2013
    Publication date: August 14, 2014
    Applicants: LG Electronics Inc., INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Jongryoul Kim, Jinbae Kim, Namseok Kang, Sanggeun Cho
  • Publication number: 20140218824
    Abstract: The present disclosure relates to a magnetic medium that includes a substrate and a bit patterned magnetic layer applied to the substrate. The bit-patterned magnetic layer includes islands and each island includes a first magnetic material having a first magnetic anisotropy and that has a top surface, a bottom surface, and a peripheral surface. Each island also includes a second magnetic material covering the peripheral surface of the first magnetic material and having a second magnetic anisotropy that is higher than the first magnetic anisotropy. In one embodiment, the first magnetic material may comprise a nucleation domain in a centrally located surface portion of the magnetic islands and/or the second magnetic material may comprise an outer shell on the peripheral surface of the islands.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Michael Grobis, Dan S. Kercher, Kurt A. Rubin
  • Patent number: 8793866
    Abstract: A method provides a PMR transducer. In one aspect, the method includes forming a trench in an intermediate layer using reactive ion etch(es). The trench top is wider than its bottom. In this aspect, the method also includes providing a seed layer using atomic layer deposition and providing a PMR pole on the seed layer. Portion(s) of the seed layer and PMR pole reside in the trench. In another aspect, the method includes providing a mask including a trench having a top wider than its bottom. In this aspect, the method includes providing mask material in the trench, providing an intermediate layer on the mask material and removing the mask material to provide another trench in the intermediate layer. In this aspect, the method also includes providing a PMR pole in the additional trench.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: August 5, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Liubo Hong, Yong Shen, Yizhong Wang, Hai Sun, Li He
  • Patent number: 8795764
    Abstract: An apparatus includes a substrate and a magnetic layer coupled to the substrate. The magnetic layer includes an alloy that has magnetic hardness that is a function of the degree of chemical ordering of the alloy. The degree of chemical ordering of the alloy in a first portion of the magnetic layer is greater than the degree of chemical ordering of the alloy in a second portion of the magnetic layer, and the first portion of the magnetic layer is closer to the substrate than the second portion of the magnetic layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 5, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yingguo Peng, Xiaowei Wu, Ganping Ju, Bin Lu
  • Patent number: 8795790
    Abstract: [Problem] An object is to provide a magnetic recording medium with improved HDI characteristics, such as impact resistance, and its manufacturing method. [Solution] A typical structure of a magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122, a protective layer 126, and a lubricating layer 128, wherein the magnetic recording layer 122 includes, in an in-plane direction, a magnetic recording part 136 configured of a magnetic material and a non-recording part 134 magnetically separating the magnetic recording part 136, and a surface corresponding to the non-recording part 134 protuberates more than a surface corresponding to the magnetic recording part 136.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 5, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Akira Shimada, Tsuyoshi Ozawa, Masanori Aniya
  • Patent number: 8795763
    Abstract: A track shield structure is disclosed that enables higher track density to be achieved in a patterned track medium without increasing adjacent track erasure and side reading. This is accomplished by placing a soft magnetic shielding structure in the space that is present between the tracks in the patterned medium. A process for manufacturing the added shielding structure is also described.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: August 5, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yuchen Zhou, Lijie Guan, Kunliang Zhang
  • Publication number: 20140212578
    Abstract: To provide a magnetic sheet composition, which contains: a binder; magnetic powder; and a curing agent, wherein the binder contains a thermosetting organic resin, and the curing agent contains a sulfonium borate complex expressed by General Formula 1: where R1 is an aralkyl group, R2 is a lower alkyl group, X is a halogen atom, and n is an integer of 0 to 3.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 31, 2014
    Applicant: Dexerials Corporation
    Inventors: Keisuke ARAMAKI, Yoshihisa Shinya, Katsuhiko Komuro
  • Patent number: 8790526
    Abstract: A method of producing bit-patterned media is provided whereby a shell structure is added on a bit-patterned media dot. The shell may be an antiferromagnetic material that will help stabilize the magnetization configuration at the remanent state due to exchange coupling between the dot and its shell. Therefore, this approach also improves the thermal stability of the media dot and helps each individual media dot maintain a single domain state.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 29, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Haiwen Xi, Song Xue
  • Publication number: 20140186526
    Abstract: A common mode filter having heterogeneous laminates includes a first magnetic layer, a nonmagnetic insulating substrate, a second magnetic layer, a first coil layer, and a second coil layer. The second magnetic layer is formed on the nonmagnetic insulating substrate, between the nonmagnetic insulating substrate and the first magnetic layer. The first coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a first coil. The second coil layer is disposed between the first magnetic layer and the second magnetic layer, and includes a second coil. The first and second coil layers are separated from each other, and the first and second coils are magnetically coupled to each other.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Inpaq Technology Co., Ltd.
    Inventors: YU CHIA CHANG, CHI LONG LIN, HUAI LUH CHANG, CHENG YI WANG
  • Publication number: 20140178576
    Abstract: The present invention is directed to electrically conductive compacted metal parts fabricated using powder metallurgy methods. The iron-based powders of the invention are coated with magnetic or pre-magnetic materials.
    Type: Application
    Filed: February 28, 2014
    Publication date: June 26, 2014
    Applicant: Hoeganaes Corporation
    Inventors: Kalathur S. Narasimhan, Francis G. Hanejko
  • Publication number: 20140177093
    Abstract: A magnetic head according to one embodiment includes a read sensor adapted for sensing an external magnetic field; an upper magnetic shield positioned above the read sensor along an air bearing surface (ABS) of the read sensor; a lower magnetic shield positioned below the read sensor along the ABS of the read sensor; a rear insulating layer positioned on a rear side of the read sensor, the rear side being on an opposite side of the read sensor as the ABS of the read sensor; and a soft magnetic layer positioned near the rear side of the read sensor opposite the ABS of the read sensor, wherein the rear insulating layer is positioned between the soft magnetic layer and the read sensor, and wherein the rear insulating layer is positioned between the soft magnetic layer and the lower magnetic shield.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Katsumi Hoshino, Kouji Kataoka, Takashi Wagatsuma, Yukimasa Okada
  • Patent number: 8758850
    Abstract: A spin transfer torque magnetic random access memory (STTMRAM) element and a method of manufacturing the same is disclosed having a free sub-layer structure with enhanced internal stiffness. A first free sub-layer is deposited, the first free sub-layer being made partially of boron (B), annealing is performed of the STTMRAM element at a first temperature after depositing the first free sub-layer to reduce the B content at an interface between the first free sub-layer and the barrier layer, the annealing causing a second free sub-layer to be formed on top of the first free sub-layer and being made partially of B, the amount of B of the second free sub-layer being greater than the amount of B in the first free sub-layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 24, 2014
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai
  • Patent number: 8753530
    Abstract: An aspect of the present invention relates to a method of preparing a magnetic particle, which comprises attaching a transition metal-containing organic compound to a surface of a hard magnetic particle and then thermally decomposing the transition metal-containing organic compound to obtain the magnetic particle.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: June 17, 2014
    Assignees: FUJIFILM Corporation, Tohoku University
    Inventors: Yasushi Hattori, An-Pang Tsai, Satoshi Kameoka
  • Patent number: 8753899
    Abstract: A method includes patterning a plurality of magnetic tunnel junction (MTJ) layers to form an MTJ cell, and forming a dielectric cap layer over a top surface and on a sidewall of the MTJ cell. The step of patterning and the step of forming the dielectric cap layer are in-situ formed in a same vacuum environment. A plasma treatment is performed on the dielectric cap layer to transform the dielectric cap layer into a treated dielectric cap layer, whereby the treated dielectric cap layer improves protection from H2O or O2, and thus degradation.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Bang-Tai Tang, Cheng-Yuan Tsai
  • Publication number: 20140145792
    Abstract: Synthetic antiferromagnetic (SAF) and synthetic ferrimagnetic (SyF) free layer structures are disclosed that reduce Ho (for a SAF free layer), increase perpendicular magnetic anisotropy (PMA), and provide higher thermal stability up to at least 400° C. The SAF and SyF structures have a FL1/DL1/spacer/DL2/FL2 configuration wherein FL1 and FL2 are free layers with PMA, the coupling layer induces antiferromagnetic or ferrimagnetic coupling between FL1 and FL2 depending on thickness, and DL1 and DL2 are dusting layers that enhance the coupling between FL1 and FL2. The SAF free layer may be used with a SAF reference layer in STT-MRAM memory elements or in spintronic devices including a spin transfer oscillator. Furthermore, a dual SAF structure is described that may provide further advantages in terms of Ho, PMA, and thermal stability.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Yu-Jen Wang, Guenole Jan, Ru-Ying Tong
  • Publication number: 20140147702
    Abstract: An apparatus and associated method are generally described as a thin film exhibiting a tuned anisotropy and magnetic moment. Various embodiments may form a magnetic layer that is tuned to a predetermined anisotropy and magnetic moment through deposition of a material on a substrate cooled to a predetermined substrate temperature.
    Type: Application
    Filed: November 29, 2012
    Publication date: May 29, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Venkateswara Rao Inturi, Wei Tian, Joseph Mundenar
  • Publication number: 20140147700
    Abstract: A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Christopher Dennis BENCHER, Roman GOUK, Steven VERHAVERBEKE, Li-Qun XIA, Yong-Won LEE, Matthew D. SCOTNEY-CASTLE, Martin A. HILKENE, Peter I. PORSHNEV
  • Publication number: 20140146419
    Abstract: A magnetic element may be configured with at least a magnetic stack having first and second magnetically free layers that each has a predetermined stripe height from an air bearing surface (ABS). The first and second magnetically free layers can respectively be configured with first and second uniaxial anisotropies that are crossed in relation to the ABS and angled in response to the predetermined stripe height.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark William Covington, Victor Boris Sapozhnikov, Wonjoon Jung, Dimitar Velikov Demitrov, Dian Song, Taras Pohkil
  • Publication number: 20140134401
    Abstract: Disclosed herein is a magnetic sheet capable of having flexibility and being folded, and a method for manufacturing the same. The magnetic sheet made of a magnetic material includes prominence and depression parts continuously formed over one surface of the magnetic sheet; and cracks formed between a bottom surface of the prominence part and a lower surface of the magnetic sheet.
    Type: Application
    Filed: September 18, 2013
    Publication date: May 15, 2014
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Tae Park, Jong Deuk Kim, Sung Yong An, Dong Hyeok Choi, Seung Heon Han
  • Patent number: 8715777
    Abstract: In a method in which a cut line is formed on one surface of a planar glass material, and the cut line is allowed to extend in the thickness direction of the glass material, thereby cutting a glass substrate from the glass material, the cut line is selectively formed on a surface having relatively small surface waviness out of two opposing surfaces of the glass material. In the case of a glass material formed into a planar shape on a molten metal, the surface which has come into contact with the molten metal is selected as the surface having relatively small surface waviness. When a disk-shaped glass substrate is cut from the glass material, cutting is performed under conditions where either one of the thickness and the radius of the glass material and the maximum height of surface waviness of the glass material satisfy a predetermined relationship.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: May 6, 2014
    Assignee: Hoya Corporation
    Inventors: Joseph Marquez, Elmer Mahia
  • Publication number: 20140120249
    Abstract: According to one embodiment, in a magnetic recording medium manufacturing method, an inversion liftoff layer and pattern formation layer are formed on a layer on which an inverted pattern is to be formed, a depressions pattern is formed by patterning the pattern formation layer and transferred to the inversion liftoff layer, the surface of the layer on which an inverted pattern is to be formed is exposed by removing the inversion liftoff layer from depressions, an inversion layer is formed on the inversion liftoff layer and exposed layer, and the inversion liftoff layer is removed, thereby forming, on the exposed layer, an inversion layer having a projections pattern obtained by inverting the depressions pattern.
    Type: Application
    Filed: February 6, 2013
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kaori KIMURA, Kazutaka TAKIZAWA, Akira WATANABE, Takeshi IWASAKI, Akihiko TAKEO
  • Publication number: 20140117978
    Abstract: A method is described for manufacturing an encoder element having a base body and a magnetic layer situated on the outer circumference of the base body, including the following steps: providing the base body; providing a magnetic or magnetizable powdery material; directly applying the powdery material to the outer circumference or to an end face of the base body to generate the magnetic layer in such a way that an integral, direct joint is created between the base body and the magnetic layer; and magnetizing the applied magnetic layer.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Paul HUND, Lars BOMMER, Helmut SCHNEIDER, Nikolaus HAUTMANN, Ralf DIEKMANN, Nadja WOLFANGEL
  • Publication number: 20140120375
    Abstract: According to one embodiment, a magnetic recording medium manufacturing method includes a step of coating the mask layer with a metal fine particle coating solution containing metal fine particles and a first solvent, thereby forming a metal fine particle coating layer having a multilayered structure of the metal fine particles, and a step of dropping, on the coating layer, a second solvent having a second solubility parameter having a difference of 0 to 12.0 from a first solubility parameter of the first solvent, thereby forming a monolayered metal fine particle film by washing away excessive metal fine particles and changing the multilayered structure of the metal fine particles into a monolayer. The projections pattern is made of the monolayered metal fine particle film.
    Type: Application
    Filed: January 29, 2013
    Publication date: May 1, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kazutaka TAKIZAWA, Kaori KIMURA, Akira WATANABE, Akihiko TAKEO
  • Patent number: 8709532
    Abstract: In a magnetic disk having a magnetic layer, a protection layer, and a lubrication layer formed on a substrate in this order, a surface free energy ?S of a surface of the magnetic disk derived by an extended Fowkes equation is greater than 0 and no greater than 24 mN/m. ?Sd (dispersion force component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 17 mN/m, ?Sp (dipole component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 1 mN/m, and ?Sh (hydrogen bonding force component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 6 mN/m.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: April 29, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventor: Masafumi Ishiyama
  • Patent number: 8709533
    Abstract: A technique for manufacturing hit pattern media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The method may comprise forming an intermediate layer comprising a modified region and a first region adjacent to one another, where the modified region and the first region may have at least one different property; depositing magnetic species on the first region of the intermediate layer to form an active region; and depositing non-ferromagnetic species on the modified region of the intermediate layer to form a separator.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 29, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Julian G. Blake
  • Publication number: 20140106065
    Abstract: A method for manufacturing a patterned medium of an embodiment includes forming a perpendicular magnetic recording layer on a substrate, forming a mask on the perpendicular magnetic recording layer, milling the perpendicular magnetic recording layer, and depositing a protective layer on the perpendicular magnetic recording layer. The perpendicular magnetic recording layer includes a first element selected from Fe and Co and a second element selected from Pt and Pd, and has a hard magnetic alloy material having an L10 or L11 structure. A temperature of the substrate during the milling is higher than or equal to 250° C. and lower than or equal to 500° C.
    Type: Application
    Filed: June 28, 2013
    Publication date: April 17, 2014
    Inventors: Tomoyuki MAEDA, Hiroyuki HIEDA, Masahiro KANAMARU, Katsuya SUGAWARA
  • Patent number: 8673392
    Abstract: A permanent magnet is provided which has formed a Dy, Tb film on a surface of an iron-boron-rare earth sintered magnet of a predetermined shape, with diffusion thereof into grain boundary phases, having a higher coercive force. The method of manufacturing a permanent magnet includes a film-forming step of evaporating metal evaporating material containing at least one of Dy and Tb and adhering evaporated metal atoms to a surface of the iron-boron-rare earth sintered magnet, and a diffusing step of performing heat treatment to diffuse metal atoms adhered to the surface into grain boundary phases of the sintered magnet. The metal evaporating material contains at least one of Nd and Pr.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: March 18, 2014
    Assignee: ULVAC, Inc.
    Inventors: Hiroshi Nagata, Kyuzo Nakamura, Takeo Katou, Atsushi Nakatsuka, Ichirou Mukae, Masami Itou, Ryou Yoshiizumi, Yoshinori Shingaki
  • Patent number: 8668792
    Abstract: A method for producing a magnetic sheet wherein a magnetic sheet composition is applied onto a substrate. The magnetic sheet composition contains: a binder; magnetic powder; and a curing agent, wherein the binder contains a thermosetting organic resin, and the curing agent contains a sulfonium borate complex expressed by General Formula 1: where R1 is an aralkyl group, R2 is a lower alkyl group, X is a halogen atom, and n is an integer of 0 to 3.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 11, 2014
    Assignee: Dexerials Corporation
    Inventors: Keisuke Aramaki, Yoshihisa Shinya, Katsuhiko Komuro
  • Patent number: 8668953
    Abstract: A method of manufacturing a disk for a magnetic storage device is provided. The method comprises electroless plating a coating layer over a substrate to produce the disk, the coating layer forming an exterior surface of coating over the substrate, and annealing the coating layer using a heating source, wherein heat radiating from the heating source is directionally focused onto the exterior surface before the exterior surface is polished.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: March 11, 2014
    Assignee: WD Media, LLC
    Inventor: Dorothea Buechel-Rimmel
  • Patent number: 8658242
    Abstract: A method and apparatus for forming magnetic media substrates is provided. A patterned resist layer is formed on a substrate having a magnetically susceptible layer. A conformal protective layer is formed over the patterned resist layer to prevent degradation of the pattern during subsequent processing. The substrate is subjected to an energy treatment wherein energetic species penetrate portions of the patterned resist and conformal protective layer according to the pattern formed in the patterned resist, impacting the magnetically susceptible layer and modifying a magnetic property thereof. The patterned resist and conformal protective layers are then removed, leaving a magnetic substrate having a pattern of magnetic properties with a topography that is substantially unchanged.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: February 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Christopher D. Bencher, Roman Gouk, Steven Verhaverbeke, Li-Qun Xia, Yong-Won Lee, Matthew D. Scotney-Castle, Martin A. Hilkene, Peter I. Porshnev
  • Publication number: 20140049857
    Abstract: According to one embodiment, a magneto-resistance effect element includes: a first shield; a second shield; a first side shield layer; a second side shield layer; a stacked body; a first shield guide layer; and a second shield guide layer. The first shield guide layer includes a fifth magnetic layer provided between the first side shield layer and the stacked body. The second shield guide layer includes a sixth magnetic layer provided between the second side shield layer and the stacked body. A distance between the first side shield layer and the first shield guide layer is shorter than a distance between the stacked body and the first shield guide layer. A distance between the second side shield layer and the second shield guide layer is shorter than a distance between the stacked body and the second shield guide layer.
    Type: Application
    Filed: July 11, 2013
    Publication date: February 20, 2014
    Inventors: Yousuke ISOWAKI, Hitoshi Iwasaki, Masayuki Takagishi
  • Publication number: 20140037836
    Abstract: A method for producing a hard bias (HB) structure that stabilizes a free layer in an adjacent spin valve is disclosed. The HB structure includes a composite seed layer and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x laminate. (Co/Ni)x deposition involves low power and high Ar pressure to avoid damaging Co/Ni interfaces and thereby preserves PMA. A capping layer is formed on the HB layer to protect against etchants in subsequent processing. After initialization, HB magnetization direction is perpendicular to the sidewalls of the spin valve and generates an Mrt value that is greater than from an equivalent thickness of CoPt. A non-magnetic metal separation layer may be formed on the capping layer and spin valve to provide an electrical connection between top and bottom shields.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Applicant: HEADWAY TECHNOLOGIES, INC.
    Inventors: Zhang Kunliang, Li Min, Zhou Yuchen, Zheng Min
  • Publication number: 20140004382
    Abstract: The corrosion-resistant brick is a corrosion-resistant brick obtained by, in an Al—Cr-based brick, an Al—Mg-based brick and a Cr—Mg-based brick, providing a layer of magnetite powder on a brick surface, and heating and melting the magnetite powder so as to react the respective components of the brick with Fe, thereby forming a coating layer which is a ternary oxide of the brick components and Fe, and is made of a spinel solid solution having a melting point of 1600° C. or higher.
    Type: Application
    Filed: June 25, 2013
    Publication date: January 2, 2014
    Inventors: Kenichi Yamaguchi, Yusuke Kimura
  • Publication number: 20140002929
    Abstract: A manufacturing method of a magnetic recording medium includes follows: forming a magnetic recording layer on a substrate; forming an under layer and a metal release layer that forms an alloy with the under layer on the magnetic recording layer in this order and forming an alloyed release layer by alloying the under layer and the metal release layer; forming a mask layer on the alloyed release layer; forming a resist layer on the mask layer; providing a protrusion-recess pattern by patterning the resist layer; transferring the protrusion-recess pattern to the mask layer; transferring the protrusion-recess pattern to the alloyed release layer; transferring the protrusion-recess pattern to the magnetic recording layer; dissolving the alloyed release layer by using a stripping solution and removing a layer formed on the alloyed release layer from an upper side of the magnetic recording layer.
    Type: Application
    Filed: October 24, 2012
    Publication date: January 2, 2014
    Inventors: Kazutaka TAKIZAWA, Akira Watanabe, Kaori Kimura, Takeshi Iwasaki, Akihiko Takeo
  • Patent number: 8617644
    Abstract: A method for making a current-perpendicular-to the-plane giant magnetoresistance (CPP-GMR) sensor with a Heusler alloy pinned layer on the sensor's Mn-containing antiferromagnetic pinning layer uses two annealing steps. A layer of a crystalline non-Heusler alloy ferromagnetic material, like Co or CoFe, is deposited on the antiferromagnetic pinning layer and a layer of an amorphous X-containing ferromagnetic alloy, like a CoFeBTa layer, is deposited on the Co or CoFe crystalline layer. After a first in-situ annealing of the amorphous X-containing ferromagnetic alloy, the Heusler alloy pinned layer is deposited on the amorphous X-containing ferromagnetic layer and a second high-temperature annealing step is performed to improve the microstructure of the Heusler alloy pinned layer.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 31, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Matthew J. Carey, Shekar B Chandrashekariaih, Jeffrey R. Childress, Young-suk Choi, John Creighton Read
  • Patent number: 8613977
    Abstract: A method for manufacturing a magnetic recording medium of the present invention includes a magnetic layer forming step in which a drying process is performed. The drying process includes: a pre-heating stage in which a magnetic coating film is heated until the surface temperature of the magnetic coating film stops rising and reaches a substantially constant temperature; a constant rate drying stage that is performed after the pre-heating stage in which the surface temperature of the magnetic coating film is held substantially constant; and a falling rate drying stage that is performed after the constant rate drying stage in which the surface temperature of the magnetic coating film is increased to be higher than the surface temperature during the constant rate drying stage to harden the magnetic coating film. The constant rate drying period in which the constant rate drying stage is performed is 0.2 seconds or more.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: December 24, 2013
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Hisanobu Mikamo, Hidekazu Kawatoko, Makoto Shiokawa, Shinji Kawakami, Masanori Yamasaki, Hitoshi Tsukamoto, Sadamu Kuse
  • Publication number: 20130319203
    Abstract: There is an instrument pick, and its method of manufacture, having a body member including a pliable member disposed therein. The body member includes crushed magnetic elements disposed throughout the body member. The instrument pick includes a tip member disposed about an end of the body member. The tip member includes a hardened region. The instrument pick includes a plurality of selectably removable tip members having diverse acoustical properties.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 5, 2013
    Inventor: Joseph Robert Risolia
  • Patent number: 8591751
    Abstract: High Hc (>4,000 Oe) and high Hk (>1 Tesla) has been achieved in FePt films as thin as 70 Angstroms. This was accomplished by starting with a relatively thick film having the required high coercivity, coating it with a suitable material such as Ta, and then using ion beam etching to remove surface material until the desired thickness was reached.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: November 26, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Zheng, Min Li
  • Patent number: 8586136
    Abstract: A method of manufacturing a magnetic recording medium with high recording density and enabling stable flight of a magnetic head, with high manufacturing yields, is provided. The method includes layering a magnetic layer, a protective layer, and a lubricating layer in order on a substrate, and forming a medium for transfer. The method further includes transferring a magnetic pattern to the medium for transfer, and flattening a surface of the lubricating layer of the medium for transfer for which the magnetic pattern transferring is completed. The surface of the lubricating layer is flattened either by wiping the surface of the lubricating layer using a member without a cutting effect, or by heating the surface of the lubricating layer.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 19, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Narumi Sato
  • Publication number: 20130299732
    Abstract: Disclosed is a hybrid filler for an electromagnetic shielding composite material and a method of manufacturing the hybrid filler, by which electromagnetic shielding and absorbing capabilities are improved and heat generated by electromagnetic absorption is effectively removed. The hybrid filler for an electromagnetic shielding composite material includes an expandable graphite (EG) having a plurality of pores, and magnetic particles integrated with a carbon nanotube (CNT) on outer surfaces thereof in a mixed manner, wherein the magnetic particles are inserted into the pores of the EG.
    Type: Application
    Filed: July 24, 2012
    Publication date: November 14, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Jin Woo Kwak, Kyong Hwa Song, Han Saem Lee, Byung Sam Choi