Applying Superposed Diverse Coating Or Coating A Coated Base Patents (Class 427/131)
  • Patent number: 7842334
    Abstract: A magnetic sensor includes a single substrate, a conventional GMR element formed of a spin-valve film including a single-layer-pinned fixed magnetization layer, and a SAF element formed of a synthetic spin-valve film including a plural-layer-pinned fixed magnetization layer. When the spin-valve film intended to act as the conventional GMR element and the synthetic spin-valve film intended to act as the SAF element are subjected to the application of a magnetic field oriented in a single direction at a high temperature, they become giant magnetoresistive elements whose magnetic-field-detecting directions are antiparallel to each other. Since films intended to act as the conventional GMR element and the SAF element can be disposed close to each other, the magnetic sensor which has giant magnetoresistive elements whose magnetic-field-detecting directions are antiparallel to each other can be small.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: November 30, 2010
    Assignee: Yamaha Corporation
    Inventors: Yukio Wakui, Masayoshi Omura
  • Publication number: 20100285376
    Abstract: Disclosed is a magnetic catalyst formed by a single or multiple nano metal shells wrapping a carrier, wherein at least one of the metal shells is iron, cobalt, or nickel. The magnetic catalyst with high catalyst efficiency can be applied in a hydrogen supply device, and the device can be connected to a fuel cell. Because the magnetic catalyst can be recycled by a magnet after generating hydrogen, the practicability of the noble metals such as Ru with high catalyst efficiency is dramatically enhanced.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 11, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chan-Li Hsueh, Cheng-Hong Liu, Jie-Ren Ku, Ya-Yi Hsu, Cheng-Yen Chen, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Fanghei Tsau
  • Publication number: 20100279151
    Abstract: A perpendicular magnetic recording medium includes a substrate, a soft magnetic layer, a pre-underlayer, an underlayer, and a main recording layer serving as a magnetic recording layer. The pre-underlayer contains seed crystal grains that serve as a base for crystal grains of the underlayer, and an addition substance that is added between the seed crystal grains and composed of an element having an atomic radius smaller than that of an element forming the seed crystal grains.
    Type: Application
    Filed: October 14, 2008
    Publication date: November 4, 2010
    Applicants: HOYA CORPORATION, HOYA MAGNETICS SINGAPORE PTE. LTD.
    Inventors: Kazuaki Sakamoto, Kong Kim, Takahiro Onoue, Masafumi Ishiyama, Teiichiro Umezawa, Kenji Ayama
  • Patent number: 7818875
    Abstract: A method of manufacturing a magnetic write head that provides improved pole critical dimension control, such as improved track width control (improved sigma) and improved flare point control. The method involves a combination of several process improvements, such as photolithographically patterning a P2 pole tip defining photoresist frame using a zero print bias and also using a small flash field. The method also involves the use of a non-reactive ion etch to notch the first pole (P1) using the second pole (P2) as a mask.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: October 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamame, Daniel Wayne Bedell, Mary Kathryn Gutberlet, Clarence Kai-Sheng Hsieh, Aron Pentek, Yi Zheng
  • Publication number: 20100266755
    Abstract: A ferromagnetically coupled magnetic recording medium having a first ferromagnetic layer, a second ferromagnetic layer, and a ferromagnetic coupling layer to ferromagnetically couple the first ferromagnetic layer to the second ferromagnetic layer is used as stable magnetic media with high MrT in high density recording hard drives. The first ferromagnetic layer is the stabilization layer and the second ferromagnetic layer is the main recording layer. The ferromagnetic coupling layer comprises a conductive material having a thickness which produces ferromagnetic coupling between said first ferromagnetic layer and said second ferromagnetic layer via the RKKY interaction.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 21, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Erol Girt, Mariana Rodica Munteanu, Hans Jürgen Richter, Felix Trejo
  • Publication number: 20100227050
    Abstract: The present invention provides a method for manufacturing a magnetic recording medium by mounting a substrate for film formation on a carrier, sequentially transporting said substrate into a plurality of connected chambers, and forming at least a magnetic film and a carbon protective film on said substrate for film formation within said chambers, wherein said method comprises a step of conducting ashing to remove an accumulated carbon protective film adhered to a carrier surface, which is performed following a step of removing a magnetic recording medium from said carrier following film formation, but prior to a step of mounting a substrate for film formation on said carrier.
    Type: Application
    Filed: July 3, 2008
    Publication date: September 9, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Gohei KUROKAWA
  • Publication number: 20100226042
    Abstract: NG surface information obtained in a defect inspecting step of a magnetic disk substrate is depicted on the magnetic disc substrate, so that the information can be discriminated at a succeeding film depositing step.
    Type: Application
    Filed: September 1, 2008
    Publication date: September 9, 2010
    Applicants: HOYA CORPORATION, HOYA GLASS DISK (Thailand ) LTD.
    Inventors: Kenichi Nishimori, Tadashi Tomonaga
  • Publication number: 20100221580
    Abstract: An apparatus and method are provided for improving perpendicular magnetic recording media. The present invention provides media, and a method of fabricating media in a cost-effective manner, with a reduced ruthenium (Ru) content interlayer structure, while meeting media performance requirements. A perpendicular magnetic recording medium is provided comprising a non-magnetic substrate having a surface, and a layer stack situated on the substrate surface. The layer stack comprises, in overlying sequence from the substrate surface a magnetically soft underlayer; an amorphous or crystalline, non-magnetic seed layer; an interlayer structure for crystallographically orienting a layer of a perpendicular magnetic recording material situated on the underlayer; and at least one crystallographically oriented, magnetically hard, perpendicular magnetic recording layer situated on the interlayer structure.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Inventors: Shoutao Wang, Weilu Xu, Chunghee Chang, Xiaoguang Ma, Mark Johnson, Abebe Hailu, Charles Chen
  • Patent number: 7785662
    Abstract: There is provided a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer arranged between the magnetization pinned layer and the magnetization free layer and current paths passing through the insulating layer. The method includes, in producing the spacer layer, depositing a first non-magnetic metal layer forming the current paths, depositing a second metal layer to be converted into the insulating layer on the first non-magnetic metal layer, and performing two stages of oxidation treatments in which a partial pressure of an oxidizing gas in a first oxidation treatment is set to 1/10 or less of a partial pressure of an oxidizing gas in a second oxidation treatment, and the second metal layer being irradiated with an ion beam or a RF plasma of a rare gas in the first oxidation treatment.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Publication number: 20100215846
    Abstract: A granular perpendicular magnetic recording medium comprises a non-magnetic substrate and a granular perpendicular magnetic recording layer overlying the substrate, comprising a first granular perpendicular magnetic layer proximal the substrate and having a first saturation magnetization (Ms)1, and a second granular perpendicular magnetic layer distal the substrate and having a second, different saturation magnetization (Ms)2. Also disclosed is a method of fabricating the granular perpendicular magnetic recording medium.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 26, 2010
    Applicant: Seagate Technology LLC
    Inventors: Zhong (Stella) Wu, Samuel Dacke Harkness, IV, Hans J. Richter, Alexander Yulievich Dobin
  • Publication number: 20100215991
    Abstract: A perpendicular magnetic recording medium is provided, which has a soft magnetic layer, a seed layer, a first intermediate layer, a second intermediate layer and a perpendicular magnetic recording layer, formed in this order on a non-magnetic substrate, and is characterized in that the seed layer is comprised of a (002) crystal plane-orientated hcp structure, the first intermediate layer is comprised of a (110) crystal plane-orientated bcc structure and the second intermediate layer is comprised of a (002) crystal plane-orientated hcp structure. The (110) crystal plane-orientated bcc structure comprises at least 60 atomic % of Cr. The magnetic recording medium has fine and well discrete magnetic crystal grains with extremely small size and exhibits good perpendicular orientation in the perpendicular magnetic recording layer, and thus, the medium is capable of recording and reproducing information with high density.
    Type: Application
    Filed: July 25, 2008
    Publication date: August 26, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Gohei Kurokawa, Yuzo Sasaki, Tatsu Komatsuda, Atsushi Hashimoto
  • Publication number: 20100214699
    Abstract: A magnetic head according to one embodiment includes a first magnetic shield; a first insulation layer disposed above said first magnetic shield; a plurality of sensor layers disposed above said first insulation layer; two electrical leads overlying a majority of a surface of the sensor layers, the electrical leads being formed of a magnetic material and serving as a second magnetic shield; and a read width insulation member disposed above said sensor layers and between said two electrically conductive members, the read width insulation members lying in a common plane with the electrically conductive members, the common plane being oriented parallel to a plane of deposition of the read width insulation member. Other systems and methods are also presented.
    Type: Application
    Filed: May 11, 2010
    Publication date: August 26, 2010
    Inventors: Kuok San Ho, Edward Hin Pong Lee, David John Seagle, Ching Hwa Tsang
  • Publication number: 20100208386
    Abstract: A disk for a hard disk drive. The disk includes a recording layer that is supported by a substrate and a stabilization layer that is anti-ferromagnetically coupled to the recording layer. Because the recording and stabilization layers are anti-ferromagnetically coupled the net magnetization is the difference in magnetization of the two layers. The stabilization layer has a Curie temperature that is lower than a Curie temperature of the recording layer. As temperature increases the magnetization properties of the stabilization layer will have a greater change than the same properties of the recording layer. The net magnetization, coercively and nucleation field of the recording and stabilization layers can be designed to vary less with increasing temperature than disk of the prior art.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Georg Lauhoff
  • Publication number: 20100209601
    Abstract: On manufacturing a magnetic disk having at least a magnetic layer (60), a protective layer (70), and a lubricating layer (80) formed in this order over a substrate (10), the lubricating layer is formed by using a coating solution in which a perfluoropolyether compound having a perfluoropolyether main chain and a hydroxyl group in a structure thereof is dispersed and dissolved in a fluorine-based solvent having a boiling point of 90° C. or more.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 19, 2010
    Applicants: HOYA CORPORATION, HOYA MAGNETICS SINGAPORE PTE. LTD.
    Inventors: Koichi SHIMOKAWA, Katsushi HAMAKUBO, Kae ITOH
  • Publication number: 20100209737
    Abstract: Aspects are directed to recording media with enhanced magnetic properties for improved writability. Examples can be included or related to methods, systems and components that allow for improved writability while reducing defects so as to obtain uniform magnetic properties such as uniformly high anisotropy and narrow switching field distribution. Some examples include a recording medium with an exchange tuning layer inserted between the hard layer and the soft, semi-soft or thin semi-hard layer so as to maximize the writability improvement of the media. Preferably, the exchange tuning layer is granular and reduces or optimizes the vertical coupling between the hard layer and the soft, semi-soft or semi-hard layer of a magnetic recording or storing device.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 19, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Bo Bian, Shoutao Wang, Weilu Xu, Abebe Hailu, Miaogen Lu, Charles C. Chen, Thomas Patrick Nolan, Alexander Yulievich Dobin
  • Patent number: 7776387
    Abstract: A method for manufacturing a magneto-resistance effect element includes: forming a first magnetic layer; forming a first metallic layer, on the first magnetic layer, mainly containing an element selected from the group consisting of Cu, Au, Ag; forming a functional layer, on the first metallic layer, mainly containing an element selected from the group consisting of Si, Hf, Ti, Mo, W, Nb, Mg, Cr and Zr; forming a second metallic layer, on the functional layer, mainly containing Al; treating the second metallic layer by means of oxidizing, nitriding or oxynitiriding so as to form a current confined layer including an insulating layer and a current path with a conductor passing a current through the insulating layer; and forming, on the current confined layer, a second magnetic layer.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: August 17, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa
  • Publication number: 20100195247
    Abstract: A magnetic head, according to one embodiment, includes a microwave generator provided with a main magnetic pole, an auxiliary magnetic pole, a coil wound around a magnetic circuit, the magnetic circuit including the main magnetic pole and the auxiliary magnetic pole, and a magnetic film, the film being provided near an ABS side of the main magnetic pole. A first distance in an element thickness direction between film surfaces of the magnetic film and the main magnetic pole at a top end in an element height direction of the microwave generator is greater than a second distance between film surfaces of the magnetic film comprising the microwave generator and the main magnetic pole at the ABS. In other approaches, the main magnetic pole may have a shape which gradually widens from a flare point away from the ABS in an element height direction. Additional systems and methods are also presented.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 5, 2010
    Inventors: Masafumi Mochizuki, Masukazu Igarashi
  • Publication number: 20100196619
    Abstract: In a magnetic disk having a magnetic layer, a protection layer, and a lubrication layer formed on a substrate in this order, a surface free energy ?S of a surface of the magnetic disk derived by an extended Fowkes equation is greater than 0 and no greater than 24 mN/m. ?Sd (dispersion force component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 17 mN/m, ?Sp (dipole component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 1 mN/m, and ?Sh (hydrogen bonding force component of surface free energy) forming the surface free energy ?S is greater than 0 and no greater than 6 mN/m.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 5, 2010
    Applicants: HOYA CORPORATION, HOYA MAGNETICS SINGAPORE PTE. LTD.
    Inventor: Masafumi ISHIYAMA
  • Publication number: 20100196741
    Abstract: [Problems] To provide a process for producing a magnetic recording medium, which can simultaneously realize increased high recording density, high impact resistance, and prevention of corrosion, by providing an underlayer which, even when formed at a low gas pressure, can exhibit a high level of coercive force. [Means for Solving Problems] A process for producing a perpendicular magnetic recording medium, comprising the step of forming a nonmagnetic underlayer (18) having a granular structure, in which crystal particles are grown in a column form, on a substrate, and forming a magnetic recording layer (20) having a granular structure in which magnetic particles are grown in a column form. The process is characterized in that the underlayer (18) is any one of CoCr or CoCrX (wherein X is a nonmagnetic material), CoCr-oxide, and CoCrX-oxide, and the film forming gas pressure of the underlayer (18) is not more than 4 Pa.
    Type: Application
    Filed: May 30, 2008
    Publication date: August 5, 2010
    Applicant: Hoya Corporation
    Inventors: Yoshiaki Sonobe, Kong Kim
  • Publication number: 20100181522
    Abstract: This invention relates to a magnetic composite powder, a method of preparing the same and an electromagnetic noise suppressing film comprising the same. The magnetic composite powder and the electromagnetic noise suppressing film can effectively suppress unwanted electromagnetic waves emitted by various parts of an advanced digital device having high performance characteristics in terms of speed, frequency and functionality.
    Type: Application
    Filed: October 2, 2009
    Publication date: July 22, 2010
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Woo KIM, Ji Hea Park, Yoon Bae Kim
  • Publication number: 20100177439
    Abstract: A media for perpendicular recording and a method of creating the media is provided. The media includes a hard recording layer and a soft underlayer (SUL). The SUL is composed of at least two anti-ferromagnetically coupled (AFC) sub-underlayers. The sub-underlayers respond to a magnetic field established during dynamic reversal with respective magnetic fields. The sub-underlayers are formed and disposed to differ in one or more magnetic moment, anisotropy, and thickness, so that their respective magnetic fields constructively interfere in one or more points in the hard recording layer, thereby reducing a total SUL magnetic field response to the dynamic reversal field approximately to zero at one or more points in the hard recording layer, which reduces side track erasure.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicant: Seagate Technology LLC
    Inventors: Kaizhong Gao, Qixu Chen, Chung-Hee Chang, Thomas Patrick Nolan
  • Publication number: 20100177449
    Abstract: A composite free layer having a FL1/insertion/FL2 configuration is disclosed for achieving high dR/R, low RA, and low ? in TMR or GMR sensors. Ferromagnetic FL1 and FL2 layers have (+) ? and (?) ? values, respectively. FL1 may be CoFe, CoFeB, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, or Nb. FL2 may be CoFe, NiFe, or alloys thereof with Ni, Ta, Mn, Ti, W, Zr, Hf, Tb, Nb, or B. The thin insertion layer includes at least one magnetic element such as Co, Fe, and Ni, and at least one non-magnetic element selected from Ta, Ti, W, Zr, Hf, Nb, Mo, V, Cr, or B. In a TMR stack with a MgO tunnel barrier, dR/R>60%, ?˜1×10?6, and RA=1.2 ohm-um2 when FL1 is CoFe/CoFeB/CoFe, FL2 is CoFe/NiFe/CoFe, and the insertion layer is CoTa or CoFeBTa.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Inventors: Tong Zhao, Hui-Chuan Wang, Min Li, Kunliang Zhang
  • Patent number: 7754353
    Abstract: A method and structure for a ferroelectric storage medium, includes a metallic underlayer and a ferroelectric data layer over the metallic underlayer. A layer over the ferroelectric data layer has a charge migration rate faster than a charge migration rate of the ferroelectric data layer.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: July 13, 2010
    Inventor: Dennis M. Newns
  • Publication number: 20100173175
    Abstract: A magnetic recording medium is provided, which has at least one soft magnetic layer, at least one seed layer, at least one underlayer and at least one perpendicular magnetic recording layer, and is characterized in that the or each seed layer is comprised of a covalently bonded material. The covalently bonded material preferably predominantly comprises a nitride having a hexagonal crystal structure, more preferably, predominantly comprises aluminum nitride having a hexagonal wurtzite crystal structure. This magnetic recording medium is superior in recording and reproducing an information with high density.
    Type: Application
    Filed: June 6, 2008
    Publication date: July 8, 2010
    Applicants: SHOWA DENKO K.K., TOSHIBA CORPORATION, TOHOKU UNIVERSITY
    Inventors: Migaku Takahashi, Shin Saito, Tomoyuki Maeda, Akihiko Takeo, Yuzo Sasaki, Ryuji Sakaguchi
  • Publication number: 20100163522
    Abstract: A method for manufacturing a magnetic write head. The write head is constructed by a method that includes depositing a magnetic write pole material and then depositing a hard mask over the magnetic material. An inorganic image transfer layer is formed over the hard mask. SiC, alumina, SiO2, SiN, Ta or TaOx. This image transfer is physically robust, so that it does not bend or tip over during manufacture. The image of a patterned photoresist layer can be transferred onto the underlying image transfer layer, and an ion milling can be performed to pattern the image of the image transfer layer onto the underlying hard mask and magnetic material, thereby forming a magnetic write pole.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 7744966
    Abstract: A production process of magnetic recording media is provided in which, when using an oxide magnetic material as a perpendicular magnetic recording layer and forming a carbon protective layer using a plasma CVD method, stripping of the carbon protective layer and separation of a lubrication layer can be prevented, and satisfactory recording and reproduction characteristics can be obtained.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: June 29, 2010
    Assignee: Showa Denko K.K.
    Inventor: Masahiro Oka
  • Publication number: 20100159283
    Abstract: A magnetic storage medium includes a substrate, a first magnetic layer film that is deposited on the substrate, and a second magnetic layer film that is a cap layer of the first magnetic layer film. The first magnetic layer film contains a high magnetic anisotropic material and a low-temperature diffusion material which is added to the high magnetic anisotropic material, the low-temperature diffusion material starting diffusion by thermal treatment at a lower temperature than that of the high magnetic anisotropic material. The second magnetic layer film includes a material for promoting diffusion of the low-temperature diffusion material.
    Type: Application
    Filed: October 20, 2009
    Publication date: June 24, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Takahiro IBUSUKI, Masashige SATO
  • Publication number: 20100159154
    Abstract: A method in one embodiment includes forming a layer of a nonmagnetic material above an upper surface of a substrate; forming a resist structure above the layer of nonmagnetic material, wherein the resist structure has an undercut; removing a portion of the layer of nonmagnetic material not covered by the resist structure; depositing a layer of magnetic material above the substrate adjacent a remaining portion of the layer of nonmagnetic material such that at least portions of the layer of magnetic material and the remaining portion of the layer of nonmagnetic material lie in a common plane; removing the resist structure; and forming a write pole above the layer of magnetic material and the remaining portion of the layer of nonmagnetic material. Additional methods are also presented.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Amanda Baer, Wen-Chien David Hsiao, John I. Kim, Vladimir Nikitin, Trevor W. Olson, John Bruce Piggott, JR., Yuan Yao
  • Patent number: 7740903
    Abstract: A method for manufacturing magnetic recording media is provided, by which a magnetic recording medium that has a recording layer formed in a concavo-convex pattern, a sufficiently flat surface, and good recording/reproducing properties can be manufactured. The method includes the steps of: depositing a first filling material over a workpiece to cover recording elements formed as convex portions of the concavo-convex pattern, and to fill at least part of a concave portion; depositing a detection material over the first filling material; depositing a second filling material over the detection material; and irradiating a surface of the workpiece with a process gas to flatten the surface. In the flattening step, a component of the detection material removed from and flying off the workpiece is detected to stop the irradiation with the process gas based on a result of detecting the component of the detection material.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Takahiro Suwa, Kazuhiro Hattori, Shuichi Okawa
  • Patent number: 7739787
    Abstract: In an MR element, each of a pinned layer and a free layer includes a Heusler alloy layer. The Heusler alloy layer has two surfaces that are quadrilateral in shape and face toward opposite directions. The Heusler alloy layer includes one crystal grain that touches four sides of one of the two surfaces. In a method of manufacturing the MR element, a layered film to be the MR element is formed and patterned, and then heat treatment is performed on the layered film patterned, so that crystal grains included in a film to be the Heusler alloy layer in the layered film grow and one crystal grain that touches four sides of one of the surfaces of the film to be the Heusler alloy layer is thereby formed.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Tomohito Mizuno, Daisuke Miyauchi, Shinji Hara, Takahiko Machita
  • Publication number: 20100136304
    Abstract: The invention relates to a safety label allowing magnetic influences exerted thereon to be visualised by means of magnetic metal particles arranged within a multi-layer construction (12) and to a method of fabricating said safety label, a gel-like function layer (18) containing magnetically responsive metal particles incorporated therein being applied to the support layer (14), at least in specific zones, and surrounded by an adhesive layer (19) arranged on the support layer (14), the gel-like function layer (18) being covered by a covering layer (24) which is provided on a protective layer (28), such that the magnetically responsive metal particles may migrate from the function layer (18) to the covering layer (24) when exposed to a magnetic influence and the proportion of metal particles having passed into the covering layer (24) is visualable.
    Type: Application
    Filed: July 8, 2008
    Publication date: June 3, 2010
    Inventor: Werner Hagmaier
  • Patent number: 7726008
    Abstract: A magnetic-field sensor device comprises at least two electrodes; an insulating layer separating the at least two electrodes; at least one layer of chemically-synthesized magnetic nanoparticles disposed at or above a level with the insulating layer, and disposed between the at least two electrodes; and an organic spacer surrounding each of the chemically-synthesized magnetic nanoparticles. A deviation between diameters of different ones of the nanoparticles is less than 15%. Moreover, the chemically-synthesized magnetic nanoparticles range in size between 2 nm and 20 nm in diameter.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Stephen M. Gates, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20100129685
    Abstract: Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Bin Lu, Bogdan Florin Valcu, Xiaoding Ma
  • Publication number: 20100128391
    Abstract: A recording medium providing improved writeability in perpendicular recording applications includes a magnetic recording layer having an axis of magnetic anisotropy substantially perpendicular to the surface thereof, an exchange-spring layer ferromagnetically exchange coupled to the magnetic recording layer and having a coercivity less than the magnetic recording layer coercivity, and a coupling layer between the magnetic recording layer and the exchange-spring layer. The coupling layer regulates the ferromagnetic exchange coupling between the magnetic recording layer and the exchange-spring layer.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 27, 2010
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Berger, Eric Edward Fullerton, Hoa Van Do, Natacha Supper
  • Patent number: 7722969
    Abstract: A magnetic tape comprising a non-magnetic support, a primer layer formed on one surface of the support, a magnetic layer formed on the primer layer, and a back layer formed on the other surface of the support, in which the tape has a total thickness of 4.0 to 5.4 ?m, at least one of the primer layer and the magnetic layer contains a fatty acid amide, and an amount of the fatty acid amide extracted from the side of the magnetic layer with n-hexane is from 0.5 to 1.5 mg/cm3.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: May 25, 2010
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Kazuhiko Nakiri, Sadamu Kuse
  • Publication number: 20100124671
    Abstract: A low-coupling perpendicular magnetic recording media comprising a magnetic storage layer and at least one low saturation magnetization layer. The magnetic storage layer has a saturation magnetization between about 400-900 emu/cm3 and the at least one low saturation magnetization layer has a saturation magnetization below that of the magnetic storage layer.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Applicant: Seagate Technology LLC
    Inventors: Erol Girt, Hans Jurgen Richter, Mariana R. Munteanu, Thomas Nolan
  • Publication number: 20100124672
    Abstract: A perpendicular magnetic recording media having an amorphous corrosion-resistant cap layer is disclosed. Preferably, the cap layer is a chromium alloy comprising Pt and C. A method of manufacturing the media is also disclosed.
    Type: Application
    Filed: November 17, 2008
    Publication date: May 20, 2010
    Applicant: Seagate Technology LLC
    Inventors: Raj Thangaraj, Charles F. Brucker, Huan Tang, Jing Gui
  • Patent number: 7718262
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 18, 2010
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Publication number: 20100119876
    Abstract: A magnetic recording medium includes a substrate, and a soft magnetic layer, a crystal orientation control layer, a magnetic recording layer, and a protective layer formed sequentially on the substrate. The magnetic recording layer includes at least one granular magnetic layer having a granular structure and a non-granular magnetic layer having a non-granular structure. The at least one granular magnetic layers includes a plurality of magnetic portions and a separation portion surrounding the magnetic portions. The separation portion has magnetic characteristics different from the magnetic characteristics of the magnetic portions. The non-granular magnetic layer is a continuous film.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 13, 2010
    Applicant: Fuji Electric Device Technology Co., Ltd.
    Inventor: Shinji Uchida
  • Publication number: 20100116891
    Abstract: To provide a card-like magnetic recording medium and a transferable laminate which can make a hologram distinctly recognizable and can prevent the occurrence of an ESD fault. In the card-like magnetic recording medium, on the magnetic recording layer 12 formed on the base material for a card 20, the transparent non-conductive deposited layer 14 and the transparent optical diffraction layer 15 are laminated in this order; between the magnetic recording layer 12 and the transparent non-conductive deposited layer 14, a reflective ink layer 13 which includes, at least, binder resin and metal flake, is formed; and a mass ratio of this binder resin/metal flake is set from 3 to 10.
    Type: Application
    Filed: March 25, 2008
    Publication date: May 13, 2010
    Applicant: DIC CORPORATION
    Inventors: Daisuke Yano, Yoshikazu Yamazaki
  • Publication number: 20100119877
    Abstract: A corrosion-resistant granular magnetic recording medium with improved recording performance comprises a non-magnetic substrate having a surface; and a layer stack on the substrate surface, including, in order from the surface: a granular magnetic recording layer; an intermediate magnetic de-coupling layer; and a corrosion preventing magnetic cap layer. The intermediate magnetic de-coupling layer has an optimal thickness and/or composition for: (1) promoting magnetic exchange de-coupling between the granular magnetic recording layer and the magnetic cap layer; and (2) reducing the dynamic closure field (Hcl) for determining writeability and eraseability of the medium. Grain boundaries of the magnetic cap layer are substantially oxide-free, and have a greater density and lower average porosity and surface roughness than those of the granular magnetic recording layer.
    Type: Application
    Filed: January 14, 2010
    Publication date: May 13, 2010
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Michael Zyee-Shan Wu, Mason Lu, Kueir W. Chour, Connie C. Liu, Edward T. Yen, Lynn Li, Steve Hwang
  • Publication number: 20100097720
    Abstract: According to one embodiment, a magnetic recording/reproducing apparatus includes a magnetic head and a magnetic recording medium. The magnetic recording medium includes a recording layer formed of a hard magnetic layer and a soft magnetic layer. The hard magnetic layer has a bit width corresponding to a length of a bit island in a radial direction of the magnetic recording medium. The soft magnetic layer is arranged on the hard magnetic layer. The soft magnetic layer has a width smaller than the bit width and is arranged at a position displaced in a direction away from an off-track portion of the leading edge of the magnetic head skewed at an angle.
    Type: Application
    Filed: September 3, 2009
    Publication date: April 22, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Nobutaka Ihara, Hiroto Takeshita, Yuji Ito
  • Patent number: 7691434
    Abstract: A method of fabricating a bias structure of a magnetoresistive read head for a magnetoresistive sensor stack formed on a substrate includes forming an underlayer and forming a bias layer over the underlayer. The method further includes forming a dusting layer directly below at least one of the underlayer or the bias layer and between the bias layer and the magnetoresistive sensor stack. The dusting layer includes discontinuous, nano-sized islands.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: April 6, 2010
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wei Zhang, Yingjian Chen, Satoru Araki, Mohamad T. Krounbi
  • Publication number: 20100079911
    Abstract: A perpendicular magnetic recording medium is provided, which has a backing layer, a primer layer, an intermediate layer and at least one perpendicular magnetic recording layer, and is characterized in that the perpendicular magnetic recording layer contains Co and Cr, and at least one of the perpendicular magnetic recording layer or layers has a granular structure comprising ferromagnetic crystal grains and grain boundaries comprised of non-magnetic tungsten oxide. The perpendicular magnetic recording layer may be a double-layered structure comprising the tungsten oxide grain boundary-containing layer and a Cr oxide, Si oxide, Ta oxide or Ti oxide grain boundary-containing layer formed on the tungsten oxide grain boundary-containing layer. The perpendicular magnetic recording medium exhibits good perpendicular orientation and has ferromagnetic crystal grains with extremely small grain size, and thus, is superior in high recording density characteristic.
    Type: Application
    Filed: April 28, 2008
    Publication date: April 1, 2010
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Sakaguchi, Gouhei Kurokawa, Yuzo Sasaki, Tatsu Komatsuda, Amarendra Singh
  • Publication number: 20100081215
    Abstract: The present invention relates to carriers, which are coated by at least one layer of polyelectrolytes and one layer of magnetic material. These carriers can be manipulated in a magnetic field. The application of the coating of the present invention on microcarriers comprising a fluorescent core results in a carrier with a homogeneous luminescence. Additionally, where the core is provided with a code, this allows improved reading thereof.
    Type: Application
    Filed: September 19, 2007
    Publication date: April 1, 2010
    Applicant: BIOCARTIS SA
    Inventors: Bruno De Geest, Joseph Demeester, Stefaan Derveaux, Stefaan De Smedt
  • Publication number: 20100080894
    Abstract: The present invention provides a fabricating method of a magnetoresistive element having an MR ratio higher than a conventional MR ratio. In a step of depositing a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer on a substrate using a sputtering method in one embodiment of the present invention, the step of depositing the magnetization fixed layer deposits a ferromagnetic layer containing Co atoms, Fe atoms, and B atoms by a co-sputtering method using a first target containing Co atoms, Fe atoms and B atoms, and a second target having different B atom content from that of the first target.
    Type: Application
    Filed: September 1, 2009
    Publication date: April 1, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Koji Tsunekawa, Yoshinori Nagamine
  • Publication number: 20100073813
    Abstract: Perpendicular magnetic recording (PMR) media and methods of fabricating PMR media are described. The PMR media includes, among other layers, a perpendicular magnetic recording layer and a cap layer that are exchange coupled. The magnetic recording layer and the cap layer may be exchange coupled through direct contact, or may be exchange coupled over a coupling layer. In either embodiment, the cap layer is formed from a CoPtCr alloy having a concentration of Cr in the range of about 15-22 at %.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Inventors: Qing Dai, Mohammad T. Mirzamaani, Kai Tang, Jinliu Wang
  • Patent number: 7682837
    Abstract: The invention includes devices and methods for forming random arrays of magnetic particles, arrays formed using these devices and methods, and to methods of using the arrays. The invention provides an assembly (chip) with magnetic domains that produce localized magnetic fields capable of immobilizing magnetic particles such as commercially available magnetic beads. Probe or sensor molecules can be coupled to the beads, which are then dispersed on the assembly, forming a random order array. The arrays can be used for analyzing samples, targets, and/or the interaction between samples and targets. The invention finds particular use in processes such as high-throughput genotyping and other nucleic acid hybridization-based assays.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: March 23, 2010
    Assignee: Board of Trustees of Leland Stanford Junior University
    Inventors: Maneesh Jain, Robert L. White, Lester A. Roberts
  • Publication number: 20100067149
    Abstract: Perpendicular magnetic recording media has been enhanced by controlling the initial growth of magnetic oxide layers and increased magnetic isolation between the grains in the initial magnetic layer. An onset magnetic oxide layer is sputter deposited in an argon-oxygen gas mixture between the main CoPtCr-oxide magnetic layers and the underlying Ru layer. The insertion of the onset magnetic oxide layer enhances the coercivity of the oxide magnetic layers and also improves the nucleation field. The media signal-to-noise ratio and bit error rate also are significantly improved due to the improvement of the initial segregation of Co magnetic grains in the magnetic oxide layers.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS BV
    Inventors: Xiaoping Bian, Jyh-Kau Chang, Weikang Shen, Zhupei Shi, Kai Tang
  • Patent number: RE41282
    Abstract: A perpendicular magnetic recording medium has a granular magnetic layer and a nonmagnetic underlayer of a metal or an alloy having a hexagonal close packed (hcp) crystal structure. A seed layer of a metal or an alloy of a face-centered cubic (fcc) crystal structure is provided under the nonmagnetic underlayer. Such a perpendicular magnetic recording medium exhibits excellent magnetic characteristics even when the thickness of the underlayer or the total thickness of the underlayer and the seed layer is very thin. Excellent magnetic characteristics can be obtained even when of the substrate is not preheated. Accordingly, a nonmagnetic substrate, such as a plastic resin can be employed to reduce the manufacturing cost.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: April 27, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Hiroyuki Uwazumi, Yasushi Sakai, Tadaaki Oikawa, Miyabi Nakamura