Diamond-like Carbon Coating (i.e., Dlc) Patents (Class 427/249.7)
  • Patent number: 11746665
    Abstract: A method of operating a variable vane for a gas turbine includes the step of locating a first bushing at least partially surrounding a first trunnion that extends from a first end of the variable vane. The first trunnion includes an outer surface that has a plurality of troughs. The first bushing includes a plurality of peaks that extend inward from an inner surface. Relative movement is produced between the first bushing and the first trunnion to form a carbon transfer film between the first bushing and the first trunnion.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: September 5, 2023
    Assignee: RTX Corporation
    Inventors: Pantcho P. Stoyanov, Mary E. Makowiec
  • Patent number: 11739426
    Abstract: A component (100), in particular for a valve train system, having a substrate (3) and a layer system (1) applied at least in parts to the substrate (3), wherein the layer system (1) includes a friction-reducing and wear-reducing protective layer (2) for forming a component surface, wherein the protective layer (2) has at least one first sub-layer (4, 4a) made of doped tetrahedral amorphous carbon, which includes sp3-hybridized carbon having a mole fraction of at least 50%, wherein the first sub-layer (4, 4a) contains oxygen in a concentration in the range from 0.1 at % to 3.0 at % and hydrogen in a concentration in the range from 0.1 at % to 15 at %, and wherein the first sub-layer (4, 4a) has one or more of the following dopants in a concentration in the range from 0.03 at % to 15 at %: chromium, molybdenum, tungsten, silicon, copper, niobium, zirconium, vanadium, nickel, iron, silver, hafnium, fluorine, boron and nitrogen. A method for producing such a component (100) is also provided.
    Type: Grant
    Filed: September 2, 2019
    Date of Patent: August 29, 2023
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Ricardo Henrique Brugnara, Nazlim Bagcivan, Edgar Schulz
  • Patent number: 11661647
    Abstract: Artificial lift pump components such as couplings are disclosed, all having a body formed from a selected material, the body having an inner diameter and an outer diameter, a first surface treatment introducing carbon, nitrogen, boron into the material to form a first and hard layer, and a second layer defined as an deposited coating to the first layer that is also made of a carbon, nitrogen, or boron and is further characterized as being ceramic like (hard) and having a low-friction.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: May 30, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Bing Han, Manuel Marya, Yuteng Liang
  • Patent number: 11565971
    Abstract: The present application discloses compositions and methods for improving or enhancing the paving or re-paving of asphalt to road surfaces comprising the addition of the composition to the asphalt.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: January 31, 2023
    Assignee: COLLABORATIVE AGGREGATES, LLC
    Inventors: John C. Warner, Laura Rose Muollo, Rowan Lewis Walker, Jason R. Bianchini
  • Patent number: 11549033
    Abstract: A coating agent is capable of forming a coating film that has enhanced adhesion and adherence to a substrate, and enhanced water resistance as well and composed mainly of an aqueous material. A process of forming a coating agent uses the coating agent, a primer treatment process uses the coating agent, a process of doing repairs to concretes uses the coating agent, and a process of laying down roads uses the coating agent. The coating agent is composed mainly of a polyphenol derivative and containing a polymerizing agent, and has a pH of 9 or less. The polymerizing agent contains a compound having two or more functional groups selected from the group of an amino group and a mercapto group per molecule. In the process of forming a coating film, the coating agent is applied onto a substrate in an alkaline environment having a pH of greater than 9.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: January 10, 2023
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventor: Masanobu Naito
  • Patent number: 11538653
    Abstract: The present invention discloses an ion beam lithography method based on an ion beam lithography system. The ion beam lithography system includes a roll-roll printer placed in a vacuum, and a medium-high-energy wide-range ion source, a medium-low-energy wide-range ion source and a low-energy ion source installed on the roll-roll printer. The ion beam lithography method includes: first coating a polyimide (PI) substrate with a dry film, etching the dry film according to a preset circuit pattern, then using the ion beam lithography system to deposit a wide-energy-range metal ion on the circuit pattern to form a film substrate, and finally stripping the dry film off the film substrate to obtain a printed circuit board (PCB).
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: December 27, 2022
    Assignee: Beijing Normal University
    Inventors: Bin Liao, Xiaoping Ouyang, Jun Luo, Xu Zhang, Lin Chen, Pan Pang, Xianying Wu, Minju Ying
  • Patent number: 10968518
    Abstract: Systems and methods for treating a carbon overcoat surface are described. In one embodiment, the method may include depositing a magnetic recording layer over a substrate, depositing a carbon overcoat layer over the magnetic recording layer, and exposing a carbon overcoat layer to water in gas phase after the carbon overcoat layer is deposited on the magnetic recording layer. In some cases, the method may include depositing a lubricant over the outer surface of the carbon overcoat after exposing the carbon overcoat layer to the water in gas phase.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 6, 2021
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventor: Paul M. Jones
  • Patent number: 10458548
    Abstract: Provided is a piston ring having excellent low-friction properties and abrasion resistance manufactured without the need for precision control using an ordinary film formation device that does not have a special function.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: October 29, 2019
    Assignees: NIPPON ITF, INC., Honda Motor Co., Ltd.
    Inventors: Takehiko Ooshiro, Koji Miyake, Masanori Tsujioka, Satoshi Yoshida
  • Patent number: 10406500
    Abstract: This invention relates to a production method for non-detonation synthesis nanodiamond by exposing carbonaceous feedstock to a dense plasma focus. The nucleated nanodiamond particles have characteristics that differentiate them from known forms of nanodiamond. For instance, the nucleated nanodiamond particles are substantially spherical and have a substantially smooth surface, as may be demonstrated by TEM. The nucleated nanodiamond particles are also free of graphite and detonation carbon contaminants. The identity of the nanodiamond particles has been confirmed through raman spectra, for example. The nanodiamond particles have also been found to be effective as a lubricant composition when combined with a carrier oil.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: September 10, 2019
    Inventor: Christopher J. Arnold
  • Patent number: 9972490
    Abstract: A plasma stabilization method and a deposition method using the same are disclosed. The plasma stabilization method includes (a) supplying a source gas and (b) supplying a purge gas. The method may also include (c) supplying a reactive gas and (d) supplying plasma. The purge gas and the reactive gas are continuously supplied into a reactor during (a) through (d), and the plasma stabilization method is performed in a state where no substrate exists in the reactor.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 15, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Dong Seok Kang, Yo Chul Jang
  • Patent number: 9957456
    Abstract: Provided is a carbon layer derived from carbide ceramics, wherein metal or non-metal atoms are extracted selectively from the surface of carbide ceramics to form voids, which, in turn, are filled with carbon synthesized by a carbon compound, thereby providing improved roughness and hardness, as well as to a method for preparing the same.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: May 1, 2018
    Assignee: KSM Co., Ltd.
    Inventors: Dae Soon Lim, Min-gun Jeong, Seo-hyun Yoon
  • Publication number: 20150132539
    Abstract: A coated device comprising a body, a coating on at least a portion of a surface of the body, wherein the coating comprises, a terminal layer, and at least one underlayer positioned between the terminal layer and the body, the underlayer comprising a hardness of greater than 61 HRc, wherein prior to the addition of the terminal layer, at least one of the body and the underlayer is polished to a surface roughness of less than or equal to 1.0 micrometer Ra.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 14, 2015
    Inventors: Jeffrey R. Bailey, Srinivasan Rajagopalan, Mehmet Deniz Ertas, Adnan Ozekcin, Bo Zhao
  • Patent number: 9004465
    Abstract: A helical compression spring, preferably of steel, in particular CrSi steel or CrNi steel, comprises a coating which has at least one a-C: H: Me coating or a plurality of layers of CrN (16) and a-C: H: Me coatings (14) alternately. In a method for coating a helical compression spring, preferably of steel, a plurality of layers of CrN and a-C: H: Me coatings are applied alternately.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 14, 2015
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Marcus Kennedy, Han-Rainer Brillert, Michael Zinnabold
  • Patent number: 8993375
    Abstract: Method for synthesizing a material by chemical vapor deposition (CVD), according to which a plasma is created in a vacuum chamber in the vicinity of a substrate, and according to which a carbon-carrying substance and H2 are introduced into the chamber in order to produce in the chamber a gas comprising substances carrying reactive-carbon atoms in the form of unsaturated molecules or radicals from which the synthesis of said material will be performed, and in that the electromagnetic absorption and inelastic diffusion spectra of the solid material to be synthesized are used to take from these spectra the absorption frequencies that contribute to the reactions that lead to the formation of the solid material to be synthesized, and in that energetic rays are produced in the form of a photon beam carrying quantities of energy determined by each of the frequencies corresponding to said absorption and inelastic diffusion frequencies, said photon beam being injected into the plasma where, for energy states of the so
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: March 31, 2015
    Assignee: Diarotech
    Inventor: Horacio Tellez Oliva
  • Patent number: 8956510
    Abstract: The present invention relates generally to methods for producing metallic products comprising a substrate and a metallic, external coating. In preferred embodiments, the metallic products are jewelry articles.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: February 17, 2015
    Assignee: Frederick Goldman, Inc.
    Inventor: Andrew Derrig
  • Publication number: 20150017468
    Abstract: An example of the coated tool disclosed herein includes a substrate, a metal layer established on the substrate, a continuous metal carbide layer established on the metal layer, and a smooth, continuous, terminated diamond like carbon (DLC) layer established on the metal carbide layer. The DLC layer is to prevent metal, from a workpiece upon which the tool is to act, from adhering to the tool.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventor: Michael J. Lukitsch
  • Publication number: 20150014569
    Abstract: A coated valve assembly includes a sleeve having a sleeve outer surface and a sleeve inner surface. Also included is a spool having a spool outer surface. Further included is a hardened surface formed on the sleeve inner surface and the spool outer surface. Yet further included is a coating disposed on the hardened surface of at least one of the spool outer surface and the sleeve inner surface, the second coating comprising a diamond-like carbon coating.
    Type: Application
    Filed: February 28, 2014
    Publication date: January 15, 2015
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Kevin M. Rankin, Peter M. Ballard
  • Patent number: 8911867
    Abstract: The invention relates to a protective coating, having the chemical composition CaSibBdNeOgHlMem, wherein Me is at least one metal of the group consisting of {Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Y, Sc, La, Ce, Nd, Pm, Sm, Pr, Mg, Ni, Co, Fe, Mn}, with a+b+d+e+g+l+m=1. According to the invention, the following conditions are satisfied: 0.45?a?0.98, 0.01?b?0.40, 0.01?d?0.30, 0?e?0.35, 0?g?0.20, 0?l?0.35, 0?m?0.20. The invention relates also to a coated member having a protective coating, as well as to a method for producing a protective coating, in particular a multilayer film for a member.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 16, 2014
    Assignee: Oerlikon Metaplas GmbH
    Inventor: Jörg Vetter
  • Patent number: 8822607
    Abstract: A substrate for biochips which has a high probe loading amounts and a uniform immobilization density, and which further has a high detection sensitivity and a high reproducibility by preventing a non-specific adsorption of proteins, when used as a substrate for biochips for immobilizing probes composed of biologically relevant substances such as proteins and nucleic acids, is disclosed. Amino groups can be bound to the surface of the substrate uniformly, at a high density and stably by covalently immobilizing an amino group-containing polymer on the surface of the substrate. The probe immobilization rate is high and immobilizing density was uniform by immobilizing a probe composed of a biologically relevant substance such as a protein or nucleic acid by utilizing the amino groups. Further, detection sensitivity and reproducibility are high by inhibiting non-specific adsorption of proteins.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 2, 2014
    Assignees: Hipep Laboratories, Nippon Light Metal Company, Ltd.
    Inventors: Kiyoshi Nokihara, Akiyoshi Hirata, Yasuo Oka, Yasushi Takebayashi
  • Patent number: 8778295
    Abstract: Disclosed is a combinatorial synthesis of Diamond wherein a first reactive species is produced by catalytic treatment of Acetylene, a second reactive species is produced by decomposition of a hydrocarbon source having a low Hydrogen-to-Carbon ratio using a high energy discharge, and the two reactive species so obtained are combined in the vapor phase to yield Diamond without the need of post-treatments. The reaction is efficient and affords Diamond under mild conditions with high purity such that it may be useful for producing Diamond for semiconductor and microelectronics applications.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: July 15, 2014
    Inventor: Daniel Hodes
  • Publication number: 20140193594
    Abstract: A metallic film formation target which is an object on which a diamond-like carbon film is to be formed is placed in a flow channel through which film formation gas containing methane gas flows. The film formation gas is caused to flow at a predetermined flow rate through the flow channel during the process of raising the temperature of the film formation target from room temperature to a predetermined temperature. The film formation gas is thereby reacted with impurities in a film formation target surface for removal of the impurities from the film formation target surface and is further reacted with metallic elements exposed by the removal of impurities, thus forming a diamond-like carbon film on the film formation target surface.
    Type: Application
    Filed: June 18, 2012
    Publication date: July 10, 2014
    Applicant: The University of Electro-Communications
    Inventors: Katsumi Tanaka, Cheow Keong Choo
  • Publication number: 20140178637
    Abstract: Provided are low friction coatings with improved abrasion, wear resistance and methods of making such coatings. In one form, the coating includes: i) an under layer selected from the group consisting of CrN, TiN, TiAlN, TiAlVN, TiAlVCN, TiSiN, TiSiCN, TiAlSiN and combinations thereof, wherein the under layer ranges in thickness from 0.1 to 100 ?m, ii) an adhesion promoting layer selected from the group consisting of Cr, Ti, Si, W, CrC, TiC, SiC, WC, and combinations thereof, wherein the adhesion promoting layer ranges in thickness from 0.1 to 50 ?m and is contiguous with a surface of the under layer, and iii) a functional layer selected from the group consisting of a fullerene based composite, a diamond based material, diamond-like-carbon and combinations thereof, wherein the functional layer ranges from 0.1 to 50 ?m and is contiguous with a surface of the adhesion promoting layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Srinivasan Rajagopalan, Tabassumul Haque, Mehmet Deniz Ertas, Adnan Ozekcin, HyunWoo Jin, Bo Zhao
  • Patent number: 8747963
    Abstract: An apparatus and methods for forming a diamond film, are provided. An example of an apparatus for forming a diamond film includes an electrodeless microwave plasma reactor having a microwave plasma chamber configured to contain a substrate and to contain a reactant gas excited by microwaves to generate a microwave plasma discharge. Gas injection ports extend through an outer wall of the plasma chamber at a location upstream of the plasma discharge and above the substrate. Gas jet injection nozzles interface with the gas injection ports and are configured to form a directed gas stream of reactant gas having sufficient kinetic energy to disturb a boundary layer above an operational surface of the substrate to establish a convective transfer of the film material to the operational surface of the substrate.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 10, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Mark Phillip D'Evelyn, John Dewey Blouch, Ludwig Christian Haber, Hongying Peng, David Dils, Svetlana Selezneva, Kristi Jean Narang
  • Patent number: 8728571
    Abstract: Provided is a fabrication method for a functional surface that has self-cleaning ability and superhydrophilic anti-reflective property, which includes a) arranging a plurality of beads having a sphere shape on a surface of a transparent substrate; b) forming a predetermined inter-bead gap by etching the plurality of beads; c) forming a surface unevenness on the surface of the substrate by etching the substrate using the plurality of the beads having the predetermined gap as an etching mask; d) removing the plurality of the beads from the surface of the substrate; and e) forming a photocatalytic layer or a compound layer having a surface tension of 18 to 28 N/m on the surface of the substrate formed with the surface unevenness.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: May 20, 2014
    Assignee: Korea Institute of Machinery and Materials
    Inventors: Hyuneui Lim, Seungmuk Ji, Jun-Hee Lee, Wan-Doo Kim
  • Patent number: 8715789
    Abstract: A method and apparatus for plasma enhanced chemical vapor deposition to an interior region of a hollow, tubular, high aspect ratio workpiece are disclosed. A plurality of anodes are disposed in axially spaced apart arrangement, to the interior of the workpiece. A process gas is introduced into the region. A respective individualized DC or pulsed DC bias is applied to each of the anodes. The bias excites the process gas into a plasma. The workpiece is biased in a hollow cathode arrangement. Pressure is controlled in the interior region to maintain the plasma. An elongated support tube arranges the anodes, and receives a process gas tube. A current splitter provides a respective selected proportion of a total current to each anode. One or more notch diffusers or chamber diffusers may diffuse the process gas or a plasma moderating gas. Plasma impedance and distribution may be controlled using various means.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: May 6, 2014
    Assignee: Sub-One Technology, Inc.
    Inventors: Deepak Upadhyaya, Karthik Boinapally, William J. Boardman, Matthew MaMoody, Thomas B. Casserly, Pankaj Jyoti Hazarika, Duc Doan
  • Patent number: 8715779
    Abstract: Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 6, 2014
    Assignee: Apple Inc.
    Inventors: Anna-Katrina Shedletsky, Christopher Prest
  • Patent number: 8641999
    Abstract: Plasma assisted chemical vapor deposition is used to form single crystal diamond from a seed and methane. A susceptor is used to support the seed. Under certain conditions, crystalline grit is formed in addition to the diamond. The crystalline grit in one embodiment comprises mono crystals or twin crystals of carbon, each having its own nucleus. The crystals form in columns or tendrils to the side of the monocrystalline diamond or off a side of the susceptor. The crystals may have bonding imperfections which simulate doping, providing conductivity. They may also be directly doped. Many tools may be coated with the grit.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: February 4, 2014
    Assignee: SCIO Diamond Technology Corporation
    Inventors: Patrick J. Doering, Alfred Genis, Robert C. Linares, John J. Calabria
  • Patent number: 8580336
    Abstract: A method of making a heat treated coated article includes forming at least one layer comprising diamond-like carbon (DLC) on a glass substrate, and forming a removable protective film on the glass substrate over at least the layer comprising DLC. The removable protective film includes first and second inorganic layers, the first inorganic layer comprising zinc oxide and nitrogen and being located between the layer comprising DLC and the second inorganic layer. The glass substrate may be heat treated so that during the heat treating the protective film prevents significant burnoff of the layer comprising DLC.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 12, 2013
    Assignees: Guardian Industries Corp., Centre Luxembourg de Recherches pour le Verre et al. Ceramique S.A. (C.R.V.C.)
    Inventors: Nestor P. Murphy, Maxio Frati, Rudolph H. Petrmichl, Jiangping Wang, Jens-Peter Muller, Herbert Lage
  • Patent number: 8568827
    Abstract: The present disclosure is directed to a method of making a textured coating on a wear surface of a component. The method includes applying a mask on the surface and depositing a tribological coating on the surface. The method further includes removing the mask.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: October 29, 2013
    Assignee: Caterpillar Inc.
    Inventors: Shuangbio Liu, Chuong Quang Dam, Bao Feng, Dongyun Hua
  • Patent number: 8518543
    Abstract: A sliding member is produced by forming hardening layers with two-layered structure on surface of a substrate metal with a Vickers hardness of not more than Hv300, such as aluminum or magnesium alloy for example, and then forming a DLC film having surface roughness defined as maximum height roughness Rz of 1 to 10 ?m further on the hardening layers. The above-described hardening layers are composed of a first hardening layer dispersed with heavy metal particles, preferably made of tungsten and/or tantalum in the substrate metal, and a second hardening layer formed under the first hardening layer.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 27, 2013
    Assignees: FujiWPC Co., Ltd., Fuji Kihan Co., Ltd.
    Inventors: Makoto Kano, Takahiro Horiuchi, Shinichi Takagi, Masao Kumagai, Eiji Shimodaira, Yoshio Miyasaka
  • Patent number: 8518475
    Abstract: In certain example embodiments, a coated article includes respective layers including hydrogenated diamond-like carbon (DLC) and zirconium nitride before heat treatment (HT). During HT, the hydrogenated DLC acts as a fuel which upon combustion with oxygen produces carbon dioxide and/or water. The high temperature developed during this combustion heats the zirconium nitride to a temperature(s) well above the heat treating temperature, thereby causing the zirconium nitride to be transformed into a new post-HT layer including zirconium oxide that is very scratch resistant and durable.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: August 27, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 8512807
    Abstract: A method of making cutting tool inserts with high demands on dimensional accuracy includes: mixing by milling of powders forming hard constituents and binder phase, forming the powder mixture to bodies of desired shape, sintering the formed bodies, grinding with high accuracy the sintered bodies to inserts with desired shape and dimension, optionally edge rounding of cutting edges, and providing the ground inserts with a wear resistant non-diamond or non-diamond-like coating. According to the method, the ground inserts are heat treated prior to the coating operation in an inert atmosphere or vacuum or other protective atmosphere below the solidus of the binder phase for such a time that the micro structure of the surface region is restructured without causing significant dimensional changes. In this way inserts with unexpected improvement of tool life and dimensional accuracy have been achieved.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 20, 2013
    Assignee: Seco Tools AB
    Inventors: Bo Jansson, Jacob Sjolen
  • Patent number: 8501276
    Abstract: Disclosed is a carbon film which has optical characteristics of retaining a high transparency and being high in refractive index and low in double refractivity, is excellent in electric insulating performance, can be applied to various base materials with good adhesiveness, and can be formed at low temperature. Also disclosed is a laminate including a carbon film and a method for producing the laminate.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: August 6, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yoshinori Koga, Masataka Hasegawa, Sumio Iijima, Kazuo Tsugawa, Masatou Ishihara
  • Patent number: 8496992
    Abstract: A method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 30, 2013
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Patent number: 8430097
    Abstract: A medicinal inhalation device having a non-metal coating coated on at least a portion thereof, and onto which non-metal coating an at least partially fluorinated compound is then covalently bonded.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 30, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Philip A. Jinks, Moses M. David, Rudolf J. Dams
  • Publication number: 20130075977
    Abstract: Disclosed is a piston ring for an engine and a method of manufacturing the piston ring. The piston ring includes at least a Cr (Chromium) coating layer coated on a surface of a base material, and a Si-DLC (Silicon doped Diamond Like Carbon) coating layer coated on an outermost layer above the Cr layer and the base material. More specifically, the Si-DLC layer includes about 3 to 10 wt. % of Si.
    Type: Application
    Filed: December 12, 2011
    Publication date: March 28, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Jeong Uk An
  • Patent number: 8367207
    Abstract: The invention relates to a hydrogenated amorphous carbon coating and to a method for the production thereof. It also relates to devices having such a coating. The method of the invention consists in producing a hydrogenated amorphous carbon coating comprising at least two layers of hydrogenated amorphous carbon, each of said layers having chemical compositions and physical and mechanical properties that are identical, and with thicknesses that are identical or different. The coating of the invention finds many applications, in particular in the mechanical field for parts subject to considerable wear and rubbing problems. It may also be applicable, in particular, in the field of surgical implants and in the MEMS (microelectromechanical systems) field.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 5, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternative, Centre National de la Recherche Scientifique
    Inventors: Caroline Chouquet, Cédric Ducros, Frédéric Sanchette
  • Patent number: 8304063
    Abstract: A diamond-like carbon film for sliding parts which is applied to the sliding surface of sliding parts, the diamond-like carbon film including at least two layers, one being a lower layer of diamond-like carbon (referred to as DLC hereinafter) and the other being an upper layer of DLC placed thereon, wherein the lower layer has a hardness no lower than 20 GPa and no higher than 45 GPa, a Young's modulus no lower than 250 GPa and no higher than 450 GPa, and a thickness no smaller than 0.2 ?m and no larger than 4.0 ?m, and the upper layer has a hardness no lower than 5 GPa and lower than 20 GPa, a Young's modulus no lower than 60 GPa and no higher than 240 GPa, and a thickness no smaller than 1.0 ?m and no larger than 10 ?m. The diamond-like carbon film has both good durability and low frictional coefficient.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: November 6, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Hirotaka Ito, Kenji Yamamoto
  • Patent number: 8277622
    Abstract: The present invention relates to diamond material comprising a boron doped single crystal diamond substrate layer having a first surface and a boron doped single crystal diamond conductive layer on said first surface, wherein the distribution of boron in the conductive layer is more uniform than the distribution of boron in the substrate layer.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 2, 2012
    Assignee: Element Six Ltd.
    Inventor: Geoffrey Alan Scarsbrook
  • Patent number: 8241713
    Abstract: A process for fabricating an amorphous diamond-like film layer for protection of a moisture or oxygen sensitive electronic device is described. The process includes forming a plasma from silicone oil, depositing an amorphous diamond-like film layer from the plasma, and combining the amorphous diamond-like film layer with a moisture or oxygen sensitive electronic device to form a protected electronic device. Articles including the amorphous diamond-like film layer on an organic electronic device are also disclosed.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: August 14, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Moses M. David, Fred B. McCormick, Mark A. Roehrig
  • Patent number: 8221832
    Abstract: A method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including carbon and an overlying protective film including a zinc oxide inclusive layer. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: July 17, 2012
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Nestor P. Murphy, Maximo Frati, Rudolph Hugo Petrmichl, Jiangping Wang, Jens-Peter Muller, Herbert Lage
  • Publication number: 20120148762
    Abstract: The present disclosure relates to a method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 14, 2012
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Ronghua Wei, Christopher Rincon, Kent E. Coulter
  • Patent number: 8187722
    Abstract: An object of the present invention is to provide a copper foil with carrier sheet which permits releasing of the carrier sheet from the copper foil layer even when hot pressing at a temperature exceeding 300° C. is applied in the production of a printed wiring board. In order to achieve the object, a copper foil with physically releasable carrier sheet having a copper foil layer on the surface of the carrier sheet through a bonding interface layer, characterized in that the bonding interface layer is composed of a metal layer and a carbon layer. It is preferable for the bonding interface layer to be composed of a metal layer of 1 nm to 50 nm thick and a carbon layer of 1 nm to 20 nm thick.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: May 29, 2012
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Seiji Nagatani, Hiroshi Watanabe, Kazufumi Izumida
  • Publication number: 20120114964
    Abstract: Provided is a coated-surface sliding part having excellent adhesion of a hard coating, and a method for producing the same part. The coated-surface sliding part is a sliding part wherein a hard coating is formed by physical deposition on the surface of a base material formed from, by mass percent, C 0.5 to 0.8%, Si 0.1 to 1.5%, Mn 0.2 to 1.0%, Cr 8.0 to 13.5%, Mo and/or W 0.5 to 4.0% in terms of (Mo+ 1/2 W), and N 0.01 to 0.1%, with the remainder being Fe and impurities. The physically deposited coating is a titanium metal coating further covered by a diamond-like carbon coating. The method for producing a coated-surface part involves sputtering in order to apply the physically deposited coating, which consists of the titanium metal coating and then the diamond-like carbon coating which forms the surface layer, to the surface of the base material having the aforementioned composition. The base material is preferably subjected to argon gas bombardment prior to application of the physically deposited coating.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 10, 2012
    Applicants: HITACHI METALS, LTD., HITACHI TOOL ENGINEERING, LTD.
    Inventors: Fumiaki Honda, Kenji Yokoyama, Kenichi Inoue, Kunichika Kubota, Toshihiro Uehara, Takehiro Ohno, Katsuhiko Ohishi
  • Patent number: 8119032
    Abstract: The invention provides methods functionalizing a planar surface of a graphene layer, a graphite surface, or microelectronic structure. The graphene layer, graphite surface, or planar microelectronic structure surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the graphene layer, a graphite surface, or planar microelectronic surface while providing a functionalization layer of chemically functional groups, to produce a functionalized graphene layer, graphite surface, or planar microelectronic surface.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 21, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer, Charles M. Marcus, James R. Williams
  • Patent number: 8119199
    Abstract: A method of making a window unit is provided which may result in improved yields. In certain example embodiments, the method involves coating a substrate with both (i) a solar control/management coating, and (ii) a protective layer (e.g., of or including diamond-like carbon (DLC)) over the solar control/management coating. The protective layer protects the coated substrate from scratches and/or the like during processing prior to heat treatment. Then, during heat treatment, the protective layer(s) is burned off in part or in whole. Following heat treatment, the coated article (substrate with solar control/management coating thereon) is coupled to another substrate in order to form the window unit.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 21, 2012
    Assignee: Guardian Industries Corp.
    Inventors: Scott V. Thomsen, Vijayen S. Veerasamy
  • Patent number: 8105660
    Abstract: A method of forming a diamond-like carbon coating by plasma enhanced chemical vapor deposition on an internal surface of a hollow component having an inner surface. A reduced atmospheric pressure is created within a pipe or other hollow component to be treated. A diamondoid precursor gas is introduced to the interior of the component. A bias voltage is established between a first electrode and one or more second electrodes. The first electrode is or is attached to the component. The second electrode is externally offset from an opening of the component, by a hollow insulator. A plasma region is established adjacent an inner surface of the component and extends through the hollow insulator. The precursor gas comprises at least one diamondoid. The pressure and bias voltage are selected such as to cause the deposition of diamond-like carbon on the inner surface.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: January 31, 2012
    Inventors: Andrew W Tudhope, William J Boardman, Steven F Sciamanna, Thomas B Casserly, Robert M Carlson
  • Patent number: 8079428
    Abstract: Hardfacing materials include particles of polycrystalline diamond (PCD) material embedded within a matrix material. The PCD particles comprise a plurality of inter-bonded diamond grains. Material compositions and structures used to apply a hardfacing material to an earth-boring tool (e.g., welding rods) include PCD particles. Earth-boring tools include a hardfacing material comprising PCD particles embedded within a matrix material on at least a portion of a surface of a body of the tools. Methods of forming a hardfacing material include subjecting diamond grains to elevated temperatures and pressures to form diamond-to-diamond bonds between the diamond grains and form a PCD material. The PCD material is broken down to form PCD particles that include a plurality of inter-bonded diamond grains. Methods of hardfacing tools include bonding PCD particles to surfaces of the tools using a metal matrix material.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: December 20, 2011
    Assignee: Baker Hughes Incorporated
    Inventors: Nicholas J. Lyons, Danny E. Scott
  • Patent number: 8071166
    Abstract: There is provided a method of making a heat treated (HT) coated article to be used in shower door applications, window applications, or any other suitable applications where transparent coated articles are desired. For example, certain embodiments of this invention relate to a method of making a coated article including a step of heat treating a glass substrate coated with at least a layer of or including diamond-like carbon (DLC) and an overlying protective film thereon. In certain example embodiments, the protective film may be of or include both (a) an oxygen blocking or barrier layer, and (b) a release layer. Following and/or during heat treatment (e.g., thermal tempering, or the like) the protective film may be removed. Other embodiments of this invention relate to the pre-HT coated article, or the post-HT coated article.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 6, 2011
    Assignee: Guardian Industries Corp.
    Inventors: Rudolph Hugo Petrmichl, Jiangping Wang, Nestor P. Murphy, Maximo Frati, Jose Nunez-Regueiro
  • Patent number: 8047653
    Abstract: An Si—O containing hydrogenated carbon film as an optical film has a refractive index in a range from at least 1.48 to at most 1.85 for light of 520 nm wavelength and an extinction coefficient of less than 0.15 for light of 248 nm wavelength, wherein the refractive index and the extinction coefficient are decreased with energy beam irradiation. By utilizing such an Si—O containing hydrogenated carbon film, it is possible to provide various types of optical elements and an optical device including the same.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: November 1, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshihiro Akahane, Takahiro Imai, Takashi Matsuura, Tetsuya Katayama, Toshihiko Ushiro