Nickel, Copper, Cobalt, Or Chromium Coating Patents (Class 427/305)
  • Patent number: 8039045
    Abstract: An object of the present invention is to provide a plating method on a glass base plate. The method allows forming a plating film on a base plate composed of a glass material with excellent adhesivity and homogeneity by means of an electroless plating method even to a thickness of 1 ?m or more. Before forming a plating film by a step of electroless plating S6, a surface treatment process is conducted on a surface of the base plate composed of a glass material. The surface treatment process comprises at least a step of glass activation treatment S2 to increase quantity of silanol groups on the surface of the base plate at least by a factor of two using an aqueous solution of diluted acid, a step of silane coupling agent treatment S3, a step of palladium catalyst treatment S4, and a step of palladium bonding treatment S5.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: October 18, 2011
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Youichi Tei, Akira Iso, Kazuhito Higuchi, Hajime Kurihara, Hiroyuki Uwazumi
  • Patent number: 8007862
    Abstract: Provided are a method of preparing a nanowire grid polarizer, and a nanowire grid polarizer prepared using the same. The method includes: mixing a surfactant and a silica precursor to prepare a mesoporous film composition; coating the mesoporous film composition on a substrate; aging the coated product to form a silica template composite; removing the surfactant inside the silica template composite to prepare a mesoporous material having channels; and filling the channels of the mesoporous material with metal. The method is suitable for the formation of a nanowire having a stable structure, mass production, and large-area production.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-mi Lee, Dong-mok Whang, Moon-gyu Lee, Yoon-sun Choi, Sun-hwak Woo
  • Patent number: 8003165
    Abstract: Nanoparticles are coated using thick-film techniques with a catalyst to promote the growth of carbon nanotubes thereon. In one example, alumina nanoparticles are coated with a copper catalyst. Such nanoparticles can be selectively deposited onto a substrate to create a field emission cathode, which can then be utilized within field emission devices.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 23, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Yunjun Li, Richard Fink, Valerie Ginsberg, Mohshi Yang, Leif Thuesen
  • Patent number: 7989029
    Abstract: A method for reducing porosity of metal layers on a substrate may comprise depositing a precursor onto at least a portion of the substrate, and adding metal layers over the precursor comprising at least one cycle, wherein each cycle comprises: depositing a metal layer over the precursor, and exposing the metal layer to a breath-out solution.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 2, 2011
    Assignee: SRI International
    Inventors: Jaspreet Singh Dhau, Sunity K. Sharma
  • Patent number: 7981508
    Abstract: The present invention provides a circuit creation technology that improves conductive line manufacture by adding active and elemental palladium onto the surface of a substrate. The palladium is disposed in minute amounts on the surface and does not form a conductive layer by itself, but facilitates subsequent deposition of a metal onto the surface, according to the pattern of the palladium, to form the conductive lines.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: July 19, 2011
    Assignee: SRI International
    Inventors: Sunity Sharma, Jaspreet Singh Dhau
  • Patent number: 7968804
    Abstract: An article includes a polymeric film having a major surface, a discontinuous layer of a catalytic material on the major surface, and a metal pattern on the catalytic material. The discontinuous layer of catalytic material has an average thickness of less than 200 angstroms. Methods of forming these articles are also disclosed.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 28, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Tracie J. Berniard, Roxanne A. Boehmer
  • Patent number: 7959977
    Abstract: A substrate processing method and apparatus can securely carry out a pre-plating treatment that enables uniform plating in the necessary area of the surface of a substrate. The substrate processing method carries out a cleaning treatment and a catalyst-imparting treatment of a surface of a substrate as pre-plating treatments and then electroless plates a metal film on the catalyst-imparted surface of the substrate. The cleaning treatment is carried out in a wider area of the surface of the substrate than that area to which a catalyst is imparted by the catalyst-imparting treatment.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: June 14, 2011
    Assignee: Ebara Corporation
    Inventors: Seiji Katsuoka, Masahiko Sekimoto, Toshio Yokoyama, Teruyuki Watanabe, Takahiro Ogawa, Kenichi Kobayashi, Mitsuru Miyazaki, Yasuyuki Motojima
  • Patent number: 7897198
    Abstract: Electroless plating is performed to deposit conductive materials on work pieces such as partially fabricated integrated circuits. Components of an electroless plating bath are separately applied to a work piece by spin coating to produce a very thin conductive layer (in the range of a few hundred angstroms). The components are typically a reducing agent and a metal source.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: March 1, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Heung L. Park, Eric G. Webb, Jonathan D. Reid, Timothy Patrick Cleary
  • Patent number: 7871670
    Abstract: A method of selectively and electrolessly depositing a metal onto a substrate having a metallic patterned-nanostructure surface is disclosed. The method includes providing a tool having a patterned-nanostructure surface, the patterned-nanostructure surface having surface regions having a nanostructured surface, replicating the tool patterned-nanostructure surface onto a substrate to form a substrate patterned-nanostructure surface, disposing a metal layer on the substrate patterned-nanostructure surface to form a metallic patterned-nanostructure surface region, forming a self-assembled monolayer on the metallic patterned-nanostructure surface region, exposing the self-assembled monolayer to an electroless plating solution comprising a deposit metal, and depositing electrolessly the deposit metal selectively on the surface regions having a metallic nanostructured surface. Articles formed from this method are also disclosed.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: January 18, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Khanh P. Nguyen, Matthew H. Frey, Haiyan Zhang, Jun-Ying Zhang
  • Publication number: 20110008645
    Abstract: The invention relates to a process for coating metal surfaces with an aqueous composition in the form of a solution or in the form of a dispersion, the composition comprising at least one phosphate, at least 3 g/l of at least one titanium or/and zirconium compound and at least one complexing agent, and also to corresponding aqueous compositions.
    Type: Application
    Filed: March 10, 2009
    Publication date: January 13, 2011
    Inventors: Mark Andre Schneider, Petra Grünberg
  • Patent number: 7867564
    Abstract: The object of the present invention is to provide a metal plating method by a simple process, for example, on resins on which plating has been heretofore impossible. The metal plating method involves surface treating an article to be plated with a liquid prepared by mixing or reacting in advance an organic acid salt of a silane coupling agent containing an azole in a molecule, for example, a coupling agent which is an equimolar reaction product of imidazole and ?-glycidoxypropyltrimethoxysilane, and a noble metal compound, and then conducting electroless plating thereon.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: January 11, 2011
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Toru Imori, Atsushi Yabe
  • Publication number: 20100323174
    Abstract: There are provided a metal film-carrying substrate including a substrate and a metal film with good adhesion to the substrate and being less dependent on temperature or humidity, and a method for preparation thereof. There are also provided a metal pattern material having a patterned metal portion with good adhesion to a substrate, being less dependent on temperature or humidity, and providing highly reliable insulation for a region where the patterned metal portion is not formed, and a method for preparation thereof.
    Type: Application
    Filed: October 16, 2007
    Publication date: December 23, 2010
    Applicant: FUJIFILM CORPORATION
    Inventors: Hideo Nagasaki, Takeyoshi Kano
  • Publication number: 20100272904
    Abstract: Provided is a catalytic surface activation method for electroless deposition comprising a metallic aerosol nanoparticle generation step of generating metallic aerosol nanoparticles, which act as plating initiation catalyst; a metallic aerosol nanoparticle fixation step of fixing the resultant metallic aerosol nanoparticles on a plating surface; and an electroless deposition step of impregnating the material to be plated in an electroless deposition solution to form a plating layer on the plating surface on which the metallic aerosol nanoparticles have been fixed. The catalytic surface activation method for electroless deposition of the present invention is applicable to large-scale plating with simple process and superior applicability, improves the plating characteristics with little impurity generation, requires no post-treatment process for removing impurities and is environment-friendly with no wastewater generation by directly fixing metallic aerosol nanoparticles on the material to be plated.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jeong-Hoon Byeon, Jae-Hong Park, Ki-Young Yoon, Jung-Ho Hwang
  • Publication number: 20100272903
    Abstract: Provided is a catalytic surface activation method for electroless deposition comprising a metallic aerosol nanoparticle generation step of generating metallic aerosol nanoparticles, which act as plating initiation catalyst; a metallic aerosol nanoparticle fixation step of fixing the resultant metallic aerosol nanoparticles on a plating surface; and an electroless deposition step of impregnating the material to be plated in an electroless deposition solution to form a plating layer on the plating surface on which the metallic aerosol nanoparticles have been fixed. The catalytic surface activation method for electroless deposition of the present invention is applicable to large-scale plating with simple process and superior applicability, improves the plating characteristics with little impurity generation, requires no post-treatment process for removing impurities and is environment-friendly with no wastewater generation by directly fixing metallic aerosol nanoparticles on the material to be plated.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSIY
    Inventors: Jeong-Hoon Byeon, Jae-Hong Park, Ki-Young Yoon, Jung-Ho Hwang
  • Publication number: 20100272905
    Abstract: Provided is a catalytic surface activation method for electroless deposition comprising a metallic aerosol nanoparticle generation step of generating metallic aerosol nanoparticles, which act as plating initiation catalyst; a metallic aerosol nanoparticle fixation step of fixing the resultant metallic aerosol nanoparticles on a plating surface; and an electroless deposition step of impregnating the material to be plated in an electroless deposition solution to form a plating layer on the plating surface on which the metallic aerosol nanoparticles have been fixed. The catalytic surface activation method for electroless deposition of the present invention is applicable to large-scale plating with simple process and superior applicability, improves the plating characteristics with little impurity generation, requires no post-treatment process for removing impurities and is environment-friendly with no wastewater generation by directly fixing metallic aerosol nanoparticles on the material to be plated.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY
    Inventors: Jeong-Hoon Byeon, Jae-Hong Park, Ki-Young Yoon, Jung-Ho Hwang
  • Patent number: 7721425
    Abstract: A method of connecting an electronic part, containing: forming an electroless nickel plating coat containing phosphorous on a substrate metal layer which constitutes a connecting terminal of an electronic part; and carrying out connecting to the nickel plating coat through a lead-free solder, wherein a half-width of X-ray diffraction of a (111) plane of Ni crystal in the nickel plating coat is 5 degrees or less.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: May 25, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Junya Hirano
  • Publication number: 20090269599
    Abstract: Disclosed is a multilayer film for plating comprising, on a surface of a first substrate, a plating receptive layer which contains a polymer having a polymerizable group and a functional group, wherein the plating receptive layer satisfies at least one of the following (1)-(4): (1) the saturated water absorption ratio is from 0.01 to 10% by mass in an environment of a temperature of 25° C. and relative humidity of 50%; (2) the saturated water absorption ratio is from 0.05 to 20% by mass in an environment of a temperature of 25° C. and relative humidity of 95%; (3) the water absorption ratio is from 0. 1 to 30% by mass after immersion in boiling water at 100° C. for one hour; and (4) the surface contact angle of distilled water is from 50° to 150° after 5 ?l of the distilled water is dropped onto the plating receptive layer and allowed to stand for 15 seconds in an environment of a temperature of 25° C. and relative humidity of 50%.
    Type: Application
    Filed: April 22, 2009
    Publication date: October 29, 2009
    Applicant: FUJIFILM CORPORATION
    Inventor: Mitsuyuki Tsurumi
  • Publication number: 20090238979
    Abstract: An improved method of activating a surface to receive electroless metal plating thereon, particularly for use in activating through holes in printed circuit substrates, in which the activating solution comprising a palladium tin colloid in an acidic aqueous matrix is sparged with nitrogen gas to slow the oxidation of stannous tin contained therein. A dynamic flood conveyorized system to perform said activation is described.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Inventors: William Decesare, James Watkowski
  • Patent number: 7578888
    Abstract: The present invention relates to a method for treating plastic substrates structured by means of a laser or generation of seed structures on the surface that are suitable for subsequent metallization. The substrates, after the laser structuring, are brought into contact with a process solution that is suitable for removal of the unintentional deposits that arise during the laser structuring. The treatment of the laser-structured substrates with a mixture of wetting agents and compositions that support the cleaning before metallization leads to sufficient removal of the unintentionally deposited metal seeds, without having a lasting damaging effect on the planned structured surface paths.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: August 25, 2009
    Assignee: Enthone Inc.
    Inventor: Mark Peter Schildmann
  • Publication number: 20090202719
    Abstract: The present invention provides microwave attenuating, filled composite materials which contain a polymer or ceramic matrix and metallic tubules and processes for making the same and devices which contain such materials.
    Type: Application
    Filed: March 13, 2009
    Publication date: August 13, 2009
    Applicants: Science Applications International Corporation, Department of the Navy
    Inventors: Paul E. SCHOEN, Ronald R. Price, Joel M. Schnur, Daniel Zabetakis, Robert F. Brady, JR., Ann Mera, Dana Leamann, Bor-Sen Chiou, Walter J. Dressick
  • Publication number: 20090186240
    Abstract: The present invention relates to a chemical nickel bath containing precious metal ions, a process for preparing a chemically deposited nickel coat containing a precious metal, the thus produced nickel coat, and the use thereof.
    Type: Application
    Filed: April 26, 2007
    Publication date: July 23, 2009
    Applicant: NANOGATE AG
    Inventors: Jürgen Sander, Wolfgang Ludt
  • Patent number: 7531217
    Abstract: A method for making an oxidation resistant article, including (a) depositing a layer of a Pt group metal on a substrate to form a platinized substrate; and (b) depositing on the platinized substrate layer of Pt group metal a layer of a reactive element selected from the group consisting of Hf, Y, La, Ce and Zr and combinations thereof to form a surface modified region thereon, wherein the surface modified region includes the Pt-group metal, Ni, Al and the reactive element in relative concentration to provide a ?-Ni+??-Ni3Al phase constitution.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: May 12, 2009
    Assignees: Iowa State University Research Foundation, Inc., Rolls-Royce Corporation
    Inventors: Brian Gleeson, Bingtao Li, Daniel J. Sordelet, William John Brindley
  • Patent number: 7514118
    Abstract: A method of plating on a glass substrate allowing an electroless plating film with good adhesiveness to be formed by chemically bonding a silane coupling agent in a state of simple adhesion or hydrogen bond to the surface of the glass substrate through dehydration condensation reaction, and a method of manufacturing a magnetic recording medium using the plating method. In the plating method, electroless plating is performed on a glass substrate after sequentially conducting at least the adhesion layer formation that forms an adhesion layer using a silane coupling agent solution, catalyst layer formation, a catalyst activation, and a drying that chemically bonds the silane coupling agent in the adhesion layer to the surface of the glass substrate.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 7, 2009
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Akira Iso, Youichi Tei
  • Publication number: 20090068362
    Abstract: The present invention refers to a method of making an copper-free article having a metal coating deposited on a substrate comprising: providing a substrate; contacting a surface of said substrate with a solution comprising: at least one metal ion selected from the group consisting of Ce, Pr, Nd, Eu, Er, Ga, W, Al, Mn, Mo, Sb, Te, La, Sm or their mixtures; and applying a metal coating on said surface of said substrate. In another embodiment the present invention refers to a method of making a metal coated article: providing a substrate; contacting a surface of said substrate with a solution comprising a mixture of more than one metal ion selected from the same group as listed above; or contacting said surface of said substrate with more than one solution comprising in each solution at least one metal ion selected from the same group; and applying a metal coating on said surface of said substrate.
    Type: Application
    Filed: March 29, 2006
    Publication date: March 12, 2009
    Applicant: Valspar Sourcing, Inc.
    Inventor: Harry J. Bahls
  • Patent number: 7429401
    Abstract: The process of this invention involves first adsorbing a catalyst on the surface of a specimen by immersion in a catalyst-containing solution, followed by electrolytic deposition in a second solution that need not contain catalyst. This two-step superconformal process produces a seam-free and void-free metal microelectronic conductor.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 30, 2008
    Assignee: The United States of America as represented by the Secretary of Commerce, the National Insitiute of Standards & Technology
    Inventors: Daniel Josell, Thomas P. Moffat, Daniel Wheeler
  • Publication number: 20080206591
    Abstract: Metallic substrates have a surface for receiving application of an adhesive that includes a precipitated coating of metallic nanoparticulates. A first portion of the nanoparticulates is adhered to the surface and a second portion is in contact with the first portion. Also provided are adhered constructs. These constructs include a first substrate with a first surface that has a metallic precipitated coating of nanoparticulates. A first portion of the nanoparticulates is adhered to the surface and a second portion contacts the first portion. The constructs include a second substrate that has a second surface; and an adhesive is applied between the first surface and the second surface.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 28, 2008
    Inventor: Julia J. Mack
  • Publication number: 20080160177
    Abstract: Methods for forming traces/lines and interconnects on substrates and devices and systems thereof of herein disclosed. In some embodiments, an activator layer is deposited on a surface of a substrate. Pick-up lithography using a pre-patterned lithographic stamp, ultraviolet lithography or like methods are used to selectively remove portions of the activator layer to form a pattern on the surface of the substrate. Electroless metal deposition is then applied to the surface of the substrate to form a metal pattern selectively on the remaining activator layer. Electroless plating can then be used to form traces/lines and interconnects in dimensions of less than 10 micrometers.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: J. C. Mataybas, Lakshmi Supriya, Omar Bchir
  • Patent number: 7367118
    Abstract: A method of forming a metal wire by microdispensing a pattern is provided. In the method, a substrate has been treated by SAM is firstly provided. Then, a catalytic agent is microdispensed on the surface of the substrate at places for forming a metal wire, and a catalytic pattern is rendered. Next, a metal wire on the catalytic pattern by an electroless plating process is formed, and a vibration in a period of ink-jet discharging and ink drying during the step of microdispensing is provided. In addition, the vibration is generated by an apparatus which includes forming a metal wire on the catalytic pattern by an electroless plating process, and providing a vibration in a period of ink-jet discharging and ink drying during the step of microdispensing, wherein the vibration is generated by an apparatus which includes a supportive frame and a vibration generation module.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: May 6, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Kevin Cheng, Ming-Huan Yang, Wan-Wen Chiu, Jane Chang
  • Publication number: 20080069957
    Abstract: A method of manufacturing a metal film pattern forming body, the method including: forming a desired metal film pattern on one surface of a stamp by using a catalyst for activating a surface of a plastic base; activating the surface of the plastic base by transferring the catalyst formed on the surface of the stamp onto the surface of the plastic base; and plating the surface of the activated plastic base.
    Type: Application
    Filed: August 8, 2007
    Publication date: March 20, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Suk SUNG, Gi Lyong Na, Ick Chang Choi
  • Publication number: 20080057202
    Abstract: A method of fabricating of a metal line by a wet process is provided. A catalytic adhesive layer is formed on an insulating substrate. A fist metal layer is formed by an electoless plating process, and then, a second metal layer is formed by an electoless plating process or an electoplating process. The first and the second metal layers are patterned to form a metal line.
    Type: Application
    Filed: November 21, 2006
    Publication date: March 6, 2008
    Applicants: TAIWAN TFT LCD ASSOCIATION, CHUNGHWA PICTURE TUBES, LTD., AU OPTRONICS CORPORATION, HANNSTAR DISPLAY CORPORATION, CHI MEI OPTOELECTRONICS CORPORATION, INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE, TPO DISPLAYS CORP.
    Inventors: CHIEN-WEI WU, SHUO-WEI LIANG, WAN-CHI CHEN, CHENG-TZU YANG, SAI-CHANG LIU, PO-CHIU CHEN, MIN-CHUAN WANG, YUNG-CHIA KUAN
  • Patent number: 7297451
    Abstract: A novel black matrix, a method for preparing the same, and a flat display device and an electromagnetic interference filter to which the black matrix is applied. The black matrix is prepared by exposing a photoactive compound to form a latent pattern of nuclei for crystal growth and treating the latent pattern of nuclei for crystal growth with a metal salt solution to give a metal particle-deposited pattern; forming an electroless Ni-plated layer on the metal particle-deposited pattern; and forming an electroless Cu-plated layer on the electroless Ni-plated layer. Exhibiting improved black tone, which is achieved only by a selective multilayer plating process, without using expensive vacuum sputtering apparatus or a photolithographic process, the black matrix can be applied to various flat display devices. In addition, due to improved electric conductivity, the black matrix can be used in an electromagnetic interference filter, without employing an additional front surface blackening process.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: November 20, 2007
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Ho Chul Lee, Euk Che Hwang, Jin Young Kim, Chang Ho Noh, Ki Yong Song, Sung Hen Cho
  • Patent number: 7264848
    Abstract: The present invention provides a non-cyanide electroless gold plating solution free from a cyanide compound, comprising, as a completing agent of gold, a compound represented by the formula shown below or a salt thereof: X—(CH2)n—SH wherein n is 2 or 3 and X is SO3H or NH2, and having a pH value of 7 or less. The invention also provides a process for electroless gold plating using the non-cyanide electroless gold plating solution.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 4, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Masaki Sanada, Masao Nakazawa, Kei Imafuji
  • Publication number: 20070141374
    Abstract: An environmentally resistant gas turbine engine disk is disclosed. The disk includes a substrate metal having locally enriched surface regions, the locally enriched surface regions comprising alloying elements present in a higher percentage than found in the substrate metal. A method for making the disk and other articles is also disclosed. The method includes furnishing a plurality of powder particle substrates made of a substrate metal, providing a nonmetallic precursor of a metallic coating material, wherein the metallic coating material includes an alloying element that is thermophysically melt incompatible with the substrate metal, contacting the powder particle substrates with the nonmetallic precursor, and chemically reducing the nonmetallic precursor to form coated powder particles comprising the powder particle substrates having a surface-enriched layer of the metallic coating material thereon, wherein the step of chemically reducing is performed without melting the powder particle substrates.
    Type: Application
    Filed: December 19, 2005
    Publication date: June 21, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David P. Mourer, Kenneth R. Bain
  • Patent number: 7205098
    Abstract: A method for manufacturing a high-transmittance optical filter for image display devices, which may include the steps of coating a photocatalytic compound on a transparent substrate to form a photocatalytic film, selectively exposing the photocatalytic film to light and growing a metal crystal thereon by plating to form a metal pattern, and selectively etching and removing the photocatalytic compound remaining on the transparent substrate using a buffered oxide etchant (BOE). According to the method, a high-transmittance, high-resolution and low-resistivity optical filter can be manufactured in a simple manner at low costs.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: April 17, 2007
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Sung Hen Cho, Euk Che Hwang, Jin Young Kim, Chang Ho Noh, Ki Yong Song, Ho Chul Lee
  • Patent number: 7202159
    Abstract: The present invention provides a method for forming a diffusion barrier layer, a diffusion barrier in an integrated circuit and an integrated circuit. The method for forming a diffusion barrier involves the following steps: 1) preparing a silicon substrate; 2) contacting the silicon substrate with a composition comprising self-assembled monolayer subunits and a solvent; and, 3) removing the solvent. The diffusion barrier layer includes a self-assembled monolayer. The integrated circuit includes a silicon substrate, a diffusion barrier layer and a metal deposited on the diffusion barrier layer. The diffusion barrier layer in the integrated circuit is covalently attached to the silicon substrate and includes a self-assembled monolayer.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: April 10, 2007
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Ramanath Ganapathiraman, Ahila Krishnamoorthy, Kaushik Chanda, Shyam P. Murarka
  • Patent number: 7147896
    Abstract: An electroless nickel plating method for the preparation of zirconia ceramic material. The surface of the zirconia ceramic material is first cleaned of contaminants. This is followed by an etching step where the surface of the material is etched by an acid. Then, activating the surface of the material is achieved by first applying a tin sensitizer, and then a palladium activator. Following the palladium activator step, applying an electroless nickel to the surface of the post activated material. After the electroless nickel bath, the zirconial ceramic material can then be further electroless or electrolytically plated with a variety of finishes. Applying the method of the present invention provides a suitable, commercially practicable method for the preparation of zirconia ceramic material for electroless nickel plating, so that the electroless nickel chemistry is distributed evenly on the material's surface.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: December 12, 2006
    Inventor: Mark D. Rine
  • Patent number: 7112349
    Abstract: A method for treating a hinge holder includes the following steps: polishing a surface of the hinge holder; degreasing the hinge holder; cleaning the hinge holder; baking the hinge holder; cooling the hinge holder; screen-printing a part of the surface of the hinge holder; and plating the other part of the surface of the hinge holder with chromium or a chromium-containing compound. The plated hinge holder has a layer of chromium or chromium nitride on the surface, which renders the surface of the hinge holder more attractive and more wear-resistant. Therefore, it is not as easily scratched during assembly and frequent use.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: September 26, 2006
    Assignee: FIH Co., Ltd.
    Inventor: Wente Lai
  • Patent number: 7087268
    Abstract: A method (10 or 20) for plating a component of a golf club head (42) is disclosed herein. The component of the golf club head that is plated is preferably composed of a metal material selected from the group consisting of magnesium alloys, aluminum alloys, magnesium and aluminum. The plating (300) preferably comprises a first plating layer (302) a second plating layer (303) and a chrome or chromate layer (304). The method (10 of 20) preferably comprises exposing the component to alkaline and acidic solutions. The method (10 and 20) also preferably includes heat treating the plated component.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: August 8, 2006
    Assignee: Callaway Golf Company
    Inventors: Wayne H. Byrne, Herbert Reyes
  • Patent number: 7063762
    Abstract: A method of making a circuitized substrate such as a laminate chip carrier in which a polymer, e.g., Teflon, is used as a dielectric layer and a promotion adhesion layer of a polymer is used to securely adhere a conductive layer thereto which is deposited by plating. The resulting product is thus able to provide extremely narrow conductive circuitry for subsequent connections, e.g., to a semiconductor chip. Electroless plating is the preferred plating method with the dielectric immersed in a solution of conductive monomers, e.g., pyrrole monomer, the solution also possibly containing a seed material such as palladium-tin.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: June 20, 2006
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Elizabeth Foster, Gregory Kevern, Anita Sargent
  • Patent number: 7026012
    Abstract: A method of forming a metallic feature on a substrate, comprising the steps of: providing a stamp having a raised region; depositing catalytic particles on a selected area of the stamp, including the raised region thereof; providing a substrate; applying the stamp to the substrate, such that the raised region of the stamp causes a corresponding indented region in the substrate and at least some of the catalytic particles are transferred to a selected area of the substrate; and plating the selected area of the substrate.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: April 11, 2006
    Assignee: Agency for Science, Technology and Research
    Inventors: William T. Chen, Peter M. Moran
  • Patent number: 7001641
    Abstract: Seed layer treatment to remove impurities in the seed layer that might lead to the formation of voids in interconnect circuit features. In one embodiment, the seed layer is heated in a reducing environment. In another embodiment, the seed layer is washed with a surfactant that is compatible with a surfactant used when forming the remainder of the circuit feature on the seed layer. Yet another embodiment combines both techniques.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: February 21, 2006
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Christopher D. Thomas, Vinay B. Chikarmane
  • Patent number: 6996425
    Abstract: There is provided a cellular phone housing formed with a base made of a resin material by molding, wherein the base is coated with a metal multilayer including a lower metal layer formed on a surface of the base with metal plating and an upper metal layer formed on the lower metal layer with metal plating, and wherein the lower metal layer is made of a first metal which is ductile and the upper metal layer is made of a second metal which is brittle compared with that of the first metal.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: February 7, 2006
    Assignee: NEC Corporation
    Inventor: Yohsuke Watanabe
  • Patent number: 6960370
    Abstract: Medical devices that include oxidizable portions can be plated after a two step activation process that includes successive applications of two aqueous solutions of ammonium bifluoride. Once plated, such materials can be soldered using conventional solders and fluxes. Medical devices can be assembled by soldering together plated materials. Oxidizable materials can be plated with radiopaque materials to yield medical devices that are more visible to fluoroscopy.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 1, 2005
    Assignee: SciMed Life Systems, Inc.
    Inventors: Vittorino Monni, Verivada Chandrasekaran, Outhay Voraphet
  • Patent number: 6949269
    Abstract: A method is taught for fabricating patterned silicon dioxide layers on process areas disposed perpendicularly or at an inclination to a substrate surface. Firstly, a starter layer having leaving groups is produced by non-conformal deposition of a reactive component. Tris(tert-butoxy)silanol is subsequently added. The addition of the tris(tert-butoxy)silanol leads to the formation of a silicon dioxide layer selectively only on the starter layer.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: September 27, 2005
    Assignee: Infineon Technologies AG
    Inventors: Harald Seidl, Martin Gutsche
  • Patent number: 6905622
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide layer by an electroless deposition technique. In one aspect, a method is provided for processing a substrate including depositing an initiation layer on a substrate surface, cleaning the substrate surface, and depositing a conductive material on the initiation layer by exposing the initiation layer to an electroless solution. The method may further comprise etching the substrate surface with an acidic solution and cleaning the substrate of the acidic solution prior to depositing the initiation layer. The initiation layer may be formed by exposing the substrate surface to a noble metal electroless solution or a borane-containing solution. The conductive material may be deposited with a borane-containing reducing agent. The conductive material may be used as a passivation layer, a barrier layer, a seed layer, or for use in forming a metal silicide layer.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: June 14, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Joseph Yahalom, Sivakami Ramanathan, Chris R. McGuirk, Srinivas Gandikota, Girish Dixit
  • Patent number: 6902765
    Abstract: A method for electroless metal plating of substrates, more specifically with electrically non-conductive surfaces, by which the substrates may be reliably metal plated at low cost under manufacturing conditions as well and by means of which it is possible to selectively coat the substrates to be treated only, and not the surfaces of the racks. The method involves the following steps: a. pickling the surfaces with a solution containing chromate ions; b. activating the pickled surfaces with a silver colloid containing stannous ions; c. treating the activated surfaces with an accelerating solution in order to remove tin compounds from the surfaces; and d. depositing, by means of an electroless nickel plating bath, a layer that substantially consists of nickel to the surfaces treated with the accelerating solution, the electroless nickel plating bath containing at least one reducing agent selected from the group comprising borane compounds.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: June 7, 2005
    Assignee: Atotech Deutschland GmbH
    Inventors: Mariola Brandes, Herman Middeke, Brigitte Dyrbusch
  • Patent number: 6899816
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide layer by an electroless deposition technique. In one aspect, a method is provided for processing a substrate including depositing an initiation layer on a substrate surface, cleaning the substrate surface, and depositing a conductive material on the initiation layer by exposing the initiation layer to an electroless solution. The method may further comprise etching the substrate surface with an acidic solution and cleaning the substrate of the acidic solution prior to depositing the initiation layer. The initiation layer may be formed by exposing the substrate surface to a noble metal electroless solution or a borane-containing solution. The conductive material may be deposited with a borane-containing reducing agent. The conductive material may be used as a passivation layer, a barrier layer, a seed layer, or for use in forming a metal silicide layer.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Joseph Yahalom, Sivakami Ramanathan, Chris R. McGuirk, Srinivas Gandikota, Girish Dixit
  • Patent number: 6875475
    Abstract: This process results in directed electroless plating of the metal to form discrete metal structures over the entire surface. Because the surface is pre-patterned with passivated regions inert to metal deposition, the metal is directed only to the unstamped regions. This allows the formation of unconnected metal structures without any chemical etching steps. These metallic arrays are varied in size, separation and shape by using gratings of different periodicities and blaze angles as the stamp templates. A variety of well-defined geometric patterns have been fabricated and imaged using scanning probe, scanning electron, and optical microscopies.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: April 5, 2005
    Assignee: William Marsh Rice University
    Inventors: Cristin E. Moran, Corey J. Radloff, Naomi J. Halas
  • Patent number: 6875260
    Abstract: The present invention is directed to an activator solution and method for activating a copper-seeded surface to facilitate plating of copper onto the copper-seeded surface. The activator solution is prepared by heating a precursor solution to a temperature of at least about 95° C., and maintaining the precursor solution at said temperature for at least about 30 minutes, wherein the precursor solution comprises water, chlorine ions, copper ions, tin (II) ions, and an antioxidant compound which substantially prevents the oxidation of the tin (II) ions to tin (IV) ions.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: April 5, 2005
    Assignee: Enthone Inc.
    Inventor: Han Verbunt
  • Patent number: 6824666
    Abstract: An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a “patch” of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer.
    Type: Grant
    Filed: January 28, 2002
    Date of Patent: November 30, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Chris R. McGuirk, Deenesh Padhi, Muhammad Atif Malik, Sivakami Ramanathan, Girish A. Dixit, Robin Cheung