Continuous Feed Solid Coating Material (e.g., Wire, Rod, Or Filament, Etc.) Patents (Class 427/449)
  • Patent number: 11879173
    Abstract: A method of controlling deposition of material from at least one plasma transferred wire arc (PTWA) torch within at least one bore includes: directing a fluid through a duct; and directing the fluid through a number of cannons N disposed adjacent and downstream from the duct. The fluid is directed through the duct and N cannons and past the PTWA torch while the PTWA torch is spraying downstream from N?1 cannons.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 23, 2024
    Assignee: Ford Motor Company
    Inventors: Michael J. Habel, Michael Dennis Mucci, Ted A. Settimo, Timothy George Beyer, Keith Alan Larson
  • Patent number: 11866813
    Abstract: Provided is a spray coating that is disposed on an inner peripheral surface of a cylinder bore of a cylinder block made of aluminum or an aluminum alloy. The spray coating contains 0.005% to 0.14% by mass of carbon, 0.01% to 3.0% by mass of nickel 10% to 20.5% by mass of chromium, 0.05% to 1.5% by mass of silicon, and a balance containing iron and inevitable impurities. The spray coating has a composition that forms a martensite+ferrite (M+F) region in the Schaeffler diagram, and a composition in which a nickel equivalent (NiE) and a chromium equivalent (CrE) satisfy a relationship expressed by the following Formulae (1): NiE?0.95 CrE?8.59, (2): NiE?4.1, and (3): CrE?10. The spray coating has a two-phase structure formed of a martensite phase and a ferrite phase.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: January 9, 2024
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Hayato Hirayama, Tsuyoshi Higuchi, Yoshito Utsumi, Hiroaki Hoshikawa
  • Patent number: 10227685
    Abstract: A method for forming an iron sprayed coating on a substrate with droplets of a wire molten by an electric arc includes: a step of forming a first iron sprayed coating on the substrate, the wire for arc spraying being a first wire containing iron and 0.03 to 0.10% by mass of carbon and the compressed gas being inert gas; and a step of forming a second iron sprayed coating on the first iron sprayed coating, the wire for arc spraying being a second wire containing iron and 0.03 to 0.10% by mass of carbon and the compressed gas containing 10 to 21% by volume of oxygen gas.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 12, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Noritaka Miyamoto, Masaki Hirano, Tomoko Kozaki
  • Patent number: 9358613
    Abstract: A composite includes a porous matrix that includes a molybdenum-silicon-boron (Mo—Si—B) alloy that has a plurality of pores with a lubricant in contact with the Mo—Si—B alloy, a hydrophobic compound in contact with the Mo—Si—B alloy, or a combination thereof. A method for preparing a porous composite includes disposing a porous matrix comprising a Mo—Si—B alloy on a substrate, the Mo—Si—B alloy comprising a plurality of pores; disposing a lubricant on a surface of the porous matrix; and disposing a hydrophobic compound on a surface of the porous matrix to form the porous composite.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: June 7, 2016
    Assignee: BAKER HUGHES INCORPORATED
    Inventors: Somesh Kumar Mukherjee, Vivekanand Sista, John H. Stevens
  • Patent number: 9109276
    Abstract: A cylindrical internal surface processing method comprises forming a cylinder bore, roughening an upper section of the bore, depositing coating onto the bore, and machining a lower section of the bore and the coating. The forming of the cylinder bore includes forming the upper and lower sections with the lower section being axially spaced from the upper section and having an axial length greater than zero. The roughening creates a roughened surface such that a radially innermost edge of the roughened surface has an internal diameter smaller than an internal diameter of the lower section. The coating is deposited to cover the upper section and at least a portion of the lower section. The machining forms a tapered portion and a cylindrical portion, a radially outermost edge of the cylindrical portion having an internal diameter larger than that of a radially outermost edge of the roughened surface.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: August 18, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Koichi Kanai, Kiyokazu Sugiyama, Eiji Shiotani, Kimio Nishimura, Junichi Uchiyama, Kiyohisa Suzuki, Jun Inomata, Daisuke Terada, Akira Shimizu, Hidenobu Matsuyama, Kiyoshi Hasegawa, Takashi Iiya
  • Publication number: 20150132501
    Abstract: A method for producing a plug for use in a piercing rolling mill for producing a seamless steel tube/pipe includes an arc-spraying step of melting iron wires, and spraying molten material thereof onto a surface of a base metal of a plug by use of an arc-spray gun, so as to form a film containing oxide and Fe on the surface of the base metal of the plug. In the arc-spraying step, the surface of the base metal of the plug is divided into plural sections along an axial direction of the plug, and in turn, the arc-spraying is separately carried out in each of the plural sections while an intersection angle between the center line of a spraying stream from the arc-spray gun and the surface of the plug base metal is maintained within a range of 35 degrees to 90 degrees.
    Type: Application
    Filed: March 19, 2013
    Publication date: May 14, 2015
    Inventors: Yasuto Higashida, Yasuyoshi Hidaka
  • Patent number: 8961867
    Abstract: Refractory metal powders are dehydrided in a device which includes a preheat chamber for retaining the metal powder fully heated in a hot zone to allow diffusion of hydrogen out of the powder. The powder is cooled in a cooling chamber for a residence time sufficiently short to prevent re-absorption of the hydrogen by the powder. The powder is consolidated by impact on a substrate at the exit of the cooling chamber to build a deposit in solid dense form on the substrate.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: February 24, 2015
    Assignee: H.C. Starck Inc.
    Inventors: Steven A. Miller, Mark Gaydos, Leonid N. Shekhter, Gokce Gulsoy
  • Patent number: 8962094
    Abstract: A system for purging a plural component coating application system including: a first pressure regulator for receiving an inert gas, providing the gas at a first pressure; a first valve; a first operator connected to the first valve capable of being controlled by a logic controller; a first check valve; a mixing manifold; a second pressure regulator for receiving an inert gas, providing the gas at a second pressure that is less than the first pressure; a second valve; a second operator connected to the second valve capable of being controlled by a logic controller; a second check valve; a static mixer in fluid communication with the mixing manifold; an outlet from the static mixer for receiving a connection to at least two spraying members; and where the second regulator is capable of providing the second pressure at a pressure that is less than one-fifth of the first pressure.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: February 24, 2015
    Assignee: Line Travel Automated Coating Inc.
    Inventors: Sidney Taylor, Stanley Rogala, Ivan Belik, Miles Wenger
  • Patent number: 8859035
    Abstract: A method of enhancing the flowability of a powder. The powder is defined by a plurality of particles having an initial level of inter-particle forces between each particle. The method comprises: treating the powder, wherein the level of inter-particle forces between each particle is substantially decreased from the initial level; fluidizing the treated powder; flowing the treated powder into a plasma arc chamber; the plasma arc chamber generating a plasma arc; and the plasma arc chamber operating on the treated powder using the generated plasma arc. Preferably, the inter-particle forces are decreased by coating the particles with an organic surfactant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 14, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: David Leamon
  • Patent number: 8839738
    Abstract: An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 23, 2014
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventor: Daniel E. Paxson
  • Publication number: 20140186540
    Abstract: The application relates to a process for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner, is internally coated with an alloy. It is proposed that nitrogen is fed as transporting gas, a spraying additive being a solid alloy wire which is guided into a plasma stream, and coating being performed without additional powder.
    Type: Application
    Filed: September 27, 2012
    Publication date: July 3, 2014
    Inventors: Leander Schramm, Clemens Maria Verpoort, Alexander Schwenk, Enrico Hauser
  • Publication number: 20140154422
    Abstract: The application relates to a process for producing a coating by thermal spraying, in particular by plasma spraying, in which a component, in particular a cylinder liner, is internally coated with an alloy, wherein a plasma nozzle, to which a plasma gas and a transporting gas are fed, rotates about a wire and is movable along a longitudinal axis of the bore, such that the bore is coated as seen from the inside all around and in the axial direction of the bore. What is proposed is a variable gas stream or a variable flow rate of the transporting gas and/or of the plasma gas, it being possible for the flow rate to be set over the axial length (x) of the bore to be coated.
    Type: Application
    Filed: October 2, 2012
    Publication date: June 5, 2014
    Inventors: Leander Schramm, Clemens Maria Verpoort, David James Cook
  • Patent number: 8715772
    Abstract: A process for the thermal deposition coating of a workpiece is provided that comprises the steps of: thermally depositing a coating on a metallic surface of a workpiece from a deposition head wherein at least one condition selected from the group of: coating deposition rate onto said surface, relative motion between the surface and said deposition head, and cryogenic coolant application rate onto said workpiece is controllable; substantially simultaneously measuring temperatures at a plurality of locations over the metallic surface of the workpiece; determining an average temperature of the temperatures measured in step (b); comparing the average temperature to a preselected minimum temperature and a preselected maximum temperature for the workpiece; and adjusting at least one of the controllable conditions if said average temperature is not between the preselected minimum temperature and the preselected maximum temperature for the workpiece.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: May 6, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Zbigniew Zurecki
  • Patent number: 8647751
    Abstract: During engine operation, valve retainers and valve springs are constantly rubbing and impacting each other resulting in heat and wear. The purpose of this invention is to provide a surface coating onto the valve retainer to reduce the friction with the valve spring and thus improve durability. Specifically, this invention teaches a method to thermally apply coatings to the surface of the valve retainer. Although typically fabricated from steel, the usage of lighter weight titanium valve retainers is increasing for high performance, or racing engines. The reduced mass allows valves to move more readily and requires less spring pressure to operate, producing more power and a faster revving engine, however titanium is typically not as wear resistant as the steel it replaces. In one embodiment, a porous molybdenum or other oleophilic metal is applied to the surface of the valve retainer. In another embodiment, hard coatings of cermets, carbides, and super alloys are applied as coatings to valve retainers.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: February 11, 2014
    Assignee: Wide Open Coatings, Inc.
    Inventors: Mark Thomas Endicott, Randall John Wischhusen
  • Publication number: 20140014003
    Abstract: A device for the thermal coating of a surface, having a wire supply unit for the supply of a wire, wherein the wire acts as a first electrode, a source for plasma gas for generating a plasma gas stream, a nozzle body with a nozzle opening through which the plasma gas stream is conducted as a plasma gas jet to one wire end, and a second electrode which is arranged in the plasma gas stream before the latter enters into the nozzle opening The device is characterized in that the wire supply unit is adjustable, whereby the wire end situated in front of the nozzle opening can be moved by a certain adjustment travel. In this way, it is possible for installation tolerances in the device to be easily compensated, and high and consistent quality of the coating is attained.
    Type: Application
    Filed: January 6, 2012
    Publication date: January 16, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Leander Schramm, Alexander Schwenk, Enrico Hauser
  • Publication number: 20130306002
    Abstract: The erosion-prone sections of the tubes in a circulating fluidized bed boiler are provided with a locally thickened sidewall without forming discontinuities on the outer surface of the tubes. This can be accomplished, for example, by replacing the erosion prone portion of the tube with a section having a smaller inside diameter, but the same outside diameter, or by replacing the erosion prone portion of the tube with a section having a thicker sidewall, but the same inside diameter, and smoothing over the outside discontinuity with an alloy coating. A useful alloy coating is also disclosed which can be used for this and other applications.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: ALSTOM Technology Ltd
    Inventor: Michael Walter SEITZ
  • Publication number: 20130216862
    Abstract: Equipment (work piece) for use in corrosive resistant coating on equipment is disclosed. The equipment has at least a portion of its surface coated with a layer formed from a NiCrMo alloy composition containing at least two gettering components selected from Al, Si, and Ti in an amount of up to 25 wt. %. The coating in one embodiment is applied on the equipment using a thermal spray technique, e.g., twin wire arc spray, forming coatings of 5-50 mils thickness having a fine-scale micro-pore structure. The coating layer is characterized as having excellent adhesion strength and corrosion resistant properties, even when applied with varying parameters as in manual on-site coating applications. In one embodiment, the coating layer has an impurity content of less than 15%.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Applicant: c/o Chevron Corporation
    Inventors: Justin Lee Cheney, Grzegorz Jan Kusinski
  • Publication number: 20130167390
    Abstract: A process for producing a beam element of a co-ordinate measuring machine, comprising the steps of applying a machinable metal coating by spraying on a structural substrate made of ceramic material, impregnating the coating with a resin, and executing on the coating a surface-finishing machining operation and a treatment of surface hardening.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: HEXAGON METROLOGY S.P.A.
    Inventor: Hexagon Metrology S.p.A.
  • Patent number: 8455056
    Abstract: A torch introduces oxidizer into a passage so as to swirl the oxidizer about a central axis, while fuel is introduced at a location spaced apart from the central axis, where the swirling action of the oxidizer is strong, resulting in rapid mixing of the fuel and oxidizer. In practicing the method, the length of a bore through which the fuel and oxidizer pass is maintained short enough that a sheath of unmixed oxidizer surrounds the combusting mixed fuel and oxidizer, eliminating any need for water cooling. The lengths of torches of the present invention can be significantly shorter than those of the prior art, making the torches well suited for use in confined spaces, and the torches have been found to allow spraying materials at a greater rate than torches of the prior art. The reduced length also facilitates introducing into the passage material to be spray-coated.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: June 4, 2013
    Inventor: James A. Browning
  • Publication number: 20130129931
    Abstract: An arc spray method is proposed for manufacturing a dense layer on a substrate in which an electric voltage is applied to two electrically conductive spray wires and with which an arc is ignited between the spray wires, wherein a melt is generated from the spray wires in a melting region, with the melt being acted on by a fluid which transports the melt to the substrate where the melt is deposited for generating the layer. Oxidizable particles are supplied to the melt and are deposited on the substrate together with the melt; and after the end of the spraying, the oxidizable particles are at least partly oxidized to densify the layer.
    Type: Application
    Filed: May 14, 2012
    Publication date: May 23, 2013
    Inventor: Fred van Rodijnen
  • Publication number: 20120321812
    Abstract: Embodiments of the invention provide a thermal spray method of forming a protective and porous coating over desired surfaces. Further, embodiments provide a thermal arc spray method, such as twin wire arc spray, to coat the surfaces. The invention may refer to using Aluminium and Silicon alloy in a twin wire arc spray method, to create sacrificial and protective coatings on the surfaces, such as substrates and machine parts. Machine parts may be, for example, of sputtering system. The method may utilize a predefined range of Silicon to be alloyed with Aluminium to improve the physical properties of the Aluminium, and further avoid damages to the coated surface, such as de-lamination and flaking of the coatings and coated surfaces. Additionally, generation of defects during a sputtering process may be efficiently reduced.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Inventors: Yitzhak Vanek, Leonardo Mendelovici
  • Patent number: 8067067
    Abstract: Disclosed herein is a method for applying plasma-resistant coatings for use in semiconductor processing apparatus. The coatings are applied over a substrate which typically comprises an aluminum alloy of the 2000 series or the 5000 through 7000 series. The coating typically comprises an oxide or a fluoride of Y, Sc, La, Ce, Eu, Dy, or the like, or yttrium-aluminum-garnet (YAG). The coating may further comprise about 20 volume % or less of Al2O3. The coatings are typically applied to a surface of an aluminum alloy substrate or an anodized aluminum alloy substrate using a technique selected from the group consisting of thermal/flame spraying, plasma spraying, sputtering, and chemical vapor deposition (CVD). To provide the desired corrosion resistance, it is necessary to place the coating in compression. This is accomplished by controlling deposition conditions during application of the coating.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Jim Dempster, Li Xu
  • Publication number: 20110171393
    Abstract: A wire arc spray system use at least one first wire and second wire that include a composite wire including a first material at a core region thereof and a cladding including a second material surrounding the core region. A controller controls operation to propel heated material created by the arcing of the first wire and the second wire at the arc point to a surface to be coated. A wire arc spray methodology for creating a porous metal coating with all-metal wires is also provided.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 14, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joshua L. Margolies, Surinder S. Pabla
  • Patent number: 7892609
    Abstract: The invention relates to a thermal spraying apparatus (1) for coating a surface (2) of a substrate (3) by means of a coating material (4). The thermal spraying apparatus (1) includes a spray pistol (5) with a heating device for heating the coating material (4) in a heating zone (6) and also a charging apparatus (7) with a feed (8) through which the coating material (4) can be introduced into the heating zone (6). In this arrangement the thermal spraying apparatus is so designed that a relative position (9) between the feed (8) and the heating zone (6) can be changed in the operating state.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: February 22, 2011
    Assignee: Sulzer Metco AG
    Inventor: Markus Mueller
  • Publication number: 20100285329
    Abstract: Coatings on a substrate and application methods result in coatings that can withstand different types or groups of bulk cargo and operations. This novel approach includes use of a combination of layers of coating materials at certain thicknesses and applied with certain techniques. In certain embodiments, the coating system includes coatings applied to a pretreated substrate, e.g., blasted steel cargo hold plates of an oceangoing vessel. The coatings include a bond layer and a resistance layer, e.g., an anti-corrosive layer tailored to resist at least one of corrosion, erosion, impact and wear of the substrate.
    Type: Application
    Filed: April 15, 2008
    Publication date: November 11, 2010
    Applicant: SULZER METCO (US) INC.
    Inventors: Ronald Molz, James Frank Leach, Christopher Wasserman
  • Patent number: 7785428
    Abstract: The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: August 31, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Daniel J. Branagan
  • Patent number: 7767267
    Abstract: During engine operation, valve retainers and valve springs are constantly rubbing and impacting each other resulting in heat and wear. The purpose of this invention is to provide a surface coating onto the valve retainer to reduce the friction with the valve spring and thus improve durability. Specifically, this invention teaches a method to thermally apply coatings to the surface of the valve retainer. Although typically fabricated from steel, the usage of lighter weight titanium valve retainers is increasing for high performance, or racing engines. The reduced mass allows valves to move more readily and requires less spring pressure to operate, producing more power and a faster revving engine, however titanium is typically not as wear resistant as the steel it replaces. In one embodiment, a porous molybdenum or other oleophilic metal is applied to the surface of the valve retainer. In another embodiment, hard coatings of cermets, carbides, and super alloys are applied as coatings to valve retainers.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: August 3, 2010
    Assignee: Wide Open Coatings, Inc.
    Inventors: Mark Thomas Endicott, Randall John Wischhusen
  • Patent number: 7763325
    Abstract: An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tail pipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 27, 2010
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Daniel E. Paxson
  • Patent number: 7758776
    Abstract: A system for fabricating a free form structure of a composite material including carbon nanotubes. The system includes a discharge assembly and a composite formation device operatively linked with the discharge assembly. The discharge assembly dispenses a fusing agent such as for example a high energy density emission, a laser emission or a particle beam emission. The composite formation device includes a composite generator and an arranger in operative engagement with a composite generator. The composite generator engages with the fusing agent so as to create a composite nodal element. The composite nodal element includes a matrix and a multiplicity of fibers formed of carbon nanotubes dispersed throughout the matrix. The arranger positions one node relative to another to define the free form structure.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: July 20, 2010
    Assignee: Lockheed Martin Corporation
    Inventors: Craig A. Brice, Frederick J. Herman
  • Publication number: 20100159277
    Abstract: A turbine component having a protective bilayer coating thereon comprising: a superalloy substrate; and a bilayer protective coating applied to the substrate wherein the bilayer protective coating comprises a first inner layer of platinum and aluminum; and a second outer oxidation-resistant layer applied over the first inner layer, the second outer layer comprising an MCrAlX alloy where M is selected from Fe, Ni and Co, and where X is yttrium or another rare earth element. A method of improving oxidation resistance of a Ni or Co-based superalloy turbine component comprising: depositing a bilayer protective coating on a turbine component by depositing a first inner platinum-aluminum layer on a surface of the turbine Component; and depositing a second outer layer comprising an MCrAlX alloy over the first inner layer, wherein M is a metal selected from Fe, Ni and Co, and X is yttrium or another rare earth element.
    Type: Application
    Filed: September 21, 2007
    Publication date: June 24, 2010
    Applicant: General Electric Company
    Inventors: David V. Bucci, Kathleen B. Morey
  • Publication number: 20100139607
    Abstract: A wet cylinder liner, which exhibits a cast basic body comprised of a cast iron alloy, has at least one outer surface area of which exhibits a thermal injection layer consisting of a basic iron alloy as a coating, with a layer thickness of 1 ?m to 1000 ?m.
    Type: Application
    Filed: June 18, 2007
    Publication date: June 10, 2010
    Inventors: Christian Herbst-Dederichs, Michael Buchmann
  • Publication number: 20100108014
    Abstract: An arc spray coating that is superior in both wear resistance and machinability, method of forming same, an arc spray wire used to form such a coating, and a cylinder block on whose bore inner surface is formed such an arc spray coating are provided. To this end, the arc spray coating contains Fe as a main component, 0.01% to 0.15% by weight of C, and at least 0.12% by weight of N, and the arc spray wire (wire) contains Fe as a main component, 0.01% to 0.2% by weight of C, and 0.25% to 1.7% by weight of Si, and may further contain at least 11% by weight of Cr as another embodiment.
    Type: Application
    Filed: March 6, 2008
    Publication date: May 6, 2010
    Inventors: Kota Kodama, Norita Miyamoto
  • Patent number: 7682667
    Abstract: An adhesion strength of spray coating comparable to that obtained in a conventional combination of blast treatment and gas flame spraying can be realized even if roughening is conducted with the use of simple tools by performing in advance such a roughening treatment that the average roughness (Ra) of the surface of the thermal spray subject falls within the range of 2 to 10 ?m with the use of a grinding tool, and thereafter carrying out thermal spraying under such conditions that the average area of each of molten particles when molten particles of a thermal spray material have stuck to the surface of thermal spray subject falls within the range of 10000 to 100000 ?m2. In the roughening by grinding tools, a large-scale apparatus is not needed as different from the blast treatment, and portable small tools can be used in overhead location work at field repair. The scattering of powder resulting from grinding is slight so that the danger of environmental pollution is low.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 23, 2010
    Assignees: Nishinippon Plant Engineering and Construction Co., Ltd., Yamada Corrosion Protection Co., Ltd., Kyushu Electric Power Co., Inc.
    Inventors: Yukio Imaizumi, Hiroki Kamakura, Toshio Sakurada, Kenichi Yamada, Katsuhiko Ishibashi
  • Patent number: 7645493
    Abstract: A composite wire for producing a wear resistant and corrosion resistant coating on a substrate by thermal spraying, spray and fuse, or welding techniques are disclosed. The physical properties of the coating are particularly suited for high-temperature erosion-corrosion environments. The resultant coating exhibits good hardness, toughness, and bonding characteristics. The composite wire comprises a metallic outer sheath and an inner core containing boron carbide and chrome carbide.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: January 12, 2010
    Inventor: Michael Seitz
  • Publication number: 20090304942
    Abstract: A zinc-nickel substrate is applied to a component by using a zinc-nickel wire formed with between about 8 to 20 percent nickel and between about 80 to 90 percent zinc. This formed zinc-nickel wire is held in a two wire electric arc spray system to spray the zinc-nickel substrate on the component, such as an aircraft part, while operating the two wire electric arc spray system within a specific range of operating parameters.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 10, 2009
    Inventors: Gary C. Erickson, Mark S. Pollack, Luong Tran, Chris T. Zervas, Paul D. Cacciola
  • Patent number: 7563488
    Abstract: The invention relates to a process for manufacturing a sputter target. The process comprises the steps of—providing a target holder (12); —applying an intermediate layer (14) on said target holder; —applying a top layer (16) on top of said intermediate layer; said top layer comprising a material having a melting point which is substantially higher than the melting point of said target material; —heating the target holder coated with said intermediate layer and said top layer.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: July 21, 2009
    Assignee: NV Bekaert SA
    Inventors: Wilmert De Bosscher, Hilde Delrue, Johan Vanderstraeten
  • Patent number: 7553563
    Abstract: The invention concerns a composite material consisting of intermetallic phases and ceramic, in particular in the form of a coating on metallic substrates, as well as an arc wire spraying process for production of the composite material in which the intermetallic phases and the ceramics to be deposited are newly formed during the deposit process from the components of the supplied wires by chemical reaction. The invention further concerns wear resistant layers formed by the composites, tribologic layers and plating or hard-facing materials.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: June 30, 2009
    Assignee: Daimler AG
    Inventors: Stefan Grau, Michael Scheydecker, Karl Weisskopf
  • Patent number: 7516528
    Abstract: A method for the manufacture of a cathode filament of an X-ray tube and an X-ray tube formed by the method wherein the filament has at least two legs and one body, the filament being a single-piece filament. Spraying at least one material on a support by plasma spraying or by another deposition technique to obtain the filament molded on the support and separating the filament obtained from the support. The filament obtained has a variable thickness and a variable composition. The thicknesses of the legs and of the body as well as the composition of the filament can be modified according to the user's needs.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: April 14, 2009
    Assignee: GE Medical Systems Global Technology Company, LLC
    Inventors: Gwenael Lemarchand, Jean-Marie Penato
  • Publication number: 20090092762
    Abstract: A method of manufacturing a metallic layer on a non-metallic surface is disclosed. The method of manufacturing a metallic layer on a non-metallic surface includes the steps of: roughening the non-metallic surface; continuously feeding a first metallic wire and a second metallic wire above the non-metallic surface; positioning the first metallic wire and the second metallic wire so that the first metallic wire and the second metallic wire are in contact with each other at one end; applying a first voltage to the first metallic wire and applying a second voltage to the second metallic wire, wherein a voltage difference between the first voltage and the second voltage is large enough to produce an electric arc; melting the first and second metallic wire with the electric arc so as to form the metallic layer on the non-metallic surface; and forming a protection layer on the metallic layer to avoid the metallic layer from peeling off the non-metallic surface.
    Type: Application
    Filed: February 11, 2008
    Publication date: April 9, 2009
    Inventor: Tzu-Wen Soong
  • Patent number: 7341763
    Abstract: A thermal spraying device with a first blowing mechanism for lengthening a droplet formed near the tips of thermal spraying materials by arc, and a second blowing mechanism for a blowing a tip portion of the lengthened droplet to atomize it into droplets and to scatter atomized droplets towards a face to be thermally sprayed. The first blowing mechanism lengthens the droplet so that the second blowing mechanism propels air to the tip portion of the lengthened droplet that is separated from a location where the tips of thermal spraying materials are adjacent and the arc is generated. Arcing between the tips of the thermal spraying materials continues stably, and satisfactory thermal spraying is possible.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: March 11, 2008
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Hajime Kubota, Nobuhide Kondo, Kouta Kodama, Toshinao Suzuki
  • Patent number: 7341533
    Abstract: A continuously variable transmission (CVT) includes an aluminum housing member having a bore formed therein. A rotatable pulley member is supported on a bearing within the bore. The bore includes a layer of thermal spray coating for improved wear resistance so that the bore supports the bearing without a steel sleeve therebetween.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 11, 2008
    Assignee: General Motors Corporation
    Inventors: Yucong Wang, Sime Stavreski, Jasbir Singh
  • Patent number: 7332199
    Abstract: The invention relates to a piston ring coated with a coating material by a thermal spray process, exposed to heat treatment of the coating material at an elevated temperature and for a time effective to at least partially diffuse the coating material into the piston ring surface or underlying layer of coating material, and an additionally applied coating material layer subject to successive heat treatments of each coating material layer in order to lay down on the piston ring surface a plurality of layers of the same coating material.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: February 19, 2008
    Assignee: Koncentra Marine & Power AB
    Inventor: Mehdi Aram
  • Publication number: 20080038478
    Abstract: A thermal spray coating process for depositing finely divided metallic or nonmetallic materials in a molten or semi-molten condition to form a coating on a substrate wherein the coating material may be powder, ceramic-rod, wire or molten materials. The process involves the use of a gas made from water in an electrolyzer, which includes two principal electrodes and a plurality of supplemental electrodes. The supplemental electrodes are not connected electrically to a power source. The electrolyzer is adapted to separate the water such that its constituents of H and O are not recombined and instead produced jointly to make the single combustible gas composed of combinations of clusters of hydrogen and oxygen atoms structured according to a general formula HmOn wherein m and n have null or positive integer values with the exception that m and n can not be 0 at the same time.
    Type: Application
    Filed: August 10, 2006
    Publication date: February 14, 2008
    Inventor: Dennis J. Klein
  • Patent number: 7179507
    Abstract: A thermal spray composition and method of deposition for abradable seals for use in gas turbine engines, turbochargers and steam turbines. The thermal spray composition includes a solid lubricant and a ceramic preferably comprising 5 to 60 wt % total of the composition in a ratio of 1:7 to 20:1 of solid lubricant to ceramic, the balance a matrix-forming metal alloy selected from Ni, Co, Cu, Fe and Al and combinations and alloys thereof. The solid lubricant is at least one of hexagonal boron nitride, graphite, calcium fluoride, lithium fluoride, magnesium fluoride, barium fluoride, tungsten disulfide and molybdenum disulfide particles. The ceramic includes at least one of albite, illite, quartz and alumina-silica.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 20, 2007
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Petr Fiala, Anthony Peter Chilkowich, Karel Hajmrle
  • Patent number: 7124960
    Abstract: The invention relates to an electric arc wire burner for spraying an electric arc, comprising at least two burner tubes (3) for feeding electrodes which are embodied in the form of wire (5). Said electrodes are guided through the burner tube (3) in the direction of the surface of the object which is to be coated. The wire (5) is guided by a deflection device (7) comprising a number of rotationally mounted guiding elements and/or sliding elements (8) and the wire (5) is deformed in an elastic area.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: October 24, 2006
    Assignee: DaimlerChrysler AG
    Inventors: Sven Schach, Tilmann Haug, Alexander Sagel
  • Patent number: 7105205
    Abstract: A thermal spray mixed with a substrate using a non-consumable cylindrical rotating tool. The process may be repeated to create a composite-like coating or material. The coating or material may be machine to improve surface quality.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: September 12, 2006
    Assignee: Research Foundation of the State of New York
    Inventors: Clive Clayton, Herbert Herman, Henry White
  • Patent number: 7026016
    Abstract: The method of fabricating free standing objects using thermal spraying, preferably of a metal, in the following process. A wire mesh is formed into a three dimensional shape of the desired finished product and the shaped mesh is then thermally sprayed with a coating material to substantially cover the visible portions of the mesh. The preferred coating material is metal.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: April 11, 2006
    Inventor: Eric C. Bauer
  • Patent number: 7019249
    Abstract: A method is proposed for arc spraying by means of a spray gun (1). The spray gun includes two electrically conductive spray wires (2) and at least one first supply device (3) for supplying a fluid (4), with an electrical voltage being applied to the spray wires (2), the spray wires (2) being fed by means of a wire guide (5), an arc (6) being ignited by the electrical voltage, the spray wires (2) being converted into a melt (8) in a melting region (7) and the melt (8) being applied by the fluid (4) to the surface (9) of a body (10). In this connection, particles (11) from a storage container (12) are supplied to the melt (8) by the fluid (4).
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: March 28, 2006
    Assignee: Sulzer Metco AG
    Inventors: Gérard Barbezat, Christian Warnecke
  • Patent number: 6924249
    Abstract: Disclosed is a method for direct application of a catalyst to a substrate for treatment of atmospheric pollution including ozone. The method includes applying a catalytic metal to a substrate utilizing a thermal spray process. The process can be utilized to apply a base metal such as copper to a substrate and the base metal becomes the catalytically active oxide during and following application to the substrate. This system replaces a multi-step process within a single step process to provide a catalytically active surface that can be utilized to reduce ground level ozone and other atmospheric pollutants.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 2, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: John R. Smith, Michel Farid Sultan, Ming-Cheng Wu, Zhibo Zhao, Bryan A. Gillispie
  • Patent number: RE42705
    Abstract: A method for the manufacture of a cathode filament of an X-ray tube and an X-ray tube formed by the method wherein the filament has at least two legs and one body, the filament being a single-piece filament. Spraying at least one material on a support by plasma spraying or by another deposition technique to obtain the filament molded on the support and separating the filament obtained from the support. The filament obtained has a variable thickness and a variable composition. The thicknesses of the legs and of the body as well as the composition of the filament can be modified according to the user's needs.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: September 20, 2011
    Assignee: GE Medical Systems Global Technology Co., LLC
    Inventors: Gwenael Lemarchand, Jean-Louis Penato