Including Synthetic Resin Or Polymer Patents (Class 428/407)
  • Patent number: 9005759
    Abstract: A pulverulent and mineral oil-free composition which is present as binary system and contains as main constituents a) from 5 to 40% by weight of at least one fatty acid derivative and/or fatty alcohol derivative, b) from 0.5 to 10% by weight of at least one silicone oil and c) from 20 to 85% by weight of at least one support material, with the components a) and b) having been applied to the support material c), is proposed. Suitable components a) are, in particular, fatty alcohol alkoxylates comprising ethylene oxide units and propylene oxide units. Polydimethylsiloxanes are particularly suitable representatives of silicone oils b). The support material c) is selected from the group consisting of chalk, dolomite, shell limestone and silica. The composition has a bimodal particle size distribution in the range from 10 to 120 ?m. Such compositions are used, in particular, as antifoams for dry mortar applications.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 14, 2015
    Assignee: BASF Construction Solutions GmbH
    Inventors: Markus Maier, Daniele Theissig, Klaus Prosiegel, Johann Goldbrunner
  • Patent number: 9005996
    Abstract: The current invention is a capture-particle comprising: a) a molecular sieve portion; and b) an analyte binding portion; wherein the molecular sieve portion, analyte binding portion or both further comprise a cross-linked region having modified porosity. Capture particles wherein the molecular sieve portion, analyte binding portion or both comprise pore dimensions sufficient to exclude molecules larger than about 60 kDa. These particles are useful in purification and diagnostic methods. Kits comprising the capture particles are also described.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: April 14, 2015
    Assignee: George Mason Research Foundation
    Inventors: Lance Liotta, Emanuel Petricoin, David Geho
  • Patent number: 9005494
    Abstract: Prior art processes for producing protein-based capsules (for example, capsules for use in electrophoretic media) tend to be wasteful because they produce many capsules outside the desired size range, which is typically about 20 to 50 ?m. Capsule size distribution and yields can be improved by either (a) emulsifying a water-immiscible phase in a preformed coacervate of the protein; or (b) using a limited coalescence process with colloidal alumina as the surface-active particulate material.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: April 14, 2015
    Assignee: E Ink Corporation
    Inventors: Peter J. Valianatos, Rajesh Chebiyam, Jeremy J. Manning, Michael L. Steiner, Thomas H. Whitesides, Michael D. Walls
  • Patent number: 8999868
    Abstract: A non-woven product containing organic and/or mineral particles has a volume density less than 1 and has at least two layers of synthetic fibers or filaments superposed in the Z direction perpendicular to the XY plane of the product, having undergone at least one needling operation, where the non-woven product integrates particulate feedstocks of mineral and/or organic particles distributed in a monomodal or multimodal manner in the product and at least partially coated or encapsulated by binding material that can point-connect the filaments or fibers to one another. At least one population or fraction of organic and/or mineral particles, has a size such that: 3×(?{square root over (SMf)})3?v, preferably 5×(?{square root over (SMf)})3?v, where SMf corresponds to the mean cross-section of the fibers or filaments that form the layers, and v represents the mean individual volume of the organic or mineral particles.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 7, 2015
    Assignee: Freudenberg Politex SA (Societe Anonyme)
    Inventors: Frédéric Rosé, Georges Riboulet, Massimo Migliavacca, Jean-Marc Losser, Robert Groten
  • Patent number: 8992799
    Abstract: A polymer composite composed of a polymerized mixture of functionalized carbon nanotubes and monomer which chemically reacts with the functionalized nanotubes. The carbon nanotubes are functionalized by reacting with oxidizing or other chemical media through chemical reactions or physical adsorption. The reacted surface carbons of the nanotubes are further functionalized with chemical moieties that react with the surface carbons and selected monomers. The functionalized nanotubes are first dispersed in an appropriate medium such as water, alcohol or a liquefied monomer and then the mixture is polymerized. The polymerization results in polymer chains of increasing weight bound to the surface carbons of the nanotubes. The composite may consists of some polymer chains imbedded in the composite without attachment to the nanotubes.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 31, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw
  • Patent number: 8993112
    Abstract: Polymeric particles comprising a polymeric matrix that has been formed from a blend of monomers comprising a first monomer which is an ethylenically unsaturated ionic monomer and a second monomer which is an ethylenically unsaturated hydrophobic monomer which is capable of forming a homopolymer of glass transition temperature in excess of 50° C., wherein secondary particles are distributed throughout the matrix, in which the secondary particles comprise a hydrophobic polymer that has been formed from an ethylenically unsaturated hydrophobic monomer which is capable of forming a homopolymer of glass transition temperature in excess of 50° C. and optionally other monomers, which hydrophobic polymer is different from the polymeric matrix. Also claimed is a process for preparing particles. The particles have improved shatter resistance. Preferably the polymeric particles comprise an active ingredient, especially a colorant.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: March 31, 2015
    Assignee: BASF SE
    Inventors: Stewart Todd Elder, Christina Ligia Andrianov, Kishor Kumar Mistry, Janine Andrea Preston, Mark Christopher Baxter
  • Patent number: 8993691
    Abstract: Disclosed are particles that have an exterior surface coated with a thin polymeric coating, such as a coating that includes a sulfur-containing polymer. Also disclosed are compositions, such as fuel-resistant sealant and coating compositions, which include such particles. Aerospace vehicles having an aperture at least partially sealed with a sealant deposited from such a sealant composition are also disclosed.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 31, 2015
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Lawrence G. Anderson, Chester J. Szymanski
  • Publication number: 20150087764
    Abstract: Disclosed herein are materials and compositions comprising: an oxidized carbon black having a BET surface area ranging from 50 to 700 m2/g, a DBP oil adsorption number ranging from 50 to 200 mL/100 g, and a primary particle size ranging from 7 to 30 nm; and a polyetheramine comprising ethylene oxide and propylene oxide monomers, wherein the polyetheramine coats the oxidized carbon black. Also disclosed are coatings and coating compositions comprising these materials and methods of making the same.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 26, 2015
    Applicant: Cabot Corporation
    Inventors: Angelica Maria Sanchez Garcia, Eugene N. Step, Jeffrey Scott Sawrey, Lang H. Nguyen, Joshua B. Preneta
  • Patent number: 8986807
    Abstract: An artificial turf system that includes a plurality of pellets in an infill disposed on a backing material and between individual synthetic fibers extending away from the backing material, wherein the pellets are a fire retardant material, for example, a salt, and more particularly an inorganic salt, encapsulated in a water insoluble material.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Tarkett Inc.
    Inventor: John Rodgers
  • Patent number: 8986839
    Abstract: A metal-containing particle aggregate of an embodiment of the present invention includes a plurality of core-shell particles. Each of the core-shell particles includes: a core portion that contains at least one magnetic metal element selected from the first group consisting of Fe, Co, and Ni, and at least one metal element selected from the second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that includes a carbon-containing material layer and an oxide layer that covers at least part of the core portion and includes at least one metal element that belongs to the second group and is contained in the core portion.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Maki Yonetsu, Tomohiro Suetsuna, Kouichi Harada, Seiichi Suenaga, Yasuyuki Hotta, Toshihide Takahashi, Tomoko Eguchi, Mutsuki Yamazaki
  • Publication number: 20150079397
    Abstract: A process for encapsulating TiO2 particles by polymerizing sodium styrene sulfonate with a redox initiator system; then polymerizing a first monomer mixture comprising at least 60 wt % acrylic monomers; then polymerizing a second monomer mixture comprising at least 40 wt % vinyl ester monomers.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 19, 2015
    Inventors: Kathleen A. Auld, James Keith Bardman, Michele Heffner, David G. Kelly, Michael Rhodes
  • Publication number: 20150068637
    Abstract: A composite particle includes a spheroidal core having a polymeric layer disposed thereon. In one embodiment, the polymeric layer includes a cationic surfactant and at least one of a nonionic polymer or an anionic polymer. In another embodiment, the polymeric layer includes a cationic polymer and an anionic polymer. Methods of making the composite particles, composite materials, and articles including them are also disclosed.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventors: Carlos A. Barrios, Baris Yalcin, Stephen E. Amos
  • Patent number: 8968874
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 8962140
    Abstract: Functionalized nanoparticles, which are obtainable by combining in a first step a functionalized dyestuff, a silicon-based spacer and a catalyst, and in a second step reacting the product obtained in the first step with a co-reactive organic silicon, aluminum, zirconium or titanium compound. Optionally, the thus obtained functionalized nanoparticles can be combined or encapsulated with a polymer. The functionalized nanoparticles are useful as colorants and fluorescents in plastics, paints, inks, electronic materials, cosmetic articles, and the like.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Martin Müller, Didier Bauer, Thomas Ruch, Leonhard Feiler, Wolfgang Schlenker, Christian Cremer
  • Patent number: 8962138
    Abstract: The present invention relates to polysiloxane nanoparticles having the following properties: an average particle size d50 (measured using REM recordings) in the range of 10-200 nm, a specific surface area Ao of at least 50 m2/g, a pore volume of at least 0.2 cm3/g, an average pore volume d50 of at least 0.8 nm, wherein the particles have groups that contain carbon, which groups are bonded to the silicon at least partially in the form of unsubstituted or substituted alkyl, alkenyl, aryl, arylalkyl, or alkylaryl groups.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: February 24, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Monika Bauer, Hans-Juergen Glaesel
  • Patent number: 8956725
    Abstract: A method for preparing a crosslinked polymer coated controlled porosity glass (CPG) particle is provided. The method involves mixing CPG particles in a solution comprising polyvinylbenzylchloride and a first solvent at a temperature below 10° C. A second solvent is added and a crosslinking agent is added to the mixture. The first solvent is removed rapidly within 1½ hours of addition of the crosslinking agent. The crosslinking reaction is permitted to proceed and the mixture is then cooled and treated to remove any remaining solvent. The resulting coated CPG particles are washed and dried. Also provided a polymer coated CPG particles using for loading ligand thereon.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: February 17, 2015
    Assignee: Prime Synthesis, Inc.
    Inventors: Marc L. Rothstein, Dianne M. Rothstein, Dan P. Lee
  • Patent number: 8951636
    Abstract: Provided are composite particles which exhibit excellent fluidity and high liquid retentivity and which exhibit high fluidity even in a liquid-holding sate. Also provided are composite particles which permit direct compressing in an open feed manner and which suffer from little compressing trouble and exhibit high shapability. When shaped together with an active ingredient, the composite particles provide shaped bodies which have uniform weight, uniform active ingredient content, and high hardness and which suffer from less galling.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 10, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takumi Magome, Kazuhiro Obae
  • Patent number: 8951634
    Abstract: The present invention relates to a filler material for a floor, comprising a natural base material and a mixture containing loess and a resin in powder or pellet form, as well as to a method for producing the filler material. The filler material of the present invention uses the natural base material and is thus environmentally-friendly and not harmful to the human body. Further, in the event rice husks are used as the natural base material, a person slipping on the floor is protected from burning caused by friction as the rice husks have a high moisture content. In addition, the loess contained in the filler material keeps the floor from becoming moldy and emits far infrared radiation, and therefore is beneficial to the human body. The resin emulsion of the filler material prevents the natural base material from generating dust, thus preventing dust from entering the human body via the respiratory organs of the human body.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 10, 2015
    Inventors: Mi-Suk Jung, Bo Jung Park
  • Patent number: 8945421
    Abstract: A surface-modified silicate luminophore includes a silicate luminophore and a coating includes at least one of (a) a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and (b) a combination of the fluorinated coating and at least one moisture barrier layer. The moisture barrier layer includes MgO, Al2O3, Y2O3, La2O3, Gd2O3, Lu2O3, and SiO2 or the corresponding precursors, and the coating is disposed on the surface of the silicate luminophore.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 3, 2015
    Assignees: Seoul Semiconductor Co., Ltd., Litec-LP GmbH
    Inventors: Chung Hoon Lee, Walter Tews, Gundula Roth, Detlef Starick
  • Patent number: 8945287
    Abstract: The present disclosure relates to active particle-enhanced membrane and methods for making and using the same. In some embodiments, a breathable membrane includes a base material solution and active particles. The active particles incorporated in the membrane may improve or add various desirable properties to the membrane, such as for example, the moisture vapor transport capability, the odor adsorbance, the anti-static properties, or the stealth properties of the membrane. In some embodiments, the base material may exhibit water-proof properties when converted into non-solution state, and thereby result in a water-proof membrane. In some embodiments, the active particles may be protected from losing activity before, during, or after (or any combination thereof) the process of producing the membrane. The membrane may be applied to a substrate, or may be used independent of a substrate.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: February 3, 2015
    Assignee: Cocona, Inc.
    Inventor: Gregory W. Haggquist
  • Patent number: 8945711
    Abstract: It is an object of the present invention to provide a water-based composite resin composition which has an excellent long-term storage stability and which enables formation of a coating film having an excellent water resistance and solvent resistance. The present invention relates to a water-based composite resin composition and a coating agent; the water-based composite resin composition containing composite resin particles (A) and an aqueous medium (B), the composite resin particles (A) containing polyester resin (a1) particles having a sulfonate group and an epoxy resin (a2) of which some or all parts are encapsulated in the polyester resin (a1) particles, wherein a mass ratio [(a1)/(a2)] of the polyester resin (a1) to the epoxy resin (a2) in the composite resin particles (A) is in the range of 95/5 to 30/70.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: February 3, 2015
    Assignee: DIC Corporation
    Inventors: Tomokazu Higeshiro, Mitsuru Kitada
  • Patent number: 8936853
    Abstract: The invention relates to plastisols which even without the addition of adhesion promoters exhibit high adhesion to metallic and cathodically deposition-coated substrates.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 20, 2015
    Assignee: Kaneka Belgium N.V.
    Inventors: Jan Hendrik Schattka, Gerd Loehden, Marita Kaufmann, Winfried Belzner, Michael Wolff, Rainer Lomoelder, Dirk Hoppe, Christoph Nacke
  • Patent number: 8932724
    Abstract: A reflective coating is disclosed that has a base layer provided with a reflective surface for reflecting electromagnetic radiation, such as visible and solar near-infrared light. The reflective coating also has a dielectric layer formed on the reflective surface, and an absorber layer. The absorber layer is formed on the dielectric layer that is formed on the base layer. The reflective coating has an average reflectance greater than about 60% for wavelengths of electromagnetic radiation in the range of 800 to 2500 nm that is irradiated upon the reflective coating. Additionally, the reflective coating has an average reflectance for wavelengths of electromagnetic radiation in the range of 400 to 700 nm irradiated upon the reflecting coating that is less than the average reflectance of the reflective coating from 800 to 2500 nm.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: January 13, 2015
    Assignee: General Atomics
    Inventor: Lawrence D. Woolf
  • Patent number: 8927103
    Abstract: A method produces activated carbon, suitable in particular for use in double-layer condensers. The method includes a) producing a mixture of a preferably pulverulent carbon material, a base and a hydrophilic polymer chemically inert to the base, b) pressing the mixture produced in step a) to form a pressing and c) activating the pressed body produced in step b).
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 6, 2015
    Assignee: SGL Carbon SE
    Inventors: Thomas Kirschbaum, Astrid Rota
  • Patent number: 8927078
    Abstract: The present invention relates to encapsulated activated carbon and a method of preparing the same to protect the structure of the activated carbon and preserve the odor absorbing capability of the activated carbon particles. Particularly, the present invention is directed to a polymer article having odor absorption capabilities comprising a film comprising a matrix polymer and activated carbon particles at least partially encapsulated with a non-water soluble amorphous polymer, wherein the non-water soluble amorphous polymer is incompatible with the matrix polymer. The polymer article can be a bag.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: January 6, 2015
    Assignee: Reynolds Consumer Products Inc.
    Inventors: Chieh-Chun Chau, William F. Patchen
  • Patent number: 8920927
    Abstract: Resin particles which are excellent in electrostatic property, thermal storage stability and thermal properties, and have evenness of particle diameter are to be provided. The resin particles are core-shell resin particles (C2) each comprising one or more film-like shell layers (P) comprising a first resin (a) and a core layer (Q) comprising a second resin (b). Core-shell type resin particles (C2) each comprising a film-like shell layer (P) in one or more layer structure comprising a first resin (a) and a core layer (Q) in one layer structure comprising a second resin (b), wherein the weight ratio of (P) and (Q) is in a range of (0.1:99.9) to (70:30), the content of volatile components of (C2) is 2% by weight or lower, and (a) has an initial softening temperature of 40 to 270° C., a glass transition temperature of 20 to 250° C., a flow temperature of 60 to 300° C., and the difference of the glass transition temperature and the flow temperature in a range of 0 to 120° C.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: December 30, 2014
    Assignee: Sanyo Chemical Industries, Ltd
    Inventors: Takao Mukai, Tsuyoshi Izumi, Natsuki Nakamichi
  • Patent number: 8920923
    Abstract: A process for the production of a lignocellulose-containing material, in which, based in each case on the lignocellulose-containing material: A) from 30 to 95% by weight of lignocellulose particles; B) from 1 to 25% by weight of expanded plastic particles having a bulk density in the range from 10 to 150 kg/m3; C) from 1 to 50% by weight of a binder selected from the group consisting of aminoplast resin, phenol-formaldehyde resin and organic isocyanate having at least two isocyanate groups, and optionally D) additives are mixed and are then pressed at elevated temperature and under elevated pressure, wherein the component B) comprises a curing agent for the component C).
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: December 30, 2014
    Assignee: BASF SE
    Inventors: Maxim Peretolchin, Günter Scherr, Stephan Weinkötz, Frank Braun, Olaf Kriha, Benjamin Nehls, Michael Schmidt, Michael Finkenauer, Jürgen von Auenmüller
  • Publication number: 20140377538
    Abstract: The invention relates generally to a process for the preparation of water-absorbent polymer particles, comprising the process steps including of drying the polymer gel particles wherein in process step (viii) the gel particles obtained in process step (vii) are charged onto the surface of the belt material of a belt dryer at a position L0 and are subsequently dried on their way through the belt dryer and wherein the belt material has been cooled before coming into contact with the gel particles. The invention also relates to water-absorbent polymer particles obtainable by such a process.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 25, 2014
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Herbert Vorholt, Henry Rudolph, Armin Reimann, Volker Becker, Detlef Jung, Manfred van Stiphoudt
  • Patent number: 8916650
    Abstract: The present invention relates to an inner-plasticized vinyl chloride-based copolymer resin not requiring plasticizers and a preparation method thereof. Specifically, the vinyl chloride-based copolymer resin is prepared by a suspension polymerization method of initiating the polymerization of vinyl chloride monomer, feeding a certain amount of butyl acrylate continuously or discontinuously thereinto and carrying out the additional polymerization at the temperature higher than the polymerization initiation temperature so as to prepare a core-shell type vinyl chloride-based random copolymer resin. The vinyl chloride-based copolymer resin of core-shell structure prepared by the present invention includes vinyl chloride-butyl acrylate copolymer, and it can provide a vinyl chloride-butyl acrylate copolymer product which can be processed without plasticizers positively necessary to produce a soft product.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 23, 2014
    Assignee: Hanwha Chemical Corporation
    Inventors: Ji-Woo Kim, Jee-Hyong Lee, Jung-Ho Kong, Yong-Kook Jung, Sang-Hyun Cho
  • Publication number: 20140370090
    Abstract: Tablets and other objects are film coated by including in the tablet a film-forming polymer that is activated upon contact with an activating amount of liquid. The film-forming polymer, e.g., a cellulosic ether, is homogeneously mixed with the other ingredients of the tablet, shaped into any desirable form, loaded into a conventional coating apparatus, and sprayed or foamed with an activating amount of fluid, e.g., water, alcohol, etc., and dried. This coating process eliminates potential problems such as spray nozzle clogging, inappropriate coating fluid viscosity, and the inability to properly atomize the coating fluid. This coating process does not impart any appreciable weight or thickness gain to the tablet.
    Type: Application
    Filed: April 16, 2014
    Publication date: December 18, 2014
    Inventors: Paul J. Sheskey, Colin M. Keary
  • Publication number: 20140371370
    Abstract: Process for the preparation of a vinylidene chloride polymer composite comprising a solid particulate encapsulated in the vinylidene chloride polymer. The process comprises providing a dispersion of a solid particulate material in a liquid phase, said dispersion comprising a RAFT/MADIX agent; providing vinylidene chloride and optionally one or more ethylenically unsaturated monomer copolymerisable therewith to said dispersion; and polymerising vinylidene chloride and said optionally present one or more ethylenically unsaturated monomer under the control of said RAFT/MADIX agent to form polymer at the surface of said solid particulate material.
    Type: Application
    Filed: December 18, 2012
    Publication date: December 18, 2014
    Inventors: Jérome Vinas, Pierre-Emmanuel Dufils, Jérome Garnier, Patrick Lacroix-Desmazes, Alex Van Herk, Jérome Warnant, Yves Vanderveken
  • Patent number: 8911854
    Abstract: The present invention provides an optical film and s retardation film characterized in that each of them includes: an acrylic resin; and 20-65 parts by weight of at least two graft copolymers containing a conjugated diene-based rubber, based on 100 parts by weight of the acrylic resin, wherein at least two of the graft copolymers have different particle sizes. The present invention also provides a production method therefore.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 16, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Byoung-II Kang, Chang-Hun Han, Chan-Hong Lee, Dae-Woo Lee, Jae-Bum Seo, Sang-Seop Kim
  • Patent number: 8911866
    Abstract: A powder for a powder magnetic core, a powder magnetic core, and methods of producing those products are provided, so that mechanical strength of a powder magnetic core can be enhanced by hydrosilylation reaction between vinylsilane and hydrosilane without degrading magnetic properties. The powder for a powder magnetic core is composed of magnetic particles 2 having a surface 21 coated with an insulating layer 3, wherein the insulating layer 3 includes a polymer resin insulating layer 33 comprising vinylsilane 4 and hydrosilane.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: December 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Okamoto, Daisuke Ichigozaki, Shin Tajima, Masaaki Tani
  • Patent number: 8912252
    Abstract: A coated pigment that includes polymer encapsulations which act as a pigment dispersant and film forming agent, coating systems that include the coated pigment and methods for producing the coated pigment and the coating system are described. The polymer encapsulations of the coated pigments allow the coated pigments that are included in the coating system to be dispersed without the addition of any other dispersants and/or resins. Thus, the disclosed coated pigments simplify the process of making coating systems. The disclosed coated pigments also extend the shelf-life of the coating systems, and provide a final coating with enhanced pigment orientation and aesthetics.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 16, 2014
    Assignee: Silberline Manufacturing Company, Inc.
    Inventors: Chang Xu, Hai Hui Lin, Parfait Jean Marie Likibi
  • Patent number: 8906505
    Abstract: A composition for colloidal crystals including core-shell particles and a monomer having a particular structure. The core-shell particles constitute 25% to 65% by weight of the composition, and the monomer constitutes 35% to 75% by weight of the composition. The core has an average particle size from 50 to 900 nm. Each particle includes a core and a shell. The shell is formed of a linear polymer composed of at least one of styrene and a monomer having a particular structure. One end of the linear polymer is covalently bonded to the core. The refractive index of the core (n(core)) satisfies the following formulae: wherein R1 denotes a hydrogen atom or a methyl group, and y is 0 or 1, n(shell)?n(core)?0.07, n(shell) denoting the refractive index of the shell, and n(B)?n(core)?0.07, n(B) denoting the refractive index of the monomer (B1) after curing.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: December 9, 2014
    Assignee: NOF Corporation
    Inventors: Masaki Hayashi, Masumi Takamura
  • Patent number: 8906699
    Abstract: The present invention provides for functionalized fluorescent nanocrystal compositions and methods for making these compositions. The compositions are fluorescent nanocrystals coated with at least one material. The coating material has chemical compounds or ligands with functional groups or moieties with conjugated electrons and moieties for imparting solubility to coated fluorescent nanocrystals in aqueous solutions. The coating material provides for functionalized fluorescent nanocrystal compositions which are water soluble, chemically stable, and emit light with a high quantum yield and/or luminescence efficiency when excited with light. The coating material may also have chemical compounds or ligands with moieties for bonding to target molecules and cells as well as moieties for cross-linking the coating.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Life Technologies Corporation
    Inventor: Imad Naasani
  • Patent number: 8900708
    Abstract: Disclosed is a resin-coated metal pigment comprising 100 parts by weight of a metal pigment and 0.1 to 50 parts by weight of a resin, wherein the resin is attached on the surface of the metal pigment. The resin-coated metal pigment is produced by circulating a portion of a slurry solution containing the metal pigment in an external-circulation type vessel during the resin coating treatment in a reaction vessel and applying a vibration to the external-circulation type vessel with an ultrasonic wave.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: December 2, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Fahmi Yunazar, Shigeki Katsuta
  • Patent number: 8900703
    Abstract: An electronic device is described. The electronic device includes a circuit chip. The electronic device also includes a coating covering at least a portion of the circuit chip. The coating further includes a nanomaterial, to protect the circuit chip from at least one of identifying the chip structure, reading memory locations, or modifying memory locations.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: December 2, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: John Thommana, Lizy Paul, Jeffrey D. Meyer
  • Patent number: 8901333
    Abstract: Coated fluorescent semiconductor nanoparticles having an organic surface layer of multi-functional surface ligands that include a nanocrystal binding center and one or more covalently attached functional groups or reactive functional groups are described as well as water-dispersible nanoparticles having an organic surface layer or multi-functional surface ligands and methods for the preparation and use of such coated nanoparticles.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 2, 2014
    Assignee: Life Technologies Corporation
    Inventors: Eric Tulsky, Eric Welch, Bruce Branchaud, Roman Rozhkov
  • Patent number: 8895144
    Abstract: Disclosed are a multifunctional thermal conducting and/or radiating particle simultaneously having at least one of various functions, such as electromagnetic wave absorbing property, flame retardency, antistatic property, insulating property, thermal resistance and electrical conductivity, as well as a thermal conductivity, a composite array having the same and a fabrication method thereof. The multifunctional thermal conducting and/or radiating particle is composed of a core and a shell, wherein the core includes a core particle having a lower thermal conductivity than that of a particle included in the shell, and the shell includes high-thermal conductive particles each having a higher thermal conductivity than that of the core particle.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: November 25, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Sang Woo Kim, Seon Young Moon
  • Patent number: 8889765
    Abstract: The invention relates to a process for producing a water-absorbing material by coating water-absorbing polymer particles with a film-forming polyurethane and silica, heat treating the coated particles and coating the heat-treated particles with pyrogenic hydrophilic silica. The invention further relates to the water-absorbing material obtainable according to the process of the invention. The water-absorbing material has improved wicking ability (FHA) and core shell saline flow conductivity (CS-SFC).
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 18, 2014
    Assignee: BASF SE
    Inventors: Yvonne Hagen, Klaus Dieter Hörner, Axel Meyer, Robin McKiernan, Carolyn A. Spitzmueller
  • Patent number: 8889777
    Abstract: A composition for use as a sport or recreational surface includes about 88 to 90 percent by weight of a sand blend that is formed of at least three different sands mixed together, the sand blend including a first sand that is represents a majority by weight of the sand blend and has a clay/silt content of at least 1% by weight; about 5-7 percent by weight of a hydrocarbon wax; at least about 2 percent by weight of polymeric material; and at least about 3 percent by weight of rubber, the percentage by weight of each ingredient being based on the total weight of the composition.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: November 18, 2014
    Inventors: Lawton Adams, Karen Leeming
  • Publication number: 20140335359
    Abstract: The present invention provides a band seal for hard capsules filled with PEG, particularly a low-molecular-weight PEG, PEG 200 to 600, the band seal being capable of effectively preventing content leakage through the gap between the body and cap of the capsule; and a liquid for preparing the band seal. The present invention further provides a hard capsule filled with PEG, particularly a low-molecular-weight PEG, PEG 200 to 600, the filled capsule being prevented content leakage through the gap between the body and cap of the capsule. The band seal can be prepared using a polyvinyl alcohol, a polyvinyl alcohol copolymer, or a mixture thereof as a main component.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Inventor: Shinji TOCHIO
  • Patent number: 8883311
    Abstract: The present invention relates to a conductive particle, a conductive adhesive with the conductive particles, a LCD panel with the conductive adhesive, a method of manufacturing of the conductive particle and a method of manufacturing of the conductive adhesive. The conductive particle comprising an outer coating layer of graphite and an inner core of an organic resin enclosed by the outer coating layer, and therefore the conductive particles can have good conductivity as well as good strength and elasticity.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 11, 2014
    Assignee: Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventor: Yuhua Li
  • Patent number: 8883924
    Abstract: Provided is a resin blend including a first resin and a second resin, the second resin having a hydrophobic functional group in a side chain and having a surface energy difference of 0.1 to 20 mN/m from the first resin at 25° C., the resin blend being capable of forming a layer separation structure. Also, provided are a pellet, a method for preparing the same, and a resin molding article having a specific layer separation structure. The resin blend may not only improve mechanical properties and surface hardness of the molding article but also shorten process time, increase productivity and reduce production cost by omitting an additional surface coating step.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 11, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Houng Sik Yoo, Jin Young Ryu, Woo Sung Kim, Han Na Lee, Eun Joo Choi, Hyeon Choi
  • Patent number: 8883310
    Abstract: A metal-containing particle aggregate of an embodiment of the present invention includes a plurality of core-shell particles. Each of the core-shell particles includes: a core portion that contains at least one magnetic metal element selected from the first group consisting of Fe, Co, and Ni, and at least one metal element selected from the second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that includes a carbon-containing material layer and an oxide layer that covers at least part of the core portion and includes at least one metal element that belongs to the second group and is contained in the core portion.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Maki Yonetsu, Tomohiro Suetsuna, Kouichi Harada, Seiichi Suenaga, Yasuyuki Hotta, Toshihide Takahashi, Tomoko Eguchi, Mutsuki Yamazaki
  • Patent number: 8871180
    Abstract: This invention provides organic-inorganic hybrid particles containing as the essential components a block copolymer comprising an uncharged hydrophilic polymer chain segment and a polymer chain segment containing a repeated structural unit having a carboxylate ion group at its side chain; calcium ion (Ca2+), phosphate ion (PO43?) or carbonate ion (CO32?), or a mixture of these anions; and a contrast agent. The particles provide, in particular, carriers for stably delivering an MRI contrast agent to a target site.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: October 28, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunori Kataoka, Michiaki Kumagai, Keisuke Aikawa
  • Patent number: 8871345
    Abstract: Disclosed are composite pellets for extrusion molding wherein fusion does not occur between the pellets, and there is no variation in size and density. A molten material obtained by an extruder for a raw material containing a thermoplastic resin and wood powder is extruded into a strand shape through a die nozzle of the extruder, and cut into a predetermined length to form a pellet. At this time, the extrusion amount, the diameter of each nozzle hole, and the number of nozzle holes are adjusted so that the linear velocity (?d) of the molten material in each nozzle hole of the die nozzle is in the range of 12 to 50 cm/sec. Further, regardless of the variations in particle diameter, etc., a stable amount of the composite pellets are supplied to the extruder, and smoothly introduced to a screw of the extruder. The composite pellets and 12-hydroxystearic acid containing a metal of Ca, Mg, or Zn are agitated together, and 0.03 to 0.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 28, 2014
    Assignee: WPC Corporation
    Inventors: Takeyasu Kikuchi, Kazumasa Morita, Koji Higashi, Yuichiro Nakamura
  • Patent number: 8863841
    Abstract: Alkanesulfonic acid microcapsules and the use thereof as an additive for acidizing applications in carbonatic rock formations, especially for increasing the permeability of underground carbonatic mineral oil- and/or natural gas-bearing and/or hydrothermal rock formations and for dissolving carbonatic and/or carbonate-containing impurities in the production of mineral oil and/or natural gas or geothermal power generation are described. Additionally described is an acidic formulation comprising the inventive microcapsules and the use thereof for the aforementioned purpose, and a corresponding process.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Walter Bertkau, Norbert Steidl
  • Patent number: 8865797
    Abstract: A core-shell composite particle for incorporation into a composite wherein the composite has improved transparency is disclosed. The core-shell composite particle includes a core material having a first refractive index and a shell material having a second refractive index where the core-shell particle has an effective refractive index determined by the first refractive index and the second refractive index. The effective refractive index is substantially equal to the refractive index of the envisioned embedding medium. Methods of forming the core-shell particles are also disclosed.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 21, 2014
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Michael R. Bockstaller