Porous Component Patents (Class 428/550)
  • Publication number: 20110148064
    Abstract: A multilayered sliding member 51 includes: a backing plate 52 formed of a steel plate; a porous metal sintered layer 53 formed integrally on the surface of the backing plate 52; and a sliding layer 54 constituted of a synthetic resin composition filling pores of, and coating the surface of, the porous metal sintered layer 53, the synthetic resin composition being composed of 5 to 30% by weight of a barium sulfate, 1 to 15% by weight of a magnesium silicate, 1 to 25% by weight of a phosphate, 0.5 to 3% by weight of a titanium oxide, and the balance of a polytetrafluoroethylene resin.
    Type: Application
    Filed: August 26, 2009
    Publication date: June 23, 2011
    Inventors: Sumihide Yanase, Takashi Nakamaru, Tadashi Watai, Satoshi Takamura, Eiichi Yamashita
  • Patent number: 7935430
    Abstract: A bonding structure and method of manufacturing the same are provided. The bonding structure of a substrate and a component include an electrode formed of metal powder and a resin component on the substrate. A low melting point solder that bonds the component to the electrode. The metal powder contains at least spherical metal powder and flake metal powder. The low melting point solder is infiltrated from the surface of the electrode into the electrode.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: May 3, 2011
    Assignee: Alps Electric Co., Ltd.
    Inventors: Hiroki Suzuki, Masato Uehara
  • Publication number: 20110097593
    Abstract: (Task) A PTFE-based sliding material, wherein the porous sintered layer on the surface of backing metal is impregnated with baked PTFE, and occasionally, with one or both of the solid lubricant and wear-resistant additive together with fibrous PTFE, is used for a bearing of air-conditioner. Resistance of the bearing for local wear is required. Such wear resistance is to be enhanced. (Solution Means) Carbides of oligomer or polymer 2 are incorporated in the entangled structure of fibrous PTFE 1.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 28, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Masaru Yoshikawa, Akira Sawamoto, Hiroshi Ueda
  • Publication number: 20110083909
    Abstract: Diamond bonded construction comprise a diamond body attached to a support. In one embodiment, an initial substrate used to sinter the body is interposed between the body and support, and is thinned to less than 5 times the body thickness, or to less than the body thickness, prior to attachment to the support to relieve stress in the body. In another embodiment, the substrate is removed after sintering, and the body is attached to the support. The support has a material construction different from that of the initial substrate, wherein the initial substrate is selected for infiltration and the support for end use properties. The substrate and support include a hard material with a volume content that may be the same or different. Interfaces between the body, substrate, and/or support may be nonplanar. The body may be thermally stable, and may include a replacement material disposed therein.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Yuelin Shen, Youhe Zhang
  • Publication number: 20110027603
    Abstract: An article of manufacture comprises a carbon-containing matrix. The carbon-containing matrix may comprise at least one type of carbon material selected from the group comprising graphite crystalline carbon materials, carbon powder, and artificial graphite powder. In addition, the carbon-containing matrix comprises a plurality of pores. The article of manufacture also comprises a metal component comprising Al, alloys of Al, or combinations thereof. The metal component is disposed in at least a portion of the plurality of pores. Further, the article of manufacture comprises an additive comprising at least Si. At least a portion of the additive is disposed in an interface between the metal component within the pores and the carbon-containing matrix. The additive enhances phonon coupling and propagation at the interface.
    Type: Application
    Filed: December 2, 2009
    Publication date: February 3, 2011
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Igor Pavlovsky, Nan Jiang, James P. Novak, Richard Fink, Mohshi Yang, Dongsheng Mao, Samuel Kim
  • Patent number: 7854996
    Abstract: A conventional Bi-containing sliding material sometimes underwent seizing in a sliding part operating at a high rotational speed. The present invention provides a sliding material which does not undergo seizing in a sliding part operating at a high rotational speed and a method for its manufacture. A low melting point alloy containing at least 20 mass % of Bi and having a liquidus temperature of at most 200° C. is made to penetrate into a porous portion comprising a Cu—Sn based alloy. A Bi—Sn based alloy or a Bi—In based alloy is suitable as the low melting point alloy. After a low melting point alloy paste is applied to a porous portion, the low melting point alloy is melted and made to penetrate into the porous portion.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: December 21, 2010
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Issaku Sato, Sinzo Nakamura, Naoki Sato, Toshio Hakuto
  • Patent number: 7812062
    Abstract: Olefin polymer-based, durable, open-cell foam compositions, structures and articles derived from same; methods for preparation of such foams; and use of the dry durable foams in various applications are disclosed. Further described is use of the foams and structures and articles made of same in absorption, filtration, insulation, cushioning and backing applications, and in particular for odor removal, hygiene and medical applications due to, among other properties, good absorption capabilities, softness and/or flexibility of the foams and their recyclable nature.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 12, 2010
    Assignee: Dow Global Technologies, Inc.
    Inventors: Gary M. Strandburg, Mark W. VanSumeren, Shaofu Wu, Luther E. Stockton
  • Publication number: 20100221567
    Abstract: A direct metal laser sintered material including a substrate formed from a laser sintering process, the substrate having at least one surface, and a cladding material brazed onto at least a portion of the surface.
    Type: Application
    Filed: May 7, 2010
    Publication date: September 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Edwin Budinger, Ronald Lance Galley, Ashwin Sreekant Raghavan, David Allen Kastrup
  • Patent number: 7776449
    Abstract: A composite article that can be used as a substrate for coated conductors is disclosed. The composite substrate has at least three layers in which one or more inner layers of Ni—W alloys with 9 at. %-13 at. % W and two outer layers of Ni—W alloys with 3 at. %-9 at. % W. The content of W element gradually decreases from the inner layers to the outer layers. The composite substrate can be prepared using a process of designing and sintering composite ingot, rolling composite ingot and then annealing composite substrate. The composite substrate have a dominant cube texture on the outer layer of the whole substrate which have a weaker magnetism and higher strength than that of a single Ni-5 at. % W alloy substrate.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 17, 2010
    Assignee: Beijing University of Technology
    Inventors: Hongli Suo, Min Liu, Yue Zhao, Meiling Zhou, Lin Ma, Tieyong Zuo
  • Publication number: 20100197534
    Abstract: In a multilayered sintered sliding member, a porous sintered alloy layer comprising 3 to 10 wt. % of an Sn component, 10 to 30 wt. % of an Ni component, 0.5 to 4 wt. % of a P component, 30 to 50 wt. % of an Fe component, 1 to 10 wt. % of a high-speed tool steel component, 1 to 5 wt. % of a graphite component, and 20 to 55 wt. % of a copper component is integrally diffusion-bonded to a backing plate.
    Type: Application
    Filed: July 30, 2008
    Publication date: August 5, 2010
    Inventors: Takayuki Yuasa, Masaya Yorifuji, Tomoyuki Yamane, Shinya Nishimura
  • Patent number: 7682704
    Abstract: A metal injection-molding feedstock is heated and plasticized. Supercritical carbon dioxide is injected into the feedstock to form micropores when the pressure is reduced and a parts mold is filled. The micropores are retained when the green parts are debindered and sintered.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: March 23, 2010
    Assignee: Southco, Inc.
    Inventor: Ratnesh K. Dwivedi
  • Publication number: 20100028703
    Abstract: A leak-proof membrane element (1) for the selective separation or cleaning of gas, wherein a metal foil (membrane) (3) is deposited onto a supporting stock (substrate) (2, 20) having connection means (4, 21, 34) on the ends/edges of the substrate allowing the membrane element to be installed in a housing. A metal foil (3), having a thickness of less that 10 micrometers and being selectively permeable for specific gases, is arranged in flakes or wound with overlapping joints (8) on the outside of the substrate (2, 20), any joints being welded together by diffusion bonding so that the foil forms a continuous, leak-proof metal membrane layer. The substrate being made of a material (metal, ceram, polymer, or combinations thereof) exhibiting a very high gas flux for the gas(es) that the membrane is to let through.
    Type: Application
    Filed: September 28, 2007
    Publication date: February 4, 2010
    Inventors: Rune Bredesen, Dag Slotfeldt-Ellingsen, Hallgeir Klette
  • Patent number: 7648760
    Abstract: In a method of manufacturing a microstructure, an aluminum member having an aluminum substrate and a micropore-bearing anodized layer present on a surface of the aluminum substrate is subjected at least to, in order, a pore-ordering treatment which involves performing one or more cycles of a step that includes a first film dissolution treatment for dissolving 0.001 to 20 wt % of a material constituting the anodized layer and an anodizing treatment which follows the first film dissolution treatment; and a second film dissolution treatment for dissolving the anodized layer, thereby obtaining the microstructure having micropores formed on a surface thereof. This method enables a microstructure having an ordered array of pits to be obtained in a short period of time.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: January 19, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Hatanaka, Tadabumi Tomita, Yoshinori Hotta, Akio Uesugi
  • Patent number: 7632565
    Abstract: Metal foams are impregnated with resins. The metal foam/polymer composite formed upon curing has excellent acoustic dampening and structural properties. Foams of various metals, such as aluminum, titanium, nickel, copper, iron, zinc, lead, silver, gold, platinum, tantalum, and alloys based on these metals, may be used. The polymer component may be any polymeric resin, for example, epoxy, natural rubber, acrylic, or phenolic.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: December 15, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: M. Ashraf Imam, Bhakta B. Rath, Teddy M. Keller
  • Publication number: 20090269605
    Abstract: The invention provides clad billet for hot working plastic deformation processes for the production of clad products, including, but not limited to, clad pipe and tubing by extrusion of a hollow, bicomponent composite billet having a fully dense structural component and a partially dense component of a specialty alloy at a fraction of porosity predetermined to provide a flow stress compatible with that of the structural component. The components are diffusion bonded to the predetermined fraction of porosity in the specialty component by application of heat and pressure over time, including by hot isostatically pressing the billet components. Computer modeling techniques can be used to determine processing conditions for obtaining flow stress compatibility.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Inventors: Virendra S. Warke, Stephen J. Mashl
  • Publication number: 20090246549
    Abstract: A glassy metal composite material includes: a Mg-based amorphous metal matrix; and a plurality of porous metal particles dispersed in the Mg-based amorphous metal matrix. The Mg-based amorphous metal matrix penetrates into pores in the porous metal particles. The porous metal particles have a hardness less than that of the Mg-based amorphous metal matrix.
    Type: Application
    Filed: July 22, 2008
    Publication date: October 1, 2009
    Applicant: I SHOU UNIVERSITY
    Inventors: Shian-Ching Jang, Chih-Ching Huang, Chih-Chiang Fu, Jia-Yu Ciou, Liang-Jan Chang
  • Patent number: 7594325
    Abstract: An aerofoil (35) for example a fan blade (26) comprises a leading edge (36), a trailing edge (38), a concave pressure surface extending (40) from the leading edge (36) to the trailing edge (38) and a convex suction surface (42) extending from the leading edge (36) to the trailing edge (38). The aerofoil (35) comprises a metal foam (50) arranged within a cavity defined by metal workpieces (52, 54). The metal foam (50) of the aerofoil (26) ideally has a density of less than 1g/cm3, is cheaper to manufacture and has improved fatigue behaviour and impact capability.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 29, 2009
    Assignee: Rolls-Royce plc
    Inventor: Simon Read
  • Patent number: 7560170
    Abstract: A method of preparing the surface of a porous metal substrate to receive a membrane. The method does not substantially decrease the average bulk porosity of the metal substrate. A hydrogen separation membrane supported on the porous metal substrate. A cold spray is used to reduce surface variance. Exposure to an ion beam may also be used after application on the cold spray to prepare the surface of the substrate for membrane deposition.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: July 14, 2009
    Assignee: Intelligent Energy, Inc.
    Inventor: Anand Chellappa
  • Patent number: 7534287
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 19, 2009
    Assignee: Entegris, Inc.
    Inventors: Robert Zeller, Christopher Vroman
  • Publication number: 20090035598
    Abstract: One embodiment includes a product including a metallic foam portion which may serve to reduce the weight of the product and/or vent the product and/or provide damping.
    Type: Application
    Filed: July 1, 2008
    Publication date: February 5, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael D. Hanna, Richard M. Kleber, Leonid C. Lev
  • Publication number: 20090011268
    Abstract: A bearing for a motorized fuel pump is made of a Cu—Ni based sintered alloy, composed of: 21 to 35% by mass of Ni, 5 to 12% by mass of Sn, 3 to 7% by mass of C, 0.1 to 0.8% by mass of P, and the balance of Cu and inevitable impurities. A matrix of the bearing is formed with pores with a porosity of 8 to 18%, and the P component is predominantly included at the grain boundary, and free graphite is distributed along the insides of open pores that are open to the surface and extending into the bearing. In this bearing, a Sn rich alloy layer containing equal to or more than 50% by mass of Sn is formed on the insides of the open pores and near openings of the open pores.
    Type: Application
    Filed: January 17, 2006
    Publication date: January 8, 2009
    Applicants: Mitsubishi Materials PMG Corporation, DENSO CORPORATION
    Inventors: Teruo Shimizu, Tsuneo Maruyama, Hideki Narisako, Tadashi Hazama
  • Publication number: 20090004499
    Abstract: There are provided multilayer composite materials comprising a first layer comprising aluminum, titanium, brass, copper, steel, or mixtures thereof; a foamable core layer comprising aluminum and a foaming agent; and a second layer comprising aluminum, titanium, brass, copper, steel, or mixtures thereof. The first and second layers can be the same or different. There is also provided a process for preparing such composite materials.
    Type: Application
    Filed: September 1, 2006
    Publication date: January 1, 2009
    Inventor: Sergei Vatchiants
  • Patent number: 7465500
    Abstract: Methods and apparatus are provided for a shield to protect a surface from the impact of hyper-velocity projectiles. The apparatus comprises a foam material that is configured to cover the surface to be protected and is attached directly to that surface. A coating material is typically disposed on the outer surface of the foam material and may penetrate the foam material to a predetermined depth. The foam material and the coating material are selected to form a composite having predetermined values of sonic velocity, toughness, and thermal conductivity. The composite of foam material and coating material can be significantly lighter in weight than a metal shield having equivalent protective characteristics.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: December 16, 2008
    Assignee: The Boeing Company
    Inventors: Sherwin Yang, Nathan J. Hoffman, Adon Delgado, Jr., Alan V. Von Arx, Michael P. Moriarty, Kathleen M. Sevener, Gerard D. Pelletier
  • Publication number: 20080220278
    Abstract: A device and system useful for highly efficient chemical and electrochemical reactions is described. The device comprises a porous electrode and a plurality of suspended nanoparticles diffused within the void volume of the electrode when used within an electrolyte. The device is suitable within a system having a first and second chamber preferably positioned vertically with respect to each other, and each chamber containing an electrode and electrolyte with suspended nanoparticles therein. When reactive metal particles are diffused into the electrode structure and suspended in electrolyte by gasses, a fluidized bed is established. The reaction efficiency is increased and products can be produced at a higher rate. When an electrolysis device can be operated such that incoming reactants and outgoing products enter and exit from opposite faces of an electrode, reaction rate and efficiency are improved.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventor: Robert Brian Dopp
  • Publication number: 20080193788
    Abstract: The present invention provides a heat insulating material comprising a heat insulating formed body and a sheet-shaped porous material bonded to at least a part of the surface of the heat insulating formed body with a binder, wherein the binder comprises: inorganic particles having an average particle size of 0.05 to 50 ?m; and at least one of a hydrolysate of a metal alkoxide compound and a sol of a metal oxide. Also, a method for producing the heat insulating material is disclosed.
    Type: Application
    Filed: February 13, 2008
    Publication date: August 14, 2008
    Applicant: NICHIAS CORPORATION
    Inventor: Shigeru Nakama
  • Publication number: 20080149571
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 26, 2008
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7390577
    Abstract: The invention relates to a spray powder for coating a substrate (2), in particular for coating a bearing part (2) of a bearing apparatus, the spraying powder having at least the following composition: carbon=0.1% to 1.5% by weight, manganese=0.1% to 8% by weight, sulphur=0.1% to 2% by weight, copper=0.1% to 12% by weight and iron=the balance in % by weight to 100%.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: June 24, 2008
    Assignee: Sulzer Metco AG
    Inventor: Gérard Barbezat
  • Patent number: 7377419
    Abstract: A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 ?m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 ?m thick, and a second layer of gold, 2.54 ?m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: May 27, 2008
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Stanley R. Howard, Paul S. Korinko
  • Publication number: 20080110334
    Abstract: Disclosed are a sintered composite machine part as a cylinder block for piston pumps or piston motors, and a manufacturing method thereof. The machine part has an air-tight main body of sintered porous iron alloy and having an iron oxide layer on the surface; and a sliding part of sintered porous copper alloy being bonded direct to the main body. The sliding part is to be slid in tight contact with a fluid supply/return device. The manufacturing is made by preparing a main body of sintered porous iron alloy and a green compact for sliding part from a raw material metal powder having a composition corresponding to the copper alloy; sintering the green compact for sliding part in contact with the main body to bond the sliding part to the main body by diffused junction; and subjecting the main body to steam treatment to provide an iron oxide layer.
    Type: Application
    Filed: November 13, 2007
    Publication date: May 15, 2008
    Applicant: HITACHI POWDERED METALS CO., LTD.
    Inventor: Michiharu Mogami
  • Publication number: 20080075967
    Abstract: A method for the production of foamable or foamed metal pellets, parts and panels. The method comprises the steps of: i) providing a mixture of a metal alloy powder with a foaming agent powder, ii) pre-compacting the mixture of step i); iii) heating the pre-compacted mixture of step ii) to a temperature below a decomposition temperature of the foaming and at which permanent bonding of the particles occurs v) hot compacting the body for producing a compacted body made of a metal matrix embedding the foaming agent; and vi) reducing the compacted body into metal fragments and thereby obtaining dense foamable metal chips. A method for the production of a foam metal using a closed volume metal shell is also disclosed.
    Type: Application
    Filed: August 4, 2006
    Publication date: March 27, 2008
    Applicant: A.G.S. Taron Technologies Inc.
    Inventor: Serguei Vatchiants
  • Patent number: 7335427
    Abstract: A process for repairing a turbine component of a turbomachine, as well as a sintered preform used in the process and a high gamma-prime nickel-base superalloy component repaired thereby. The sintered preform contains a sintered mixture of powders of a cobalt-base braze alloy and a cobalt-base wear-resistant alloy. The braze alloy constitutes at least about 10 up to about 35 weight percent of the sintered preform and contains a melting point depressant such as boron. The preform is formed by mixing powders of the braze and wear-resistant alloys to form a powder mixture, and then sintering the powder mixture. To use the preform, a surface portion of the turbine component is removed to expose a subsurface portion, followed by diffusion bonding of the preform to the subsurface portion to form a wear-resistant repair material containing the braze alloy dispersed in a matrix of the wear-resistant alloy.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: February 26, 2008
    Assignee: General Electric Company
    Inventor: Sujith Sathian
  • Patent number: 7329311
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 12, 2008
    Assignee: Entegris, In.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7153337
    Abstract: The object of the invention is to provide a porous metal structure body suitable for reinforcing a light metal alloy member such as an aluminum alloy member. A mixed powder containing a metallic powder is filled in a mold, and is molded into a shape having a single cavity or plural cavities in the inner portion while having a maximum thickness of 6 mm or less at the surface portion side. The molded powder body is sintered to form into the porous metal structure body having a porosity of 20 to 50% by volume at the portions except the cavities. It is preferable that the metallic powder sintered body having a porosity of exceeding 50% by volume is formed into the cavities by being monolithically integrated with the porous metal structure body. Consequently, a structure being lightweight, having a high mechanical strength and being excellent in handling performance while being excellent in impregnability can be obtained.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: December 26, 2006
    Assignee: Nippon Piston Ring Co., Ltd.
    Inventor: Hiroshi Takiguchi
  • Patent number: 7141310
    Abstract: Compound preforms are provided having a first region, including a porous ceramic and a second region including a porous or solid ceramic in which the two regions differ in composition. The compound preform is infiltrated with a liquid metal which is then solidified to form a metal matrix composite.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: November 28, 2006
    Assignee: Ceramics Process Systems Corporation
    Inventors: Richard W. Adams, Grant C. Bennett, Kevin Fennessy, Robert A. Hay, Mark Occhionero
  • Patent number: 7112237
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: September 26, 2006
    Assignee: Entegris, Inc.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7059130
    Abstract: A heat exchanger is applied well to a turbo-generator system and a fuel-reforming system. The heat exchanger has porous metals disposed in a hotter area and a colder area, one to each area, and a wall separating the two areas from one another. The porous metals are merged integrally with the wall through junction layers to raise the efficiency of the heat exchanger. The porous metals in the hotter and colder areas are merged together with the opposite surfaces of the wall through junction layers buried into the porous metals. The junction layers are made of pasty joining material kneaded with a powdery metal. The junction layers over the porous metals are brought into close contact with the opposite surfaces of the wall and subjected to sintering to get the porous metals merging together with the wall.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: June 13, 2006
    Assignees: Ship & Ocean Foundation
    Inventor: Hideo Kawamura
  • Patent number: 6949299
    Abstract: The present invention relates to a method of spray forming a boron steel metal article, and to the formed article. In at least one embodiment, the method comprises (a) providing a spray forming pattern, (b) spraying metallic particles onto the spray forming pattern, and (c) allowing the sprayed metallic particles to cool to form a metal article. In at least one embodiment, the metallic particles are sprayed from a carbon steel feedstock having a boron content of 0.25-2.25 weight percent, based on the total weight of the feedstock.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 27, 2005
    Assignee: Ford Motor Company
    Inventors: Allen Dennis Roche, David Robert Collins, Richard L. Allor
  • Patent number: 6926969
    Abstract: The invention relates to a process for the production of sintered porous bodies, to porous bodies produced correspondingly using the process, and to their use. With the solution according to the invention, sintered bodies which achieve improved properties, such as an increased surface area, deformability of the structures at room temperature or modification of the initial pore volume, are to be produced. To this end, at least one sintering-active powder which forms at least one intermetallic phase or mixed crystals is applied to the surface of a porous basic body. Heat treatment is to be carried out subsequently, in which intermetallic phases or mixed crystals which increase the specific surface area can be formed.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: August 9, 2005
    Assignees: Inco Limited, Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e. V.
    Inventors: Alexander Bohm, Hartmut Gohler, Dirk Naumann
  • Patent number: 6906423
    Abstract: A mask used for exposing a porous substrate to form a first region and a second region, the first region being filled with a conductive material piercing through the entire thickness of the porous substrate to constitute an interfacial conductive portion, the second region being filled with a conductive material not piercing the entire thickness of the porous substrate to constitute a non-interfacial conductive portion. The mask includes a first light-transmitting region for exposing the first region, and a second light-transmitting region for exposing the second region, said second light-transmitting region including an aggregation of fine patterns of which an average aperture ratio is not more than 50% of an average aperture ratio of the first light-transmitting region and a size of said fine patterns of the second light-transmitting region being in the range of 0.1 ?m to 10 ?m.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: June 14, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Asakawa, Yasuyuki Hotta, Shigeru Matake, Toshiro Hiraoka
  • Patent number: 6902825
    Abstract: A brazed sintered compact composed of first and second components, which are easily positioned relative to each other, enabling the provision of a good joining clearance. If a protrusion 3 of a first component 1 is fitted into a recess 13 of a second component 10, both components are able to be positioned relative to each other. Simultaneously, a joining clearance A can be easily obtained between a joining surface 2 of the first component 1 and a joining surface 12 of the second component 10, corresponding to a dimensional difference therebetween. Also, an inner side surface 4a of a storage groove 4 is aligned with a right or left end 11a of a leg 11, disposed opposite to the inner side surface 4a. Accordingly, it is possible to allow as much brazing material as properly needed to permeate between the joining surfaces 2 and 12. Further, as the surface tension of the surplus brazing material becomes unlikely to be developed in the storage grooves 4,4?, the backflow of the material is prevented.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: June 7, 2005
    Assignee: Mitsubishi Materials Corporation
    Inventors: Katsuhiko Yano, Toshiro Harakawa
  • Patent number: 6884522
    Abstract: Compound preforms are provided having a first region, including a porous ceramic and a second region including a porous or solid ceramic in which the two regions differ in composition. The compound preform is infiltrated with a liquid metal which is then solidified to form a metal matrix composite.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: April 26, 2005
    Assignee: Ceramics Process Systems Corp.
    Inventors: Richard Adams, Grant Bennett, Kevin Fennessy, Robert A. Hay, Mark Occhionero
  • Patent number: 6866941
    Abstract: A compressor having a corrosive resistant coating is disclosed. The coating has a first spray coated metallic layer. A sealant layer is disposed over the sprayed metallic coating which has an organic component, a solvent component, and an inorganic phase.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: March 15, 2005
    Assignee: Copeland Corporation
    Inventors: Kirk E. Cooper, Marc J. Scancarello, Todd A. DeVore, Don G. Reu
  • Patent number: 6863706
    Abstract: In order to achieve the object of providing a module having improved mechanical characteristics as well as a wide range of application, it is proposed that the module include at least one layer having open porosity, having an outer side facing a medium flowing into the module and an inner side facing away from the inflowing medium, manufactured from a material that can be sintered, selected from a group including metals, metal oxides, metal compounds, and/or metal alloys.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 8, 2005
    Assignee: GKN Sinter Metals GmbH
    Inventor: Thomas Röthig
  • Patent number: 6828037
    Abstract: The invention provides a hydrogen permeable structure, which can effectively prevent peeling-off of a hydrogen permeable film and hence has higher durability, and a method of manufacturing the structure. The hydrogen permeable structure has a hydrogen permeable film formed on the surface of or inside a porous support, having a thickness of not more than 2 &mgr;m, and containing palladium (Pd). The hydrogen permeable film is formed on the surface of or inside the porous support by supplying a Pd-containing solution and a reducing feed material from opposite sides of the porous support.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Uemura, Kentaro Yoshida, Nobuyuki Okuda, Takeshi Hikata
  • Patent number: 6797402
    Abstract: An improved heat shield offers thermal insulation and reduced noise transmission for vehicular engine components, including exhaust manifolds. The structure has three layers: an outer structural metal layer, a center insulation layer to isolate heat and dampen noise, and an inner metal layer directly adjacent the shielded component for reflecting heat back to the shielded component. As disclosed, the shield has at least one edge portion defined by outwardly flared undulations or waves. The waved edge minimizes impact of plastic deformation of the metal edges during manufacture of the shield, which tends to produce wrinkling at the edges, and creates undesirable stiffness. Finally, the edge boundary of the outer metal heat shield layer is folded over the edges of the insulation and inner metal layers to avoid any sharp edges, thus preventing injury to installers and reinforcing the heat shield structure to enhance useful life under vibration and heat conditions.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: September 28, 2004
    Assignee: Dana Corporation
    Inventors: Colin Ching-Ho Chen, Frank Popielas, Calin Matias
  • Patent number: 6781851
    Abstract: An electromagnetic interference shield comprises a non-rigid porous metallic material and a conforming element. The non-rigid porous metallic material is shaped by the conforming element to have a top and sidewalls extending downward from the top. The shaped porous metallic material defines a cavity for receiving at least one circuit component therein.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: August 24, 2004
    Assignee: Lucent Technologies Inc.
    Inventors: Bassel H. Daoud, Ivan Pawlenko, Larry Samson
  • Patent number: 6776818
    Abstract: A projectile having a body of sintered metal powder and a sintered metal powder surface that faces toward the rifling in the bore of a firearm, and therewith co-acts with the rifling. At least the body layer that is deformed by the rifling has a porosity in the region of 5-25%. The powder may consist of a copper alloy, such as tombak.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: August 17, 2004
    Assignee: Norma Precision AB
    Inventor: Åke Nilsson
  • Publication number: 20040135247
    Abstract: In a semiconductor heat-dissipating substrate made of a Cu—W alloy whose pores have been infiltrated with copper, being a porous tungsten body whose pore diameter at a specific cumulative surface area of 95% is 0.3 &mgr;m or more, and whose pore diameter at a specific cumulative surface area of 5% is 30 &mgr;m or less, thermal conductivity of 210 W/m·K or more is obtained by decreasing the content of iron-family metal to be less than 0.02 weight %. Likewise, changing the amount of infiltrated copper in a molded object by utilizing a multi-shaft press to vary the amount of vesicles in the middle and peripheral portions makes for offering at low cost a semiconductor heat-dissipating substrate that in between middle and peripheral portions made of different materials does not have bonding matter.
    Type: Application
    Filed: October 21, 2003
    Publication date: July 15, 2004
    Inventors: Kouichi Takashima, Shin-ichi Yamagata, Yugaku Abe, Akira Sasame
  • Publication number: 20040126265
    Abstract: The object of the invention is to provide a porous metal structure body suitable for reinforcing a light metal alloy member such as an aluminum alloy member. A mixed powder containing a metallic powder is filled in a mold, and is molded into a shape having a single cavity or plural cavities in the inner portion while having a maximum thickness of 6 mm or less at the surface portion side. The molded powder body is sintered to form into the porous metal structure body having a porosity of 20 to 50% by volume at the portions except the cavities. It is preferable that the metallic powder sintered body having a porosity of exceeding 50% by volume is formed into the cavities by being monolithically integrated with the porous metal structure body. Consequently, a structure being lightweight, having a high mechanical strength and being excellent in handling performance while being excellent in impregnability can be obtained.
    Type: Application
    Filed: August 27, 2003
    Publication date: July 1, 2004
    Applicant: Nippon Piston Ring Co., Ltd.
    Inventor: Hiroshi Takiguchi
  • Patent number: 6706415
    Abstract: A compressor having a corrosive resistant coating is disclosed. The coating has a first spray coated metallic layer. A sealant layer is disposed over the sprayed metallic coating which has an organic component, a solvent component, and an inorganic phase.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: March 16, 2004
    Assignee: Copeland Corporation
    Inventors: Kirk E. Cooper, Marc J. Scancarello, Todd A. DeVore, Don G. Reu