Alternative Base Metals From Diverse Categories Patents (Class 428/656)
  • Publication number: 20090023011
    Abstract: Systems and methods for forming conductive traces on plastic substrates. In one embodiment, conductive traces are formed by forming a polyelectrolyte layer on a polymeric substrate and growing conductive traces on the polyelectrolyte layer using an electroless plating process.
    Type: Application
    Filed: July 20, 2007
    Publication date: January 22, 2009
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Sterling Chaffins, Kevin P. DeKam, Craig A. Tress
  • Publication number: 20080187776
    Abstract: Provided is a multilayer substrate having the configuration in which a multilayer film is formed on a principal surface opposite to a principal surface in the oxide-thin-film lamination direction in a translucent substrate. The multilayer film is formed by sequentially laminating a dielectric film, Au (gold) film, and oxide film in this order from the translucent substrate. On the principal surface opposite to the principal surface on which the oxide thin film is disposed, the multilayer film containing the Au film is formed, the Au film can reflect and block the excessive infrared light from a substrate holder or a heat source at the time of growth. As a result, temperature can be accurately measured.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 7, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Ken Nakahara, Hiroyuki Yuji, Kentaro Tamura, Shunsuke Akasaka, Yoshio Nishimoto, Masashi Kawasaki, Akira Ohtomo, Atsushi Tsukazaki
  • Publication number: 20080081213
    Abstract: An amorphous alloy member including an irregular region having a center line average roughness Ra of about 0.1 ?m to about 1000 ?m on a surface, at least the irregular region including an amorphous alloy having an amorphous phase at a volume ratio of about 50% to about 100%. A process for manufacturing the amorphous alloy member, and an authenticity determination device and an authenticity determination method using the amorphous alloy member.
    Type: Application
    Filed: April 26, 2007
    Publication date: April 3, 2008
    Applicants: FUJI XEROX CO., LTD., YKK CORPORATION
    Inventors: Kensuke Ito, Takashi Nagayasu, Tomonari Sugata, Tadashi Shimizu, Tetsuya Kimura
  • Publication number: 20080070064
    Abstract: A method for manufacturing a magnetic film includes preparing a foundation layer containing a noble metal element and a base metal element, and depositing a plated layer of a magnetic material on the foundation layer by pulse plating.
    Type: Application
    Filed: June 19, 2007
    Publication date: March 20, 2008
    Applicant: TDK CORPORATION
    Inventors: Kei Hirata, Atsushi Yamaguchi, Shingo Miyata
  • Publication number: 20080026247
    Abstract: A method of bonding dissimilar metals, a bonding structure formed by such a method and a bonding apparatus for performing such a method. The resulting bond is capable of preventing corrosion (e.g., electric corrosion) resulting from contact of the dissimilar metals and obtains a dissimilar material joint exhibiting anti-corrosive property and bonding strength at low costs. The method includes overlapping two materials made from dissimilar metals having a seal material interposed therebetween and discharging the seal material from a bonding interface and bonding the two materials in direct contact with each other.
    Type: Application
    Filed: July 23, 2007
    Publication date: January 31, 2008
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Shigeyuki Nakagawa, Minoru Kasukawa, Kenji Miyamoto, Hiroshi Sakurai, Chika Yamamoto, Takashi Miyamoto, Akira Fukushima
  • Patent number: 7247396
    Abstract: A perpendicular magnetic recording medium including an interlayer structure for crystallographically orienting a layer of a hexagonal close-packed (hcp) perpendicular magnetic recording material formed thereon, comprising in overlying sequence from a surface of a magnetically soft underlayer: (1) a first crystalline layer of a material having a first lattice parameter and a strong preferred growth orientation; (2) a second crystalline layer of a material having a second lattice parameter and the same strong preferred growth orientation as the first crystalline layer; and (3) a third crystalline layer of an hcp material, having a [0002] lattice parameter similar to or different from that of the second lattice parameter of the second crystalline layer and a strong <0002> preferred growth orientation, wherein: the second crystalline layer has a lower interfacial energy with the first crystalline layer and a higher interfacial energy with the third crystalline layer, owing to a lower surface energy of th
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: July 24, 2007
    Assignee: Seagate Technology LLC
    Inventors: Thomas Patrick Nolan, Erol Girt, Chunghee Chang, Qixu Chen, Li-Lien Lee
  • Patent number: 7223481
    Abstract: An object of the present invention is to produce an ultra-thin copper foil with a carrier which has few pinholes and small surface roughness and which has an the thickness of less than 5 ?m, and to produce the method of producing the foil, and further to produce a printed circuit board for fine pattern, a multilayer printed circuit board and a chip on film circuit board by using the ultra-thin copper foil with a carrier. The present invention provides an ultra-thin copper foil with a carrier produced by stacking a peeling layer and an ultra thin copper foil in order on the surface of a carrier copper foil which is made smooth so that the mean surface roughness of at least one side is Rz of 0.01 to 2.0 ?m by the chemical polishing, the electrochemical dissolution, or the smoothing plating processing method independently, combining two or more, or further combining the mechanical polishing.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: May 29, 2007
    Assignee: Furukawa Circuit Foil Co., Inc.
    Inventors: Yuuji Suzuki, Akira Matsuda
  • Patent number: 7078111
    Abstract: Disclosed is a brazing sheet product including a core metal sheet (1), on at least one side of the core metal sheet (1) a clad layer (2) made of an aluminium brazing alloy comprising silicon in an amount in the range of 4 to 14% by weight, and on at least one outersurface of the clad layer (2) a layer comprising iron or iron alloy (4), and on the outersurface of the layer comprising iron or iron alloy (4) a further layer (3) including a metal X, whereby X is selected from the group consisting of tin, zinc, bismuth, indium, antimony, strontium, titanium, manganese, copper, or combinations of two or more thereof. Also, disclosed is a method of manufacturing such a brazing product, and a brazed assembly including at least one component made of this brazing product.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 18, 2006
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Adrianus Jacobus Wittebrood, Jacques Hubert Olga Joseph Wijenberg
  • Patent number: 7060367
    Abstract: A blade with improved sharpness and durability is disclosed. The blade includes a base plate having an edge and a coating layer for coating the edge. The coating layer is formed of a material handling metal, and a tip of the coating layer is sharpened. It is preferred that an angle (Ba) between two tapered surfaces be between 15 to 45 degrees.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: June 13, 2006
    Assignee: Kai R&D Center Co., Ltd.
    Inventors: Katsuaki Yamada, Hiroshi Ohtsubo, Hiroyuki Tashita
  • Patent number: 6994919
    Abstract: The invention relates to a brazing sheet product including a core sheet, on at least one side of the core sheet a clad layer of an aluminum alloy including silicon in an amount in the range of 4 to 14% by weight, and further including on at least one outersurface of the clad layer a plated layer of nickel-tin alloy, such that the clad layer and all layers exterior thereto form a metal filler for a brazing operation and have a composition with the proviso that the mol-ratio of Ni:Sn is in the range of 10:(0.5 to 9).
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: February 7, 2006
    Assignees: Corus Aluminium Walzprodukte GmbH, Corus Technology BV
    Inventors: Jacques Hubert Olga Joseph Wijenberg, Adrianus Jacobus Wittebrood, Joop Nicolaas Mooij
  • Patent number: 6991855
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: January 31, 2006
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Omar Knio, Michael Reiss, David van Heerden
  • Patent number: 6974531
    Abstract: A conductive material is electroplated onto a platable resistive metal barrier layer(s) employing a plating bath optionally comprising a super filling additive and a suppressor, and by changing the current or voltage as a function of the area of plated metal. A structure is also provided that comprises a substrate, a platable metal barrier layer(s) located on the substrate and a relatively continuous uniform electroplated layer of a conductive material located on the platable resistive metal barrier layer.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: December 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Panayotis Andricacos, Hariklia Deligianni, Wilma Jean Horkans, Keith T. Kwietniak, Michael Lane, Sandra G. Malhotra, Fenton Read McFeely, Conal Murray, Kenneth P. Rodbell, Philippe M. Vereecken
  • Patent number: 6974641
    Abstract: A coating material (20) for coating a machine component (10), especially a gas turbine or a part thereof, comprises a mixture of at least a refractory material and an indicator material having an optical emission (e.g. fluorescence) spectrum which varies in response to a physical parameter of the coated component. In a preferred embodiment, the coating consists of yttrium aluminium garnet (YAG) or yttrium stabilised zirconium. The dopant is preferably a rare earth metal, e.g. Eu, Tb, Dy.
    Type: Grant
    Filed: July 26, 1999
    Date of Patent: December 13, 2005
    Assignee: Southside Thermal Sciences (STS) Limited
    Inventors: Kwang-Leong Choy, Andrew Lawrence Heyes, Joorg Feist
  • Patent number: 6969558
    Abstract: A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: November 29, 2005
    Assignee: General Electric Company
    Inventors: William S. Walston, Jon C. Schaeffer, Wendy H. Murphy
  • Patent number: 6913837
    Abstract: A perpendicular magnetic recording medium and method thereof, includes a nonmagnetic substrate; a soft magnetic under layer; an intermediate layer; a bilayer magnetic recording layer; a protective layer; and a liquid lubricant layer. According to a following order, the soft magnetic under layer, the intermediate layer, the bilayer magnetic recording layer, the protective layer, and the liquid lubricant layer are sequentially stacked on the nonmagnetic substrate. The bilayer magnetic recording layer includes a first magnetic layer including a CoCr alloy crystalline film, and a second magnetic layer including a rare earth-transition metal alloy noncrystalline film.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: July 5, 2005
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasushi Sakai, Hiroyuki Uwazumi, Kazuo Enomoto, Sadayuki Watanabe
  • Patent number: 6863992
    Abstract: Reactive foils and their uses are provided as localized heat sources useful, for example, in ignition, joining and propulsion. An improved reactive foil is preferably a freestanding multilayered foil structure made up of alternating layers selected from materials that will react with one another in an exothermic and self-propagating reaction. Upon reacting, this foil supplies highly localized heat energy that may be applied, for example, to joining layers, or directly to bulk materials that are to be joined. This foil heat-source allows rapid bonding to occur at room temperature in virtually any environment (e.g., air, vacuum, water, etc.). If a joining material is used, the foil reaction will supply enough heat to melt the joining materials, which upon cooling will form a strong bond, joining two or more bulk materials.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: March 8, 2005
    Assignee: Johns Hopkins University
    Inventors: Timothy P. Weihs, Omar Knio, Michael Reiss, David van Heerden
  • Patent number: 6746782
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 8, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6673467
    Abstract: A metallic component exposed to high temperature steam is provided with a coating comprising a thin primer layer deposited on the surface of the metallic component and a thicker overlay layer on top of the primer layer. The primer layer consists of highly ductile, oxidation resistant material such that it remains free of any defects over a long period of exposure. The overlay layer consists of an oxidation resistant, less ductile, and low-cost material. It protects the thin primer layer from mechanical damage and chemical degradation. The primer layer protects the base material of the metallic component from oxidizing steam that may penetrate through cracks of the overlay layer. Due to suitable choice of coating materials and thicknesses of the layers the coating is low-cost.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 6, 2004
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Richard Brendon Scarlin, Reinhard Knödler
  • Patent number: 6667110
    Abstract: A hybrid steel cord and method of making such cord which includes, in contact with one or more carbon steel wire(s), at least one stainless steel wire whose microstructure contains less than 20% of martensite (% by volume). Articles made of plastic and/or rubber, in particular tire envelopes or the carcass reinforcement plies of such envelopes embodying such cords.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: December 23, 2003
    Assignee: Compagnie Générale des Establissements Michelin - Michelin & Cie
    Inventors: François-Jacques Cordonnier, Eric Depraetere
  • Publication number: 20030215664
    Abstract: The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.
    Type: Application
    Filed: May 14, 2002
    Publication date: November 20, 2003
    Inventors: Alfredo M. Morales, Marcela Gonzales
  • Patent number: 6617044
    Abstract: A surface treating process according to the present invention, a vapor deposited film is formed from an easily oxidizable vapor-depositing material on the surface of a work by evaporating the vapor-depositing material in a state in which the vapor deposition controlling gas has been supplied to at least zones near a melting/evaporating source and the work within a treating chamber. Thus, the vapor deposited film can be formed stably on the surface of a desired work without requirement of a long time for providing a high degree of vacuum and without use of a special apparatus. In addition, the use of the surface treating process ensures that a corrosion resistance can be provided to a rare earth metal-based permanent magnet extremely liable to be oxidized, without degradation of a high magnetic characteristic of the magnet.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: September 9, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Takeshi Nishiuchi, Yoshimi Tochishita, Fumiaki Kikui, Mitsuo Kizawa
  • Patent number: 6613452
    Abstract: A system and method for producing a corrosion-resistant article includes a metal substrate and a multi-layer resistant coating disposed over the metal substrate. The coating is operable to resist corrosion and hydrogen embrittlement of the metal substrate. The coating includes a first layer comprising a material galvanically similar to the metal substrate. The coating also includes a second layer disposed over the first layer. The second layer comprises a metal anodic to the metal substrate. The corrosion resistant article may also include a corrosion resistant interface layer at the boundary of the first and second layers. The interface layer may be formed by diffusing a portion of the second layer into the first layer.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: September 2, 2003
    Assignee: Northrop Grumman Corporation
    Inventor: John Douglas Weir
  • Patent number: 6607847
    Abstract: An article, such as an airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises a first metallic element and a second metallic element, wherein the first metallic element is one of titanium, palladium, zirconium, niobium, and hafnium, and wherein the second metallic element is one of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the first metallic element being different from the second metallic element.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6605371
    Abstract: A brazing alloy according to the present invention has a melting point equivalent to that of a copper brazing filler and is excellent in corrosion- and oxidation-resistance. The brazing alloy consists essentially of Mn, Ni and Cu, and has a composition in terms of weight percentage which, when plotted on a diagram as shown in FIG. 1, falls within a range defined by: the point A (37% Mn, 63% Ni, 0% Cu), the point B (18% Mn, 27% Ni, 55% Cu); the point C (42% Mn, 3% Ni, 55% Cu); the point D (50% Mn, 3% Ni, 47% Cu); and the point E (50% Mn, 50% Ni, 0% Cu), wherein Mn=50% is exclusive.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masami Ueda, Masaaki Ishio, Hidetoshi Noda, Tsuyoshi Hasegawa
  • Patent number: 6599645
    Abstract: The invention relates to a rigid composite metal panel comprising at least two metal parallel plates and/or sheets secured to the peaks and troughs of a corrugated aluminium stiffener sheet arranged between the parallel plates and/or sheets, wherein the corrugated aluminium stiffener sheet is an aluminium brazing sheet product made from an aluminium brazing sheet product including a core sheet (1) made of an aluminium alloy having on at least one surface of the core sheet clad, and preferably on both sides, an aluminium clad layer (2), the aluminium clad layer being made of an aluminium alloy comprising silicon in an amount in the range of 2 to 18% by weight, preferably 5 to 14%, and a layer (3) comprising nickel on the outer surface of the aluminium clad layer. The invention further relates to a method of manufacturing thereof.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: July 29, 2003
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventor: Adrianus Jacobus Wittebrood
  • Patent number: 6586118
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: July 1, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Patent number: 6565989
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises one of germanium and silicon, and one of chromium, titanium, gold, aluminum, palladium, platinum, and nickel. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6565990
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined at a bonded region to the first piece by a diffusion bond. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite. The second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The diffusion bond is formed from a first metallic element disposed on a first surface of the first piece and a second metallic element disposed on at least one of the first surface and a second surface of the second piece, the second surface contacting the first surface, wherein the first and second metal form a composition having a melting temperature less than about 1400° C. This abstract is submitted in compliance with 37 C.F.R. 1.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Melvin Robert Jackson, Ji-Cheng Zhao
  • Patent number: 6534196
    Abstract: The present invention relates to articles, having an extended useful life, which are used in contact with high temperature molten aluminum or molten zinc baths. One aspect of the invention encompasses articles, such as bearings, bushings, couplings or rollers, used in contact with molten aluminum or molten zinc which is coated with a high density coating consisting of a metal selected from Groups Vb, VIb, or VIIb metals (preferably molybdenum or tungsten), in pure or alloyed form. These coatings generally have a thickness of from about 0.06 to about 0.30 inch. Another aspect of the present invention encompasses a roll for guiding steel strip through a high temperature aluminizing bath, which utilizes a multi-layer structure, the first primer layer being a Group Vb, VIb or VIIb metal, preferably tungsten or molybdenum (in pure or alloyed form), the second layer comprising MCrAlY in which M is either nickel or cobalt, and the third layer comprising a refractory metal oxide of Al, Zr, Si or Cr.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Cincinnati Thermal Spray
    Inventor: Robert K. Betts
  • Patent number: 6528178
    Abstract: A high temperature resistant article with improved protective coating bonding and method of manufacturing the article is provided. In one embodiment, the high temperature resistant article comprises a base body having a surface at least partly coated with an oxidation and corrosion protective coating containing a carbide forming element, wherein said base body is made from a metallic alloy having a medium carbon content and wherein the carbon content in a depth of 50 &mgr;m or deeper from said coated surface is less than 0.3% of said medium carbon content.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 4, 2003
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Vasudevan Srinivasan
  • Patent number: 6528177
    Abstract: An object of the present invention is to provide a cladding material, which has high joining strength and excellent productivity, and a manufacturing method therefor; in order to attain this object, the present invention provides a cladding material comprising: a first material to be joined which is made of aluminum or an aluminum alloy; a second material to be joined which is made of a single metal or an alloy and which is join the first material to be joined; and an intermediate layer which is provided between the first and second materials to be joined.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: March 4, 2003
    Assignees: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takayuki Kawano, Yoshiaki Inoue, Katsuaki Inoue, Kawaichi Katsumi, Hiroshi Iwabuchi, Kazumasa Nishio, Shizuo Mukae, Masahiro Hirata
  • Publication number: 20030008168
    Abstract: A film is formed on the surface of a soft metal portion (2) such that the film contains phosphorus and either platinum or palladium, and further, at least one element having homogeneous solubility with platinum or palladium, with the content of the phosphorus being in a range of about 15 to 25 atomic %, or contains boron and iron with the content of the boron being in a range of from about 15 to 25 atomic %. Thus, a soft metal is made up by turning the film into a hard layer (3) made of an amorphous alloy.
    Type: Application
    Filed: April 19, 2002
    Publication date: January 9, 2003
    Inventors: Yoshitsugu Shibuya, Eigou Hashimoto, Junji Satoh, Masahiro Satoh, Seiichi Hiroe
  • Patent number: 6503640
    Abstract: Disclosed is a method of manufacturing an assembly of components joined by brazing, comprising the steps of: (i) forming the components of which at least one is made from a multi-layered brazing sheet product, the multi-layered brazing sheet product comprising a core sheet (a) having on at least one surface of the core sheet an aluminium clad layer (b), the aluminium clad layer being made of an aluminium alloy comprising silicon in an amount in the range of 2 to 18% by weight, a layer (c) comprising nickel on the outer surface of the aluminium clad layer, and a layer (d) comprising zinc or tin as a bonding layer between the outer surface of the aluminium clad layer and the layer comprising nickel; (ii) forming at least one other component of a metal dissimilar to the core sheet of the multi-layered brazing sheet product and selected from the group consisting of titanium, plated titanium, coated titanium, bronze, brass, stainless steel, plated stainless steel, coated stainless steel, low-carbon steel, plated
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: January 7, 2003
    Assignee: Corus Aluminium Walzeprodukte GmbH
    Inventors: Adrianus Jacobus Wittebrood, Jacques Hubert Olga Joseph Wijenberg
  • Publication number: 20020197507
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Application
    Filed: June 20, 2001
    Publication date: December 26, 2002
    Applicant: Honeywell International, Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Publication number: 20020197502
    Abstract: A barrier coating is disclosed, containing about 15 atom % to about 95 atom % chromium; and about 5 atom % to about 60 atom % of at least one of rhenium, tungsten, and ruthenium. Nickel, cobalt, iron, and aluminum may also be present. The barrier coating can be disposed between a metal substrate (e.g., a superalloy) and an oxidation-resistant coating, preventing the substantial diffusion of various elements at elevated service temperatures. A ceramic overcoat (e.g., based on zirconia) can be applied over the oxidation-resistant coating. Related methods for applying protective coatings to metal substrates are also described.
    Type: Application
    Filed: June 11, 2001
    Publication date: December 26, 2002
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6497966
    Abstract: The invention provides a composite, laminated armor panel (10) for absorbing and dissipating kinetic energy from projectiles (12), the panel (10) comprising a first outwardly-positioned layer (14) made of a hard material selected from a ceramic material and a metal having a Rockwell-C hardness of at least 27, an intermediate layer (16) softer than the first layer (14), made of a material selected from aluminium and metals having a Rockwell-C hardness of less than 27 and a third backing layer (18) of tough woven textile material, wherein the three layers (14,16,18) are laminated together and wrapped on at least four sides in a further tough woven textile material (20) which is bonded to the outer surfaces of the composite, laminated armor panel (10).
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 24, 2002
    Inventor: Michael Cohen
  • Publication number: 20020192494
    Abstract: A method for protecting low-carbon steel and stainless steel, and particularly high temperature stainless steel, from coking and corrosion at elevated temperatures in corrosive environments, such as during ethylene production by pyrolysis of hydrocarbons or the reduction of oxide ores, by coating the stainless steel with a coating of MCrAlXSiT in which M is nickel, cobalt, iron or a mixture thereof, X is yttrium, hafnium, zirconium, lanthanum, scandium or combination thereof, and T is tantalum, titanium, platinum, palladium, rhenium, molybdenum, tungsten, niobium, boron or combination thereof. A blended powder composition to produce a desired MCrAlXSiT surface alloy may be applied to the substrate. The overlay coating and stainless steel substrate preferably are heat-treated at about 1000 to 1200° C. for about 10 minutes or longer effective to metallurgically bond the overlay coating to the substrate and to form a multiphased microstructure.
    Type: Application
    Filed: May 22, 2002
    Publication date: December 19, 2002
    Inventors: Konstantin K. Tzatzov, Alexander S. Gorodetsky, Andrew Wysiekierski, Gary Anthony Fisher
  • Patent number: 6444530
    Abstract: A method of forming a contact in a flash memory device utilizes a local interconnect process technique. The local interconnect process technique allows the contact to butt against or overlap a stacked gate associated with the memory cell. The contact can include tungsten. The stacked gate is covered by a barrier layer which also covers the insulative spacers.
    Type: Grant
    Filed: May 25, 1999
    Date of Patent: September 3, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Hung-Sheng Chen, Unsoon Kim, Yu Sun, Chi Chang, Mark Ramsbey, Mark Randolph, Tatsuya Kajita, Angela Hui, Fei Wang, Mark Chang
  • Publication number: 20020119343
    Abstract: The present invention relates to articles, having an extended useful life, which are used in contact with high temperature molten aluminum or molten zinc baths. One aspect of the invention encompasses articles, such as bearings, bushings, couplings or rollers, used in contact with molten aluminum or molten zinc which is coated with a high density coating consisting of a metal selected from Groups Vb, VIb, or VIb metals (preferably molybdenum or tungsten), in pure or alloyed form. These coatings generally have a thickness of from about 0.06 to about 0.30 inch. Another aspect of the present invention encompasses a roll for guiding steel strip through a high temperature aluminizing bath, which utilizes a multi-layer structure, the first primer layer being a Group Vb, VIb or VIIb metal, preferably tungsten or molybdenum (in pure or alloyed form), the second layer comprising MCrAlY in which M is either nickel or cobalt, and the third layer comprising a refractory metal oxide of Al, Zr, Si or Cr.
    Type: Application
    Filed: February 26, 2001
    Publication date: August 29, 2002
    Inventor: Robert K. Betts
  • Patent number: 6440579
    Abstract: Process for producing a drawn wire, in particular a wire for reinforcing tires, having a diameter of less than 0.3 mm by drawing a base wire rod having a diameter of greater than 5 mm or a predrawn base wire made of steel with the following composition by weight: carbon≦40×10−3% nitrogen≦40×10−3%, the carbon and nitrogen satisfying the relationship C+N≦50×10−3%, 0.2%≦silicon≦1.0%, 0.2%≦manganese≦5%, 9%≦nickel≦12%, 15%≦chromium≦20%, 1.5%≦copper≦4%, sulfur≦10×10−3%, phosphorus<0.050%, 40×10−4%≦total oxygen≦120×10−4%, 0.1×10−4%≦aluminum≦20×10−4%, magnesium≦5×10−4%, 0.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: August 27, 2002
    Assignees: Ugine Savoie Societe de Production Internationale de Trefiles, Sprint Metal
    Inventors: Jean-Michel Hauser, Joël Marandel, Etienne Havette
  • Publication number: 20020110700
    Abstract: Chrome, nickel, titanium or zirconium films; or combinations of those four metals, or a nitride, carbide or nitroxide of one of those four metals are deposited directly on unplated zinc or unplated zinc alloy substrates by physical vapor deposition in vacuum reactors. The nitroxides films have essentially the same colors as the nitrides but can have high electrical resistivities, transparency and other nonmetallic properties.
    Type: Application
    Filed: February 12, 2001
    Publication date: August 15, 2002
    Inventors: Gerald F. Hein, Manuel Mejia Caballero, Al Anderson
  • Publication number: 20020094447
    Abstract: A method for improving the thermal fatigue life of a thermal barrier coating (TBC) deposited on an aluminide bond coat through a process by which the surface morphology of the aluminide bond coat is modified to eliminate or at least reduce oxidation and oxidation-induced convolutions at the alumina-bond coat interface, as explained more fully below. The bond coat is deposited to have generally columnar grains and grain boundary ridges at its surface, and is then peened at an intensity sufficient to flatten at least some of the grain boundary ridges, but insufficient to cause recrystallization of the bond coat when later heated, such as during deposition of the thermal barrier coating. In so doing, the original surface texture of the bond coat is altered to be smoother where the grain boundaries meet the bond coat surface, thereby yielding a smoother bond coat surface where the critical alumina-bond coat interface will exist following oxidation of the bond coat.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 18, 2002
    Inventor: Irene Theodor Spitsberg
  • Patent number: 6391473
    Abstract: A Cu plated ceramic substrate is used in a semiconductor. On a ceramic substrate layer, a thin-film Cr layer is put, and a thin-firm Au layer is put on the Cr layer. The Au layer is plated with Cu. By providing the Au and Cr layers between the ceramic plate and Cu layer, adhesibility is increased. A Pertier element which includes the Cu plated ceramic layer is employed in a semiconductor to absorb and generate heat efficiently.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: May 21, 2002
    Assignee: Yamatoya & Co., Ltd.
    Inventors: Iwao Numakura, Noriaki Tsukada
  • Patent number: 6372364
    Abstract: A thin film product having a nanostructured surface, a laminate product including the thin film and a temporary substrate opposite the nanostructured surface, a laminate product including the thin film and a final substrate attached to the nanostructured surface and a method of producing the thin film products. The thin film is particularly useful in the electronics industry for the production of integrated circuits, printed circuit boards and EMF shielding. The nanostructured surface includes surface features that are mostly smaller than one micron, while the dense portion of the thin film is between 10-1000 nm. The thin film is produced by coating a temporary substrate (such as aluminum foil) with a coating material (such as copper) using any process. One such method is concentrated heat deposition or a combustion, chemical vapor deposition process.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: April 16, 2002
    Assignee: MicroCoating Technologies, Inc.
    Inventors: Andrew T. Hunt, Henry A. Luten, III
  • Patent number: 6337146
    Abstract: A hydrogen storage laminated material can be obtained which is capable of achieving reduction in weight as well as being mass-produced industrially while assuring excellent hydrogen storage capability. The hydrogen storage laminated material (10) has a laminated structure of a first layer (6a) and a second layer (7a), wherein the first layer is formed from an alloy or compound including an element of a group 2A or 3A or an element of at least one of the groups 2A and 3A, and at least partially includes a bcc structure, and the second layer is formed from an alloy or compound including an element of one of groups 6A, 7A and 8A or an element of at least one of the groups 6A, 7A and 8A.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: January 8, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kouichi Sogabe, Shousaku Yamanaka, Yoshinobu Takeda, Nozomu Kawabe, Hideo Itozaki, Akira Nakayama, Takashi Uemura
  • Patent number: 6335104
    Abstract: A method for preparing a copper pad surface for electrical connection that has superior diffusion barrier and adhesion properties is provided. In the method, a copper pad surface is first provided that has been cleaned by an acid solution, a protection layer of a phosphorus or boron-containing metal alloy is then deposited on the copper pad surface, and then an adhesion layer of a noble metal is deposited on top of the protection layer. The protection layer may be a single layer, or two or more layers intimately joined together formed of a phosphorus or boron-containing metal alloy such as Ni-P, Co-P, Co-W-P, Co-Sn-P, Ni-W-P, Co-B, Ni-B, Co-Sn-B, Co-W-B and Ni-W-B to a thickness between about 1,000 Å and about 10,000 Å. The adhesion layer can be formed of a noble metal such as Au, Pt, Pd and Ag to a thickness between about 500 Å and about 4,000 Å.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: January 1, 2002
    Assignee: International Business Machines Corporation
    Inventors: Carlos J. Sambucetti, Daniel C. Edelstein, John G. Gaudiello, Judith M. Rubino, George Walker
  • Patent number: 6329076
    Abstract: A hydrogen storage material (1) having excellent hydrogen storage capability and having such a low hydrogen desorption temperature as not to significantly hinder the use thereof, and also capable of being mass-produced, and a manufacturing method of the same can be obtained. The hydrogen storage material has a layered deformation structure including plastic deformation, and one layer (2) of the layered deformation structure is formed from an alloy or compound including an element of groups 2A, 3A and 4A or an element of at least one of the groups 2A, 3A and 4A, and another layer (3) being in contact with the one layer is formed from an alloy or compound including an element of groups 6A, 7A and 8A or an element of at least one of the groups 6A, 7A and 8A.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: December 11, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nozomu Kawabe, Kouichi Sogabe, Shousaku Yamanaka, Yoshinobu Takeda, Takashi Uemura
  • Patent number: 6319621
    Abstract: To establish a technique of further improving the oxidation resistance of the glossy surface of a copper foil that has a composite layer containing chromium, zinc, and phosphorus on its glossy surface is achieved by a copper foil having excellent oxidation resistance characterized by a composite layer containing chromium, zinc, phosphorus, and nickel formed on the glossy surface of the foil and also to a method of manufacturing the same by electrolysis.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: November 20, 2001
    Assignee: Nikko Materials Company, Limited
    Inventors: Hideta Arai, Kazuhiko Sakaguchi
  • Publication number: 20010008707
    Abstract: A PVD process for manufacturing a coating (16, 18, 20, 22, 23) on articles (12), in particular on articles which have a relatively low temperature resistance such as articles made of brass, zinc and plastic, including such with an electroplated coating, wherein a plurality of layers (16, 18, 20, 22) are built up by arc discharge vaporization to manufacture a colored coating insensitive to fingerprints and are selected in order to achieve a color by this kind of coating alone which corresponds as far as possible to the desired end color; and wherein a hard material cover layer (23) is applied to the layer structure by means of cathode or magnetron sputtering or by the simultaneous use of arc discharge vaporization and cathode or magnetron sputtering, said cover layer generating the final color and being limited to the smallest possible layer thickness, preferably to under 500 nm.
    Type: Application
    Filed: January 2, 2001
    Publication date: July 19, 2001
    Inventors: Michiel J.J. Eerden, Antonius Petrus Hurkmans, Gerrit Jan van der Kolk
  • Patent number: 6218025
    Abstract: A sintered electrode of high-melting metal (for example tungsten) is produced from spherical metal powder having a well defined particle size. The mean particle size is from 5 to 70 &mgr;m. The particle size distribution covers a range from at most 20% below to at most 20% above the mean particle size.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: April 17, 2001
    Assignee: Patent- Truchand-Gesellschaft fuer Elektrische Gluelampen mbH
    Inventors: Dietrich Fromm, Bernhard Altmann, Wolfram Graser, Peter Schade