Platinum Group Metal-base Component Patents (Class 428/670)
  • Patent number: 6863991
    Abstract: A coated metallic mesh having a molecular layer thereon comprising: (1) a metallic mesh comprising at least one aperture; (2) a coating disposed on the metallic mesh that at least partially fills at least one aperture so as to form a partially-filled aperture; and (3) a molecular layer comprising at least one molecule having a hydrophilic region and a hydrophobic region, wherein the hydrophilic region at least partially extends into the partially-filled aperture. Also, provided are coated metallic meshes having bilayers and a method of providing a molecular layer to a coated mesh.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: March 8, 2005
    Assignee: The Ohio State University
    Inventors: James V. Coe, Shaun M. Williams, Kenneth R. Rodriguez
  • Patent number: 6861157
    Abstract: Articles for use in a high-temperature, oxidative environment, methods for manufacturing such articles, and a material system for protecting articles in such an environment are provided where, for example, one article comprises a substrate and a protective layer disposed over the substrate, the protective layer comprising at least about 60 atomic percent of a metal selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 1, 2005
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6852210
    Abstract: To provide a plating method, which enables wide industrial use of the redox system electroless plating method having excellent characteristics, and a plating bath precursor which is preferable for the plating method. The plating method comprises a process oxidizing first metal ions of a redox system of a plating bath from a lower oxidation state to a high oxidation state, and second metal ions of said redox system are reduced and deposited onto the surface of an object to be plated, wherein a process is provided in which by supplying the electrical current to the plating bath, the first metal ions are reduced from said lower oxidation state to thereby activate the plating bath. The plating bath precursor is formed stabilizing the plating bath so that reduction and deposition of the second metal ions substantially do not occur in order to improve its storing performance.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: February 8, 2005
    Assignees: Daiwa Fine Chemicals Co., Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Keigo Obata, Dong-Hyun Kim, Takao Takeuchi, Seiichiro Nakao, Shinji Inazawa, Ayao Kariya, Masatoshi Majima, Shigeyoshi Nakayama
  • Patent number: 6849344
    Abstract: A titanium article having improved corrosion resistance resulting from a direct or indirect attachment of a platinum group metal or alloy thereof or incorporation of this metal or alloy thereof into a minor surface portion of the article.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: February 1, 2005
    Assignee: Titanium Metals Corp.
    Inventors: James S. Grauman, James G. Miller, Roy E. Adams
  • Patent number: 6846576
    Abstract: Laminated magnetic recording medium with two Co-containing layers separated by a non-magnetic Ru-containing interlayer is stabilized by Ru-containing layer between the recording layers and Co-containing stabilization layers through anti-ferromagnetic coupling. The insertion of Co layer beneath Ru spacer has resulted in increased coupling, and further coupling enhancement is achieved by low pressure process of Co and Ru layers.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: January 25, 2005
    Assignee: Seagate Technology LLC
    Inventors: Zhong Stella Wu, Samuel Dacke Harkness
  • Patent number: 6846582
    Abstract: A magnetic recording medium 100 comprises, on a substrate 1, a soft magnetic layer 3, a seed layer 5, and a recording layer 6 having an artificial lattice structure. The seed layer 5 is formed of Pd and one selected from the group consisting of Si, B, C, and Zr. Accordingly, the magnetic exchange coupling force of the recording layer 6 in the in-plane direction can be weakened. Minute recording magnetic domains can be formed in the recording layer 6, and the magnetization transition area is distinct as well. Thus, the medium noise is reduced. That is, reproduction can be performed with a low medium noise even when information is recorded at a high density. A magnetic storage apparatus, which is provided with the magnetic recording medium as described above, can achieve an areal recording density of 150 Gigabits/square inch.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: January 25, 2005
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Tsuyoshi Onuma, Akira Yano, Satoshi Matsunuma, Takanobu Takayama
  • Patent number: 6838190
    Abstract: A protected article includes a nickel-base superalloy substrate, an interlayer overlying the substrate, and a protective layer overlying the interlayer. The protective layer has a composition comprising at least one of rhodium, platinum, palladium, and ruthenium. In one composition, palladium is present in an amount of from about 1 to about 41 atomic percent; platinum is present in an amount of about (40+atomic percent palladium) atomic percent for palladium ranging from about 1 atomic percent to about 14 atomic percent and up to about 54 atomic percent for palladium ranging from about 15 atomic percent up to about 41 atomic percent; rhodium is present in an amount of at least about 24 atomic percent; zirconium, hafnium, titanium, and mixtures thereof are present in an amount of from zero up to about 5 atomic percent; and ruthenium is present in an amount of from zero up to about 5 atomic percent, balance impurities.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 4, 2005
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Melvin Robert Jackson, Stephen Joseph Ferrigno, Gary Edward Trewiler, Mark Daniel Gorman
  • Patent number: 6830824
    Abstract: A magnetic recording medium has a substrate, a base layer formed on the substrate and including a magnetic material, a switching layer formed on the base layer and including a nonmagnetic material, and a recording layer formed on the switching layer and having a structure comprising magnetic particles and a nonmagnetic wall buried between the magnetic particles. The medium meets the condition of TcB>Tsw, where TcB is a Curie temperature of the base layer, and Tsw is a temperature at which the recording layer and the base layer begin to exert exchange coupling interaction.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 14, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Kikitsu, Junichi Akiyama, Katsutaro Ichihara, Tadashi Kai, Toshihiko Nagase, Tomoyuki Maeda
  • Patent number: 6831024
    Abstract: The conductive fabric is fabricated by preparing a base fibrous fabric substrate having the form of a woven, non-woven, or mesh sheet, forming a first layer formed on the fibrous fabric substrate in accordance with an electroless plating process, the first layer being made of copper, and forming a second layer as an externally exposed layer, on the first layer continuously, the second layer being made of gold or platinum.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: December 14, 2004
    Assignees: AMIC Co., Ltd.
    Inventor: Sun-Ki Kim
  • Patent number: 6830827
    Abstract: Disclosed is an alloy coating which can be advantageously applied to members for high temperature apparatuses so as to prolong the service life of the members. The alloy coating comprises an alloy. This alloy comprises: at least one member, as a base, selected from the group consisting of Re, Ir, Nb, Ta, Mo, and W; and at least one alloying element for imparting corrosion resistance. A method for forming the alloy coating, and a member for high temperature apparatuses, to which the alloy coating has been applied, are also disclosed.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: December 14, 2004
    Assignees: Ebara Corporation
    Inventors: Toshio Narita, Shigenari Hayashi, Hiroshi Yakuwa, Manabu Noguchi, Matsuho Miyasaka
  • Publication number: 20040247978
    Abstract: In a bipolar plate for a fuel cell including a metal substrate and a metallic coating formed on at least part of a surface of the metal substrate, the durability or the resilience is elevated by suitably selecting a material or a shape of the metal substrate and/or the metallic coating. The material of the metal substrate includes one or more of metals or metal alloys selected from a group consisting of iron, nickel, alloys thereof and stainless steel; and the metallic coating includes a combination of conductive platinum-group metal oxides. The metal substrate may be a thermally oxidized substrate, and the metallic coating may be a conductive oxide. Further, the metallic coating may be a metallic porous element or a metallic porous element having a passivity prevention layer on the surface thereof.
    Type: Application
    Filed: March 18, 2004
    Publication date: December 9, 2004
    Inventor: Takayuki Shimamune
  • Patent number: 6828037
    Abstract: The invention provides a hydrogen permeable structure, which can effectively prevent peeling-off of a hydrogen permeable film and hence has higher durability, and a method of manufacturing the structure. The hydrogen permeable structure has a hydrogen permeable film formed on the surface of or inside a porous support, having a thickness of not more than 2 &mgr;m, and containing palladium (Pd). The hydrogen permeable film is formed on the surface of or inside the porous support by supplying a Pd-containing solution and a reducing feed material from opposite sides of the porous support.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Uemura, Kentaro Yoshida, Nobuyuki Okuda, Takeshi Hikata
  • Patent number: 6821641
    Abstract: An article protected by a thermal barrier coating system includes a substrate having a substrate surface, and a thermal barrier coating system overlying the substrate. The thermal barrier coating system has a thermal barrier coating formed of a thermal barrier coating material arranged as a plurality of columnar grains extending generally perpendicular to the substrate surface and having grain surfaces. A sintering inhibitor is within the columnar grains, either uniformly distributed or concentrated at the grain surfaces. The sintering inhibitor is lanthanum oxide, lanthanum chromate, chromium oxide, and/or yttrium chromate, mixtures thereof, mixtures thereof with aluminum oxide, modifications thereof wherein cobalt or manganese is substituted for chromium, precursors thereof, and reaction products thereof.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: November 23, 2004
    Assignee: General Electric Company
    Inventors: Robert William Bruce, Nicholas Hamilton Burlingame
  • Patent number: 6822880
    Abstract: A thin film hydrogen getter and EMI shielding are provided for protecting GaAs circuitry sealed in an hermetic package. The thin film getter comprises a multilayer metal film that is deposited by vacuum evaporation techniques onto a conductive metal, such as aluminum or copper, that serves as the EMI shielding. The conductive layer is first formed on an interior surface. The multilayer hydrogen getter film comprises (1) a titanium film and (2) a palladium film that is deposited on the titanium film. Both the titanium and the palladium are deposited during the same coating process run, thereby preventing the titanium from being oxidized. The palladium continues to prevent the titanium from being oxidized once the getter is exposed to the atmosphere. However, hydrogen is easily able to diffuse through the palladium into the titanium where it is chemically bound up, since palladium is highly permeable to hydrogen.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: November 23, 2004
    Assignee: Raytheon Company
    Inventors: Alan L. Kovacs, Matthew H. Peter, Kurt S. Ketola, Jacques F. Linder
  • Patent number: 6815082
    Abstract: A high areal recording density, anti-ferromagnetically coupled (“AFC”) perpendicular magnetic recording medium comprises: a layer stack formed over the surface of a non-magnetic substrate (2), comprising, in overlying sequence: an underlayer (3) comprised of a magnetically soft ferromagnetic material; at least one non-magnetic interlayer (4); a perpendicularly anisotropic stabilization layer (6) comprised of a hard ferromagnetic material; a non-magnetic spacer layer (7); and a perpendicularly anisotropic main recording layer (5) comprised of a hard ferromagnetic material; wherein the perpendicularly anisotropic stabilization layer (6) and the perpendicularly anisotropic main recording layer (5) are anti-ferromagnetically coupled (AFC) across the non-magnetic spacer layer (7) to orient the magnetic moments thereof anti-parallel and thereby provide the medium with increased
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: November 9, 2004
    Assignee: Seagate Technology LLC
    Inventor: Erol Girt
  • Patent number: 6815083
    Abstract: A perpendicular magnetic recording medium, which has a low level of recording noise and sufficiently large perpendicular magnetic anisotropy energy relative to demagnetizing field energy, includes a substrate and a multi-layered magnetic film. The multi-layered magnetic film is composed of ferromagnetic metal layers of Co alloy containing at least Cr and non-magnetic metal layers of Pd alloy, each one layer of which are laminated alternately on top of one layer of the other. The ferromagnetic metal layers and the non-magnetic metal layers have a thickness of d1 and d2, respectively, with the ratio of d1/d2 being in the range of 1.5 to 4.0. This specific layer structure reduces the magnetic exchange interaction between magnetic particles in the multi-layered magnetic film. Therefore, the perpendicular magnetic recording medium is stable against thermal disturbance and has a low level of recording noise.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: November 9, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Hiroaki Nemoto, Hiroyuki Nakagawa, Yuzuru Hosoe
  • Patent number: 6811894
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: November 2, 2004
    Assignee: Honeywell International, Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Patent number: 6808824
    Abstract: There is provided a perpendicular magnetic recording medium comprising a non-magnetic layer having a face-centered cubic structure, an antiferromagnetic layer provided on the non-magnetic layer, a soft magnetic underlayer provided on the antiferromagnetic layer, and a perpendicular recording layer provided on the soft magnetic underlayer, which magnetic recording medium makes it possible to realize a recording density not less than 50 Gb/in2 and makes the error rate thereof low while suppressing the spike noise.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Kiwamu Tanahashi, Atsushi Kikugawa, Noboru Shimizu, Yukio Honda, Yuzuru Hosoe
  • Publication number: 20040197597
    Abstract: A nickel-base superalloy substrate includes a surface region having an integrated aluminum content of from about 18 to about 24 percent by weight and an integrated platinum content of from about 18 to about 45 percent by weight, with the balance components of the substrate. The substrate is preferably a single-crystal advanced superalloy selected for use at high temperatures. The substrate may optionally have a ceramic layer deposited over the platinum-aluminide region, to produce a thermal barrier coating system. The platinum-aluminide region is produced by diffusing platinum into the substrate surface, and thereafter diffusing aluminum into the substrate surface.
    Type: Application
    Filed: June 30, 2003
    Publication date: October 7, 2004
    Inventor: Jon C. Schaeffer
  • Publication number: 20040191561
    Abstract: A surface structure of a metallic body capable of properly maintaining the surface state of a gold layer by preventing diffusion of nickel under conditions of high temperature is provided. In the surface structure of a metallic body of a metal substrate plated with gold, the surface structure includes a nickel layer formed on the surface of the substrate, a barrier layer formed from one or more elements selected from Group 8A of the periodic table formed on the surface of the nickel layer, and a gold layer formed on the surface of the barrier layer.
    Type: Application
    Filed: March 24, 2004
    Publication date: September 30, 2004
    Applicant: Alps Electric Co., Ltd.
    Inventor: Motohiko Otsuki
  • Patent number: 6797405
    Abstract: A method for electrodepositing a uniformly thick coating on a metallic mesh is provided, the method comprises the steps of: (1) providing a metallic mesh having a plurality of apertures having at least one dimension greater than nanometer scale sizes; (2) subjecting the metal mesh to a relatively fast deposition of an electrodeposited material so as to substantially uniformly coat said mesh with electrodeposited material; and (3) subjecting the product of the relatively fast deposition step to a relatively slow deposition of an electrodeposited material so as to reduce at least one dimension greater than nanometer scale size to a size of nanometer scale. Also provided are metallic meshes so prepared and spectral filters.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: September 28, 2004
    Assignee: The Ohio State University
    Inventors: James V. Coe, Shaun M. Williams
  • Patent number: 6797408
    Abstract: A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: September 28, 2004
    Assignee: General Electric Company
    Inventors: William S. Walston, Jon C. Schaeffer, Wendy H. Murphy
  • Publication number: 20040166361
    Abstract: The present invention provides a surface coating of platinum in which the coating is formed from platinum in a black modification. This can be obtained by applying an organic platinum complex compound with platinum in the oxidation state 0 that decomposes thermally at temperatures below 200° C., or a coating composition which consists substantially of such a platinum complex compound, to the surface of a substrate and then thermally decomposing the platinum complex compound. The surface coatings can be used in many ways, for example as protective layers against mechanical and/or chemical and/or thermal effects, as antiadhesion layers, as antireflective layers or as catalytically active layers.
    Type: Application
    Filed: April 12, 2004
    Publication date: August 26, 2004
    Inventors: Michael Oechsle, Ralf Karch, Bernd Kayser
  • Publication number: 20040157083
    Abstract: Disclosed herein are a magnetic recording medium having a high coercive force and being capable of high-density writing/reading, a magnetic recording apparatus equipped with said magnetic recording medium, and a process for producing said magnetic recording medium.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 12, 2004
    Applicant: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Yoshio Takahashi, Kiwamu Tanahashi, Yuzuru Hosoe, Ichiro Tamai
  • Publication number: 20040142204
    Abstract: A coating system for an article comprising a substrate formed of a metal alloy that is prone to the formation of a deleterious secondary reaction zone (SRZ) as a result of containing more than three weight percent rhenium and at least one additional refractory metal. The coating system comprises an aluminum-containing overlay coating and a diffusion barrier coating between the overlay coating and the substrate. The diffusion barrier coating consists of, in atomic percent, about 20% to about 90% ruthenium, about 2% to about 60% chromium, optionally up to about 50% aluminum, optionally up to about 20% of a platinum-group metal, and the balance at least one of nickel, cobalt, and iron and incidental impurities. The diffusion barrier coating sufficiently inhibits diffusion of aluminum from the overlay coating into the substrate, such that the substrate remains essentially free of SRZ.
    Type: Application
    Filed: October 31, 2003
    Publication date: July 22, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ji-Cheng Zhao, Jeffrey Allan Pfaendtner, Christine Govern, Melvin Robert Jackson
  • Patent number: 6759141
    Abstract: The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSix) and iridium molybdenide (IrMox).
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: July 6, 2004
    Assignee: The Regents of the University of California
    Inventor: Shon T. Prisbrey
  • Publication number: 20040115472
    Abstract: A method of forming a platinum aluminide diffusion barrier on a metallic substrate, eg a titanium alloy aerospace component, comprises applying to the metallic substrate a coating comprising particulate platinum and particulate aluminium in an organic carrier and performing a reaction treatment on the thus applied platinum and aluminium which causes the platinum and the aluminium to form an intermetallic diffusion barrier on the metallic substrate.
    Type: Application
    Filed: October 2, 2003
    Publication date: June 17, 2004
    Applicant: ROLLS ROYCE PLC.
    Inventors: Mark H. Shipton, Terence W. Maber, Martin J. Deakin
  • Publication number: 20040110023
    Abstract: A multilayered hydrogen absorbing body is provided which is formed by laminating at least two types of hydrogen absorbing materials. The degrees of strains cause due to absorption/desorption of hydrogen are different between the hydrogen absorbing materials adjacent to each other.
    Type: Application
    Filed: July 22, 2003
    Publication date: June 10, 2004
    Applicant: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shin-Ichi Towata, Masakazu Aoki, Tatsumi Hioki, Akio Itoh, Akihiko Koiwai, Toshihiro Mouri, Katsushi Saito
  • Publication number: 20040106001
    Abstract: A thin film hydrogen getter and EMI shielding are provided for protecting GaAs circuitry sealed in an hermetic package. The thin film getter comprises a multilayer metal film that is deposited by vacuum evaporation techniques onto a conductive metal, such as aluminum or copper, that serves as the EMI shielding. The conductive layer is first formed on an interior surface. The multilayer hydrogen getter film comprises (1) a titanium film and (2) a palladium film that is deposited on the titanium film. Both the titanium and the palladium are deposited during the same coating process run, thereby preventing the titanium from being oxidized. The palladium continues to prevent the titanium from being oxidized once the getter is exposed to the atmosphere. However, hydrogen is easily able to diffuse through the palladium into the titanium where it is chemically bound up, since palladium is highly permeable to hydrogen.
    Type: Application
    Filed: November 25, 2003
    Publication date: June 3, 2004
    Inventors: Alan L. Kovacs, Matthew H. Peter, Kurt S. Ketola, Jacques F. Linder
  • Publication number: 20040101710
    Abstract: The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSix) and iridium molybdenide (IrMox).
    Type: Application
    Filed: April 30, 2002
    Publication date: May 27, 2004
    Applicant: The Regents of the University of California
    Inventor: Shon T. Prisbrey
  • Patent number: 6730415
    Abstract: A film is formed on the surface of a soft metal portion (2) such that the film contains phosphorus and either platinum or palladium, and further, at least one element having homogeneous solubility with platinum or palladium, with the content of the phosphorus being in a range of about 15 to 25 atomic %, or contains boron and iron with the content of the boron being in a range of from about 15 to 25 atomic %. Thus, a soft metal is made up by turning the film into a hard layer (3) made of an amorphous alloy.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: May 4, 2004
    Assignee: Citizen Watch Co., Ltd.
    Inventors: Yoshitsugu Shibuya, Eigou Hashimoto, Junji Satoh, Masahiro Satoh, Seiichi Hiroe
  • Patent number: 6720088
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: April 13, 2004
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Publication number: 20040058191
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Application
    Filed: June 6, 2003
    Publication date: March 25, 2004
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Publication number: 20040058190
    Abstract: A titanium article having improved corrosion resistance resulting from a direct or indirect attachment of a platinum group metal or alloy thereof or incorporation of this metal or alloy thereof into a minor surface portion of the article.
    Type: Application
    Filed: June 3, 2003
    Publication date: March 25, 2004
    Inventors: James S. Grauman, James G. Miller, Roy E. Adams
  • Patent number: 6709768
    Abstract: A magnetic recording medium having a high coercive force and being capable of high-density writing/reading has a substrate, a soft magnetic layer, a non-magnetic intermediate layer, a magnetic layer, a protective layer, and a lubricating layer. The magnetic layer is characterized by stacking fault density and dispersion of particle diameters. The stacking fault density should preferably be no larger than 0.05, and the dispersion of particle diameters should preferably be no larger than 0.4. The magnetic recording medium has a coercive force larger than 4000 Oe, is highly stable to thermal decay, and has a recording density in excess of 50 Gbit/in2.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: March 23, 2004
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Yoshio Takahashi, Kiwamu Tanahashi, Yuzuru Hosoe, Ichiro Tamai
  • Patent number: 6706420
    Abstract: The present invention relates to electroless plating of a platinum-rhodium alloy onto a substrate. More particularly, this invention pertains to an aqueous platinum and rhodium plating bath, a process for plating a uniform coating of a platinum-rhodium alloy onto various substrates using an electroless plating composition, and a platinum-rhodium plated article formed therefrom. This process is suitable for the deposition of a platinum-rhodium alloy on virtually any material of any geometrical shape, including fibers and powders.
    Type: Grant
    Filed: July 6, 2000
    Date of Patent: March 16, 2004
    Assignee: Honeywell International Inc.
    Inventors: Alexander S. Kozlov, Thirumalai Palanisamy, Dave Narasimhan
  • Patent number: 6706421
    Abstract: A lead structure for use with a magneto-resistive sensing element in a magnetic disk system is described. The lead structure comprises a layer of ruthenium or rhodium sandwiched between layers of a nickel-chromium alloy. The lower nickel-chromium layer acts as a seed layer to ensure that the ruthenium and rhodium layers have crystal structures that correspond to low resistivity phases. The interfaces between these three layers introduce a minimum of interfacial scattering of the conduction electrons thereby keeping dimensional increases in resistivity to a minimum.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: March 16, 2004
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Mao-Min Chen, Ru-Ying Tong
  • Publication number: 20040048090
    Abstract: In general, the present invention provides coating systems and processes for applying a selected coating system on a metallic substrate. The coating system includes two or more coating layers. A first layer comprises a MCrAl(Y,Hf)-type coating. The MCrAl(Y,Hf) coating is overlaid with a second coating composition that includes a metallic composition different from the MCrAl(Y,Hf) coating composition and includes one or more of: a platinum, silicon containing composition; a platinum, silicon, aluminum containing composition; a platinum, silicon, chromium containing composition; an aluminum, silicon containing composition; and an aluminum, silicon, chromium containing composition; each optionally combined with one or more of chromium, hafnium, lanthanum, manganese, yttrium and mixtures of these metals. Additionally the platinum in the metallic compositions can be exchanged in whole or in part by another noble metal.
    Type: Application
    Filed: September 11, 2002
    Publication date: March 11, 2004
    Inventors: George Edward Creech, Subhash Krishna Naik
  • Patent number: 6699593
    Abstract: A highly corrosion-resistant material and a corrosion-resistant member which are improved in corrosion resistance, adhesion, contact electrical resistance, electrical conductivity, airtightness, etc. and are suitable for use as, e.g., a metallic separator for polymer electrolyte fuel cells (PEFC); and a process for producing them. A thin noble-metal layer is formed on the desired part of the surface of a metallic base and then subjected to compression working. The coated base may further be subjected to anticorrosive treatment with a liquid phase containing a peroxide or ozone or with an active gas atmosphere.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: March 2, 2004
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yasushi Kaneta, Shinobu Takagi, Hiroaki Yoshida, Yoshihisa Suzuki, Masaki Shinkawa
  • Publication number: 20040028938
    Abstract: A protective coating forming a thermal barrier is made on a superalloy metal substrate by forming a bonding underlayer on the substrate, the bonding underlayer being constituted by an intermetallic compound comprising at least aluminum and a metal from the platinum group, and by forming a ceramic outer layer which is anchored on a film of alumina present on the surface of the bonding underlayer. The bonding underlayer preferably has a thickness of less than 50 &mgr;m and is made by using physical vapor deposition, e.g. by cathode sputtering, to deposit a plurality of individual layers alternately of aluminum and of a metal from the platinum group, and by causing the metals in the resulting layers to react together exothermally.
    Type: Application
    Filed: June 5, 2003
    Publication date: February 12, 2004
    Applicant: SNECMA MOTEURS
    Inventors: Bertrand Saint Ramond, John Nicholls
  • Patent number: 6686060
    Abstract: A coating material, particularly a thermal barrier coating, for a component intended for use in a hostile environment, such as the superalloy turbine, combustor and augmentor components of a gas turbine engine. The coating material is zirconia that is stabilized with yttria and to which an oxide additive of niobia or titania is alloyed to reduce and stabilize the thermal conductivity of the coating.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: February 3, 2004
    Assignee: General Electric Company
    Inventors: Robert William Bruce, Paul Gustav Klemens, Glen Alfred Slack
  • Patent number: 6682827
    Abstract: A protective overlay coating for articles used in hostile thermal environments, and particularly for use as a bond coat for a thermal barrier coating deposited on the coating. The coating is predominantly beta-phase NiAl into which a platinum-group metal is incorporated, yielding a coating system capable of exhibiting improved spallation resistance as compared to prior bond coat materials containing platinum, must notably the platinum aluminide diffusion coatings. A preferred composition for the beta-phase NiAl overlay coating further contains chromium and zirconium or hafnium.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 27, 2004
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, Jeffrey Allan Pfaendtner
  • Patent number: 6660680
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: December 9, 2003
    Assignee: Superior MicroPowders, LLC
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 6656613
    Abstract: Materials including alternating magnetic layers and spacer layers for use as hard magnetic recording layers of magnetic recording media are disclosed. The spacer layers and the magnetic layers are treated in an oxygen-containing atmosphere in order to form oxidized boundary layers between adjacent granular columns extending through the layers. The columnar microstructure extends through the entire thickness of the multilayer structure to thereby exchange decouple the magnetic layers as well as the spacer layers. The spacer and magnetic layers may include additives which are present in grain boundary regions throughout the layers. The presence of the additives in the grain boundary regions may facilitate diffusion and oxidization between the adjacent granular columns. In a particular embodiment, the magnetic layers comprise Co, the spacer layers comprise Pd, and the additives comprise Cr, Pt, B, Ta, Nb or combinations thereof.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev, James Kent Howard
  • Patent number: 6656605
    Abstract: A coated article is prepared by furnishing an article substrate having a free sulfur content of less than about 1 part per million. The low-sulfur article may be made of a material selected to have a low sulfur content, provided with a scavenging element that reacts with free sulfur to produce a sulfur compound, or desulfurized by contact with a reducing gas such as hydrogen. A platinum-group metal layer is deposited over the article substrate, and a ceramic coating is applied over the platinum-group metal layer.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: December 2, 2003
    Assignee: General Electric Company
    Inventors: Jon C. Schaeffer, Mark A. Rosenzweig, Norman R. Lindblad, Wendy H. Murphy
  • Patent number: 6656604
    Abstract: A magnetoresistive thin-film magnetic element including a composite comprising an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer; hard bias layers for orienting the magnetic vectors of the free magnetic layer in a direction substantially orthogonal to the magnetization vector of the pinned magnetic layer; and a conductive layer for supplying a sense current is provided. The hard bias layers are provided at the two sides of the free magnetic layer. The hard bias layers and the free magnetic layers are in contact with each other at least partly. Bias underlayers are provided at the bottom of the hard bias layers.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: December 2, 2003
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasewaga
  • Publication number: 20030203221
    Abstract: A thermal barrier coating system having an improved life as a result of a preoxidation treatment applied to a single phase platinum aluminide bond coat. After coating the substrate to form a diffusion platinum aluminum bond coat, the surface finish of the bond coat was grit blasted with an inert grit of preselected size at a preselected pressure to achieve a predetermined surface finish. After the grit blasting, but before application of the ceramic top coat of yttria-stabilized zirconia (YSZ), the coating was preoxidized to form a thin alumina scale by heat treating the diffusion platinum aluminide bond coat at an elevated temperature at a preselected partial pressure of oxygen.
    Type: Application
    Filed: July 6, 2001
    Publication date: October 30, 2003
    Inventor: Irene Spitsberg
  • Patent number: 6630250
    Abstract: An article substrate is protected by a protective structure overlying a surface of the article substrate. The protective structure includes a protective coating that is formed by depositing a layer of iridium overlying the surface of the substrate, depositing a layer of aluminum overlying the layer of iridium, and heating the substrate, the layer of iridium, and the layer of aluminum to form an iridium-aluminum protective coating overlying the substrate. A ceramic thermal barrier coating may be applied over the protective coating.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: October 7, 2003
    Assignee: General Electric Co.
    Inventor: Ramgopal Darolia
  • Patent number: 6630255
    Abstract: Materials including alternating magnetic layers and spacer layers for use as a hard magnetic recording layer of a magnetic recording media are disclosed. The spacer layers as well as the magnetic layers are exchange decoupled. The spacer and magnetic layers include additives which are present in grain boundary regions throughout the layers. In a particular embodiment, the magnetic layers comprise Co, the spacer layers comprise Pd, and the additives comprise Cr, Pt, B, Ta, Nb or combinations thereof. In addition to forming grain boundaries that exchange decouple the magnetic and spacer layers, the additives may act as grain refiners.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: October 7, 2003
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev
  • Publication number: 20030186075
    Abstract: Articles for use in a high-temperature, oxidative environment, methods for manufacturing such articles, and a material system for protecting articles in such an environment are provided where, for example, one article comprises a substrate and a protective layer disposed over the substrate, the protective layer comprising at least about 60 atomic percent of a metal selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
    Type: Application
    Filed: March 18, 2002
    Publication date: October 2, 2003
    Applicant: General Electric CRD
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson