Co- Or Ni-base Component Next To Fe-base Component Patents (Class 428/679)
  • Publication number: 20040076876
    Abstract: The present invention provides a steel sheet material used for a positive electrode can and a positive electrode can for an alkaline manganese battery capable of improving the battery characteristics for an alkaline manganese battery, characterized in that the plated steel sheet for a positive electrode can for an alkaline manganese battery has Ni-based diffusion plating layer having on the top layer many small pinholes of diameter not greater than 1 &mgr;m, i.e. submicron pinholes, formed on the surface of the steel sheet to be used as an internal surface of the can. Said submicron pinholes preferably have, as observed by SEM, diameter in the range of 0.1˜1 &mgr;m and are present at density not less than 30 pcs/(10 &mgr;m×10 &mgr;m). The surface of the steel sheet to be used as an external surface of the can preferably has a Fe—Ni diffusion plating layer and a Ni plating layer that has been softened by recrystallization.
    Type: Application
    Filed: July 9, 2003
    Publication date: April 22, 2004
    Inventors: Kiyokazu Ishizuka, Teruaki Yamada, Nichihiro Nuono
  • Publication number: 20040072012
    Abstract: The present invention provides a surface treated steel sheet for electronic components which does not include lead, which is a hazardous substance with environmental impact, and, in particular, satisfies the solder wettability after retort treatment, a rust-proof property and a whisker-proof property simultaneously. More specifically, the present invention is a surface treated steel sheet with less environmental impact for electronic components excellent in solder wettability, a rust-proof property and a whisker-proof property and having an Sn—Zn alloy layer which is formed by plating Sn and Zn on a steel sheet or a Ni plated steel sheet and then applying thermal diffusion treatment, or by plating Sn—Zn alloy on a steel sheet or a Ni plated steel sheet, characterized in that the amount of said Sn—Zn alloy layer is not less than 3 g/m2, the Zn/Sn ratio (in weight ratio) is 0.01 to 10, more preferably 0.01 to 0.
    Type: Application
    Filed: August 21, 2003
    Publication date: April 15, 2004
    Inventors: Ryoichi Yoshihara, Tokitsugu Shirakawa, Yasuhiko Miura
  • Patent number: 6720087
    Abstract: The invention describes a temperature-stable protective coating over a metallic substrate surface (1), which coating includes at least one layer of material (4) consisting of MCrAlY, where M represents at least one of the elements selected from the group of materials consisting of Fe, Co and Ni. The invention also describes a production process for this coating.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: April 13, 2004
    Assignee: Alstom Technology LTD
    Inventors: Reinhard Fried, Alkan Goecmen, Abdus S. Khan
  • Publication number: 20040058189
    Abstract: The present invention relates to a zinc-diffused nickel alloy coating for corrosion and heat protection and to a method for forming such a coating. The coating method broadly comprises the steps of forming a plain nickel or nickel alloy coating layer on a substrate, applying a layer of zinc over the nickel or nickel alloy coating layer, and thermally diffusing the zinc into the nickel alloy coating layer. The coating method may further comprise immersing the coated substrate in a phosphated trivalent chromium conversion solution either before or after the diffusing step. The substrate may be a component used in a gas turbine engine, which component is formed from a steel material.
    Type: Application
    Filed: September 23, 2002
    Publication date: March 25, 2004
    Inventors: Henry M. Hodgens, Thomas R. Hanlon
  • Patent number: 6707122
    Abstract: A symmetric van der Pauw disk of homogeneous nonmagnetic semiconductor material, such as indium antimonide, with an embedded concentric conducting material inhomogeneity, such as gold, exhits room temperature geometric extraordinary magnetoresistance (EMR) as high as 100%, 9,100% and 750,000% at magnetic fields of 0.05, 0.25 and 4.0 Tesla, respectively. Moreover, for inhomogeneities of sufficiently large cross section relative to that of the surrounding semiconductor material, the resistance of the disk is field-independent up to an onset field above which the resistance increases rapidly. These results can be understood in terms of the field-dependent deflection of current around the inhomogeneity.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: March 16, 2004
    Assignee: NEC Laboratories America, Inc.
    Inventors: Daniel R. Hines, Stuart A. Solin, Tineke Thio, Tao Zhou
  • Publication number: 20040048093
    Abstract: A Sn-based metal-coated steel strip excellent in appearance comprises a Ni-based metal (such as Ni, a Ni-Sn alloy, a Ni-Zn alloy, a Ni-Fe alloy and a Ni-Co alloy) preplating layer and a Sn-based metal (such as a Sn-Zn alloy) coating formed thereon, and is characterized in that a Ni emission intensity line and an Fe emission intensity line obtained by glow discharge spectroscopy of the surface of the coated steel strip satisfy a relationship of the formula: T1≧T2
    Type: Application
    Filed: July 9, 2003
    Publication date: March 11, 2004
    Inventors: Seiji Sugiyama, Teruaki Izaki, Masao Kurosaki, Yasuto Goto, Yusho Oyama, Tomohide Kamiyama
  • Patent number: 6696176
    Abstract: A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: David B. Allen, Gregg P. Wagner, Brij B. Seth
  • Publication number: 20040005499
    Abstract: A battery case excellent in glossiness of appearance and working efficiency and a surface-plated steel plate which can be used preferably to manufacture the battery case. The battery case is produced by deep-drawing, DI-forming, DTR-forming a surface-treated steel plate having glossy nickel or glossy nickel-cobalt alloy plating on the outermost layer corresponding to the external face of a battery case of a plated original plate consisting of a steel plate. The glossy nickel plating or glossy nickel-cobalt alloy plating layer on the outermost layer has a high glossiness, and therefore the appearance is excellent. The runnability of a formed battery case is high as well as the working efficiency.
    Type: Application
    Filed: August 11, 2003
    Publication date: January 8, 2004
    Inventors: Hitoshi Ohmura, Tatsuo Tomomori, Hideo Ohmura
  • Patent number: 6673467
    Abstract: A metallic component exposed to high temperature steam is provided with a coating comprising a thin primer layer deposited on the surface of the metallic component and a thicker overlay layer on top of the primer layer. The primer layer consists of highly ductile, oxidation resistant material such that it remains free of any defects over a long period of exposure. The overlay layer consists of an oxidation resistant, less ductile, and low-cost material. It protects the thin primer layer from mechanical damage and chemical degradation. The primer layer protects the base material of the metallic component from oxidizing steam that may penetrate through cracks of the overlay layer. Due to suitable choice of coating materials and thicknesses of the layers the coating is low-cost.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 6, 2004
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Richard Brendon Scarlin, Reinhard Knödler
  • Publication number: 20040001966
    Abstract: A method of providing a protective, corrosion-resistant thin coating of a MCrX alloy on a carbon or low-alloy steel pipe or tube where M is one of nickel, cobalt or iron or combination thereof and X is one of molybdenum, silicon, tungsten or combination thereof, and heat treating the coating to metallurgically bond the coating onto a steel substrate of the pipe or tube. The coating may be deposited in one or two layers by plasma transferred arc deposition or may be deposited as a slurry coating or thermal spray coating with sintering of the coating. The steel substrate is prepared for coating by at least one of boring, honing, bright finishing, grit blasting, grinding, chemical pickling or electro-polishing of the substrate.
    Type: Application
    Filed: June 28, 2002
    Publication date: January 1, 2004
    Inventors: Chinnia Gounder Subramanian, David Aaron Easton
  • Patent number: 6667110
    Abstract: A hybrid steel cord and method of making such cord which includes, in contact with one or more carbon steel wire(s), at least one stainless steel wire whose microstructure contains less than 20% of martensite (% by volume). Articles made of plastic and/or rubber, in particular tire envelopes or the carcass reinforcement plies of such envelopes embodying such cords.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: December 23, 2003
    Assignee: Compagnie Générale des Establissements Michelin - Michelin & Cie
    Inventors: François-Jacques Cordonnier, Eric Depraetere
  • Patent number: 6652991
    Abstract: The addition of small amounts of CeO2 and Cr to intermetallic compositions of NiAl and FeAl improves ductility, thermal stability, thermal shock resistance, and resistance to oxidation, sulphidization and carburization.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: November 25, 2003
    Assignee: The Governors of the University of Alberta
    Inventors: You Wang, Weixing Chen
  • Patent number: 6623869
    Abstract: A metallic material of the invention which comprises, in mass %, C: not more than 0.2%, Si: 0.01-4%, Mn: 0.05-2%, P: not more than 0.04%, S: not more than 0.015%, Cr: 10-35%, Ni: 30-78%, Al: not less than 0.005% but less than 4.5%, N: 0.005-0.2%, and one or both of Cu: 0.015-3% and Co: 0.015-3%, with the balance substantially being Fe, and of which the value of 40Si+Ni+5Al+40N+10 (Cu+Co), wherein the symbols of elements represent the contents of the respective elements, is not less than 50 and has excellent corrosion resistance in an environment in which metal dusting is ready to occur and, therefore, can be utilized as or in heating furnace pipes, piping systems, heat exchanger pipes and so forth to be used in a petroleum refinery or in petrochemical plants, and can markedly improve the equipment durability and safety.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: September 23, 2003
    Inventors: Yoshitaka Nishiyama, Nobuo Otsuka
  • Publication number: 20030173002
    Abstract: Steel sheet for porcelain enameling having excellent workability yet capable of providing an enamel layer having excellent adhesion with the steel sheet on direct-on enameling once and still free of black specks defects, a method for producing the same, as well as a porcelain enamel product and the method for producing the same are provided, in which low carbon Al-killed steel sheet, high oxygen steel sheet, Ti-added steel sheet, Nb-added steel sheet, Ti—Nb-added steel sheet or B-added steel sheet is used. A steel sheet for porcelain enameling is produced by applying Ni—Mo alloy plating to the low carbon Al-killed steel sheet, high oxygen steel sheet, Ti-added steel sheet, Nb-added steel sheet, Ti—Nb-added steel sheet or B-added steel sheet having specified components and composition ratio, and after performing heat treatment thereto to control the content of Ni, Mo, and Fe that are present on the surface of the steel sheet in a predetermined range, porcelain enamel is applied and fired.
    Type: Application
    Filed: February 14, 2003
    Publication date: September 18, 2003
    Inventors: Fumiaki Sato, Toshihira Hamada, Shuzo Oda, Yoshihiro Jono, Takahiro Hayashida, Junichi Fujimoto, Masao Komai
  • Publication number: 20030162052
    Abstract: Steel sheet for porcelain enameling capable of realizing excellent enamel adhesion with the steel sheet by direct-on enameling once is provided by using a Ti-added steel sheet; there are also a method for producing the same, as well as a porcelain enamel product and the method for producing the same. A steel sheet for porcelain enameling is produced by providing a Ni—Mo alloy plating film on a Ti-added steel sheet containing 0.01% by weight (wherein, % represents “% by weight” hereinafter) or less of C, 0.5% or less of Mn, 0.04% or less of P, 0.04% or less of S, 0.01 to 0.50% of Ti, and balance Fe accompanied by unavoidable impurities, and by then performing heat treatment thereto to control the content of Ni, Mo, and Fe present in the surface of the steel sheet in a predetermined range, porcelain enamel is applied once and fired.
    Type: Application
    Filed: January 16, 2003
    Publication date: August 28, 2003
    Inventors: Fumiaki Sato, Toshihira Hamada, Shuzo Oda, Yoshihiro Jono, Takahiro Hayashida, Junichi Fujimoto, Masao Komai
  • Patent number: 6605371
    Abstract: A brazing alloy according to the present invention has a melting point equivalent to that of a copper brazing filler and is excellent in corrosion- and oxidation-resistance. The brazing alloy consists essentially of Mn, Ni and Cu, and has a composition in terms of weight percentage which, when plotted on a diagram as shown in FIG. 1, falls within a range defined by: the point A (37% Mn, 63% Ni, 0% Cu), the point B (18% Mn, 27% Ni, 55% Cu); the point C (42% Mn, 3% Ni, 55% Cu); the point D (50% Mn, 3% Ni, 47% Cu); and the point E (50% Mn, 50% Ni, 0% Cu), wherein Mn=50% is exclusive.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: August 12, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masami Ueda, Masaaki Ishio, Hidetoshi Noda, Tsuyoshi Hasegawa
  • Patent number: 6593010
    Abstract: A composite material and a method of making a composite material is disclosed. The composite comprises a core of a precipitation hardenable metal having a coefficient of thermal expansion less than 9 parts per million/° C. in the temperature range of 20° C. to 100° C. The core material is clad with a transition metal or transition metal alloy cladding layer covering at least one surface of the core.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: July 15, 2003
    Assignee: Hood & Co., Inc.
    Inventors: Anthony John Izbicki, Michael Anthony Perricci, Jean Charles Bonnel
  • Publication number: 20030129442
    Abstract: A surface treated tin-plated steel sheet which has (1) an alloy layer formed on the surface of a steel sheet, (2) a tin plating layer being formed on said alloy layer with a remaining exposed portion of the alloy layer having an area of 30% or more of that of said alloy layer and, formed on said tin plating layer and said exposed portion of the alloy layer, (3) a coating film containing P and Si in an amount of 0.5 to 100 mg/m2 and 0.1 to 250 mg/m2, respectively: and a chemical treatment solution for use in preparing the steel sheet which comprises a phosphate ion, a tin ion and a silane coupling agent and has a pH of 1.5 to 5.5. The surface treated tin-plated steel sheet is free from chromium which causes problems from an environmental view point, and also is excellent in adhesion with a paint, corrosion resistance after being coated, rust resistance, and formability.
    Type: Application
    Filed: July 8, 2002
    Publication date: July 10, 2003
    Inventors: Tomofumi Shigekuni, Hisatada Nakakoji, Kazuo Mochizuki, Chiaki Kato
  • Patent number: 6579628
    Abstract: The multi-layered heat resistant metal tube is disclosed. This tube has excellent anti-coking characteristics and is suitable for use under the conditions where carbon tends to deposit and accumulate thereon due to contacting with hydrocarbons at a high temperature. The tube is made by forming weld-mounted overlaid layer of Cr—Ni alloy by building-up welding over the inner surface and/or the outer surface of a substrate tube made of a heat resistant metal. The Cr—Ni alloy comprises 35% by weight or more of Cr and satisfies the relationship: Ni(w%)≧0.5Cr(wt %). Building-up welding is preferably carried out by PPW (Plasma Powder Welding) in which the filler metal is supplied in the form of powder.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: June 17, 2003
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Yuko Takeuchi, Yoshihisa Kato, Noriyoshi Yokota, Seiya Asari, Masaki Tsuchiya, Takao Shimizu, Isao Tanaka
  • Patent number: 6551721
    Abstract: A purpose of the present invention is to provide a surface treated steel sheet for a battery container having an excellent anti-alkaline characteristic and a performance for maintaining a discharging level for a long time, a battery container and a product method thereof. In the present invention, after forming a nickel-bismuth alloy layer on a steel sheet, the steel sheet is thermally treated at 300° C. to 650° C. in an inactive gas or a deoxidizing gas for 240 to 600 min so that an iron-nickel diffused layer and nickel-bismuth diffused layer are formed at each boundary surface. A battery is produced by utilizing a battery container made of a steel sheet on which one or more than layers selected from a group of an iron-nickel diffused layer, a nickel layer, a nickel-bismuth diffused layer, an iron-nickel-bismuth alloy layer is formed on the steel sheet.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: April 22, 2003
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Hitoshi Ohmura, Tatsuo Tomomori, Hideo Ohmura, Tatsuya Ohshima
  • Patent number: 6548194
    Abstract: Disclosed is a magnetic recording medium having a laminate structure comprising at least a substrate, a Co alloy bias layer, a soft magnetic layer, and a magnetic recording layer. The direction of residual magnetization of the Co alloy bias layer faces one direction of its radial direction. Also, the perpendicular magnetic recording medium satisfies the relationship given below: Mssoft×(tsoft−40 nm)>Mssoft×40 nm+Msbias×tbias where, tbias denotes the thickness of the cobalt alloy bias layer, Msbias denotes the saturation magnetization of the cobalt alloy bias layer, tsoft denotes the thickness of the soft magnetic layer, which falls within a range of between 40 nm and 200 nm, and Mssoft denotes the saturation magnetization of the soft magnetic layer.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 15, 2003
    Assignees: Kabushiki Kaisha Toshiba, Showa Denko K.K.
    Inventors: Takashi Hikosaka, Futoshi Nakamura, Soichi Oikawa, Hiroshi Sakai, Kenji Shimizu
  • Patent number: 6548186
    Abstract: In a spin valve, at least one AP pinned sublayer and/or one AP free sublayer comprise high resistivity alloys of the type AB, wherein A is selected from the group consisting of CoFe, NiFe, and CoFeNi, and B is selected from the group consisting of B, Ta, Nb, Zr, and/or Hf. The resistivity value of the highly resistive layer is typically between about 30 &mgr;&OHgr;-cm and 100 &mgr;&OHgr;-cm. The highly resistive layers reduce the shunting of the sense current away from the rest of the structure, and prevent electrons from being shunted away from the active region of the spin valve and, thus, reducing &Dgr;R/R. The spin valve of this layered structure can increase the overall sheet resistance and optimize the &Dgr;R/R value of the spin valve.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 15, 2003
    Assignee: International Business Machines Corporation
    Inventors: Matthew Joseph Carey, Bruce Alvin Gurney, Robert John Wilson
  • Patent number: 6544662
    Abstract: A process is disclosed for brazing plate/plate and plate/fin multi-channeled structures using an amorphous brazing foil as a brazing filler metal between the parts in order to form uniform joints having optimal dimensions, shape and strength. The parts are assembled in an unconstrained stack, and a controlled load is applied to the top of the stack. The stack is then heated to a temperature at which the interlayer melts and reacts with the base metal to form the joints. The stack is cooled resulting in a brazed structure having the desired characteristics, wherein the brazed joints are optimally formed and the strength of the structure is equal to the underlying strength of the base metal.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: April 8, 2003
    Assignee: AlliedSignal Inc.
    Inventors: Anatol Rabinkin, Nicholas DeCristofaro
  • Publication number: 20030064244
    Abstract: A metallic component exposed to high temperature steam is provided with a coating comprising a thin primer layer deposited on the surface of the metallic component and a thicker overlay layer on top of the primer layer. The primer layer consists of highly ductile, oxidation resistant material such that it remains free of any defects over a long period of exposure. The overlay layer consists of an oxidation resistant, less ductile, and low-cost material. It protects the thin primer layer from mechanical damage and chemical degradation. The primer layer protects the base material of the metallic component from oxidizing steam that may penetrate through cracks of the overlay layer. Due to suitable choice of coating materials and thicknesses of the layers the coating is low-cost.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 3, 2003
    Inventors: Richard Brendon Scarlin, Reinhard Knodler
  • Publication number: 20030049483
    Abstract: Metal foils are soldered using a soldering material. The metal foils are disposed in layers and/or are wound in layers to form a honeycomb body. An aluminum content of the foils amounts to at least 6 wt. %. The material is based upon nickel and contains 17 to 23 wt. % chromium, 5 to 10 wt. % silicon, 18 to 20 wt. % iron, and less than 0.5 wt. % boron.
    Type: Application
    Filed: September 9, 2002
    Publication date: March 13, 2003
    Inventor: Andree Bergmann
  • Publication number: 20030044637
    Abstract: A method of manufacturing a precision machine part, comprising the steps of: dividing a precision machine part into a plurality of pieces on an arbitrary face in the axial direction of a conveyance passage in which liquid or gas of a pipe line or cylinder passes; interposing a bonding alloy containing V in 1 to 10 atomic % between the divided faces; quickly heating by high frequency induction heating in an oxidizing atmosphere containing oxygen in not less than 0.01 mass %; and controlling a cooling rate after isothermal solidification.
    Type: Application
    Filed: January 18, 2002
    Publication date: March 6, 2003
    Inventors: Yasushi Hasegawa, Yasuhiro Shinohara, Yutaka Takagi
  • Patent number: 6528178
    Abstract: A high temperature resistant article with improved protective coating bonding and method of manufacturing the article is provided. In one embodiment, the high temperature resistant article comprises a base body having a surface at least partly coated with an oxidation and corrosion protective coating containing a carbide forming element, wherein said base body is made from a metallic alloy having a medium carbon content and wherein the carbon content in a depth of 50 &mgr;m or deeper from said coated surface is less than 0.3% of said medium carbon content.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 4, 2003
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Vasudevan Srinivasan
  • Patent number: 6514631
    Abstract: A heating furnace tube, a method of using the same and a method of manufacturing the same which have been developed with a view to eliminating inconveniences occurring when a carbon-containing fluid is made to flow in the heating furnace tube. The heating furnace tube which comprises a rare earth oxide particle distributed iron alloy containing 17-26 wt. % of Cr and 2-6 wt. % of Al. The method of manufacturing this heating furnace tube which comprises the steps of forming or inserting an insert metal on or into at least one of a joint end portion of one heating furnace tube element and that of the other heating furnace tube element, bringing these two joint end portions into pressure contact with each other directly or via an intermediate member, and diffusion welding the two heating furnace tube elements to each other by heating the insert metal.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: February 4, 2003
    Assignee: JGC Corporation
    Inventors: Katsumi Yamamoto, Takeo Murata, Rin Sasano, Kenji Sato, Toshikazu Nakamura, Muneyasu Ichimura, Kunio Ishii, Keizo Hosoya
  • Publication number: 20020182437
    Abstract: A coating blade having a covering comprising a nickel-based matrix and particles of ceramic, diamond or carbide dispersed in said matrix, on the functional part of said blade.
    Type: Application
    Filed: April 26, 2002
    Publication date: December 5, 2002
    Inventors: Ibrahim Brah Adamou, Silvano Freti
  • Patent number: 6489043
    Abstract: An iron aluminide fuel injector component such as a nozzle, plunger or other part is manufactured from iron aluminide or includes an iron aluminide coating on at least a portion of a surface in contact with the fuel which passes through the fuel injector. The iron aluminide alloy can include 8 to 32 wt. % Al, up to 5 wt. % refractory metal, B and/or C in amounts sufficient to form borides and/or carbides. The fuel injector component can be formed from powders of the iron aluminide alloy by powder metallurgy techniques and the coating can be formed by a diffusional reaction process, cathodic plasma process, chemical vapor deposition or physical vapor deposition. The fuel injector component is corrosion, carburization, sulfidation and/or coking resistant.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: December 3, 2002
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Seetharama C. Deevi, Shalva Gedevanishvili, Sohini Paldey
  • Publication number: 20020168542
    Abstract: A composite material and a method of making a composite material is disclosed. The composite comprises a core of a precipitation hardenable metal having a coefficient of thermal expansion less than 9 parts per million/° C. in the temperature range of 20° C. to 100° C. The core material is clad with a transition metal or transition metal alloy cladding layer covering at least one surface of the core.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 14, 2002
    Inventors: Anthony John Izbicki, Michael Anthony Perricci, Jean Charles Bonnel
  • Patent number: 6475647
    Abstract: A method for protecting high temperature stainless steel from coking and corrosion at elevated temperatures in corrosive environments, such as during ethylene production by pyrolysis of hydrocarbons or the reduction of oxide ores, by coating the stainless steel with a coating of MCrAlX in which M is nickel, cobalt, iron or a mixture thereof and X is yttrium, hafnium, zirconium, lanthanum or combination thereof deposited onto and metallurgically bonded to the stainless steel by plasma transferred arc deposition of atomized powder of MCrAlX. The coating has a thick, dense, continuous and smooth transition region providing an effective metallurgically bond of the coating with the stainless steel. The coating retains a relatively high aluminum content which permits generation of an adherent alumina layer on the surface, providing good resistance to high temperature oxidation together with good anti-coking and hot erosion resistance properties.
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: November 5, 2002
    Assignee: Surface Engineered Products Corporation
    Inventors: Juan Manuel Mendez Acevedo, Chinnia Gounder Subramanian
  • Patent number: 6465114
    Abstract: A coated steel material excellent in corrosion resistance and a method of producing the same, wherein a coated steel material has on the surface of the steel sheet a Zn-alloy coating layer containing 1-10 wt % of Mg, 2-19 wt % of Al and 0.01-2 wt % of Si, where Mg and Al satisfy Mg (%)+Al (%)≦20%, the balance being Zn and unavoidable impurities, and has a coating layer structure of a Mg intermetallic compound or the like. As a base metal treatment, it is preferably provided with a Ni coating layer. The coated Zn-alloy coated steel sheet may have provided on the coating layer, as an intermediate layer, a chromate film layer, and, as an upper layer, an organic coating layer. The Zn-alloy coating layer may further contain one or more of 0.01-1 wt % of In, 0.01-1 wt % of Bi and 1-10 wt % of Sn. The coated steel material may be painted.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: October 15, 2002
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhiko Honda, Kazumi Nishimura, Yasuhide Morimoto, Satoru Tanaka, Yoshihiro Suemune, Jun Maki, Hidetoshi Shindo, Masaaki Sugiyama, Hiroyasu Furukawa, Masao Kurosaki, Hiromasa Nomura, Hiroshi Kanai, Kohei Ueda
  • Patent number: 6418994
    Abstract: The present invention provides a stainless steel wire for a carcass of a tire and a process for making such a wire. The wire comprises at least 0.02% and at most 0.2% carbon, at least 3% and at most 20% nickel, at least 12% and at most 28% chromium, the sum of the nickel and chromium being at least equal to 20% and at most 35% (% in weight). The structure of the steel comprises at least 20% in volume of martensite and it is devoid of austenite or it comprises less than 80% of it in volume.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: July 16, 2002
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Jean-Claude Arnaud, Christian Lamoureux, Eric Depraetere
  • Patent number: 6410159
    Abstract: A material useful for forming high temperature coatings. The material contains a MCrAlY powder wherein M is selected from the group consisting of iron, nickel, cobalt, iron-base alloys, nickel-base alloys and cobalt-base alloys. An aluminum layer coats the powder. The method forms a high temperature coating with the powder. Thermally spraying the MCrAlY powder towards a substrate reacts the aluminum coating with the MCrAlY powder to metallurgically bond the MCrAlY powder and coat the substrate.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 25, 2002
    Assignee: Praxair S. T. Technology, Inc.
    Inventor: Frank J. Hermanek
  • Patent number: 6410165
    Abstract: A welding method that enables the joining of at least two dissimilar, metallic alloys to form a weld that is free of cracks is disclosed. The method incorporates a pure (99.00% minimum by weight) nickel fill-wire, integrally assembled into the joint between the two alloyed metals to be joined. The alloys joined by this method are an iron-based, low expansivity, gamma-prime strengthened superalloy (i.e., Incoloy®) and a high carbon, powder metallurgical tool steel high in refractory metal alloying agents (i.e., CPM REX 20). Welding of the joint results in the formation of a nickel rich region within the weld, thus “inoculating” the weld against cracks. The weld joint formed by the method of the present invention can be used in the fabrication of a rotating anode bearing shaft assembly for use in an x-ray generating device.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 25, 2002
    Assignee: General Electric Company
    Inventors: John Warren, Paul Neitzke, Craig Higgins
  • Patent number: 6403235
    Abstract: The strength and wear resistance of a steel component is improved by adhering to it a material of higher strength compatible metal alloy, such as Inconel (RTM) 725 or like precipitation or age hardenable alloy. The higher strength alloy may be adhered by welding, plasma spraying, dip coating or electroplating. The component may be subjected to post-deposition heat treatment which preferably simultaneously softens a heat affected zone in the component and hardens the higher strength material.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: June 11, 2002
    Assignee: FMC Corporation
    Inventors: Gregory L. Glidden, Thomas McNeilly, Manuel N. Maligas
  • Patent number: 6399220
    Abstract: The present invention is directed to a lead frame in which the metal lead frame substrate is copper, copper alloy, or iron alloy. The lead frame substrate is coated with a conformable nickel coating that is crack-resistant when the lead frame is bent to an angle of at least about 82 degrees with a bend radius of about 100 &mgr;m to about 300 &mgr;m. Bending the lead frame in this manner causes surface deformations in the lead frame substrate. Cracks do not appear through the thickness of the conformable nickel coating of the present invention when the depth of the deformations that result from this bending do not exceed about 5 &mgr;m.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: June 4, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Joseph Anthony Abys, Chonglun Fan, Igor Veljko Kadija
  • Patent number: 6391181
    Abstract: An article includes a colored electroplated metallic coating comprising both nickel and zinc, on an underplate of copper, brass, bright nickel or matt nickel, supported on a metallic or plastic substrate, various colors in the electroplated coating being exemplified. The electrolyte contains Ni2+, Zn2+, (NH4)+ and thiocyanate ions in specified concentrations, but no oxidative ion, color variation of the coating being achieved exclusively by variation of current density, time of the electroplating step and current quantity, provided that the current density at the cathode underplate is within the range of 0.01 to 0.5 A/dm2.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: May 21, 2002
    Assignee: Nickel Rainbow Limited
    Inventors: Larisa Gorodetski, Leonid Levinson
  • Patent number: 6391479
    Abstract: A coated metal component made of an alloy containing an intentional addition of nitrogen, comprising an oxidation-resistant coating layer and an intermediate layer disposed between the oxidation-resistant coating layer and the component. The intermediate layer is substantially devoid of nitrogen which if present would form a nitride with the oxidation-resistant layer.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 21, 2002
    Assignee: General Electric Company
    Inventor: John Herbert Wood
  • Patent number: 6383658
    Abstract: An article having a layer of metal thermally sprayed over a substrate with a roughened interface at the surface of the substrate applied by a thermal spray process, such as the HVOF process. The interface has a predetermined cleanliness level so that after a diffusion heat treatment, the applied layer has an extended life in severe gas turbine service due to improved adhesion of the layer to the substrate. When the article is used for high temperature applications such as turbine shrouds and encounters significant levels of stress, the strength of the interface can be a factor in the life of the coating.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: May 7, 2002
    Assignee: General Electric Company
    Inventors: Douglas M. Carlson, Charles A. Claus
  • Patent number: 6372381
    Abstract: Improved cathode cans, for use in electrochemical cells. Broadly, the cans comprise corrosion-susceptible core layers, and protective metal layers such as nickel overlying the core layer and disposed between the core layer and a, preferably electroless plated, duplex coating layer such as nickel, which overlies severed edges of the core layer, and also typically overlies the protective metal layers. Thickness of the duplex coating layer is less, preferably no more than 75%, of the thickness of the protective metal layer. Combined thickness of the protective metal layer and duplex coating layer is preferably about 75 microinches (0.002 mm) to 200 microinches (0.005 mm). Thickness of the duplex coating layer alone is preferably about 25 microinches (0.0006 mm) to 100 microinches (0.0025 mm). Combined thickness of the protective metal layer and the duplex coating layer is preferably at least 1.25 times, up to no more than 2 times, thickness of the protective metal layer.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: April 16, 2002
    Assignee: Rayovac Corporation
    Inventors: SangKeun Park, John Claude Springstead, David Matthew Armour
  • Patent number: 6361883
    Abstract: A composite sheet steel of maraging steel has an outer layer and an inner layer, wherein the outer layer is harder than the inner layer and the inner layer is more tenacious than the outer layer. An intermediate layer is positioned between the inner layer and the outer layer, wherein the intermediate layer is thinner than the inner and the outer layers.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: March 26, 2002
    Assignee: Aktiengesellschaft der Dillinger Hüttenwerke
    Inventors: Christoph Dilg, Uwe Hofmann, Claus Just, Hans-Jürgen Rögele, Helmut Schönberger, Jürgen Vogt
  • Patent number: 6355356
    Abstract: A metal article which includes a protective coating system is described. The coating system includes a braze alloy layer and a plasma-sprayed bond coat. The bond coat may lie on top of the braze alloy layer, or the braze alloy layer may lie on top of the bond coat. In the case of a porous bond coat, partial or complete densification of the bond coat is sometimes carried out. Densification is achieved by heat treating the article, so that the braze alloy material migrates into the pores of the bond coat to a selected thickness. Related processes are also described.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: March 12, 2002
    Assignee: General Electric Company
    Inventor: Wayne Charles Hasz
  • Patent number: 6340533
    Abstract: A synthetic-type spin-valve MR sensor having a pinned magnetic layer with a multi-layer film structure. In one embodiment, on a substrate are formed by layering a free magnetic layer, a pinned magnetic layer including first and second ferromagnetic films, which are mutually coupled antiferromagnetically and which enclose a nonmagnetic coupling film. A nonmagnetic conductive layer is enclosed between these two magnetic layers. An antiferromagnetic layer neighbors the pinned magnetic layer. The first ferromagnetic film neighboring the antiferromagnetic layer is formed from a high-resistivity Co-base material. By making the products of the saturation magnetization and the film thickness of the first ferromagnetic layer and the second ferromagnetic layer substantially equal, the apparent magnetic moment of the pinned magnetic layer as a whole is zero, and the magnetostatic action on the free magnetic layer is eliminated or reduced.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: January 22, 2002
    Assignee: Read-Rite Corporation
    Inventors: Masaki Ueno, Hideyasu Nagai, Tatsuo Sawasaki, Fuminori Hikami
  • Patent number: 6335107
    Abstract: In accordance with the invention, a metal substrate is coated with a multilayer surface finish comprising, in succession, an amorphous metal underlayer, a corrosion-resistent metal middle layer and one or more outer layers of precious metal. In an exemplary embodiment the metal substrate comprises copper alloy, the amorphous metal underlayer is Ni—P, the middle layer is nickel and the outer layer is palladium. The resulting structure is particularly useful as an electrical connector.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: January 1, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Joseph Anthony Abys, Chonglun Fan
  • Patent number: 6329079
    Abstract: A tube for a cracker unit in which ethylene is produced withstands, without oxidizing or losing its strength, the elevated temperatures required to effect cracking, yet retards coking. The tube has a shell formed from stainless steel or high nickel alloy and a liner formed from an iron-aluminum alloy. The liner retards the deposit of carbon and its build up known as coking. To form the tube, a high alloy ingot is bored to provide a bore that extends through its center. Then a weld overlay is applied to surface of the bore, with the overlay being derived from a weld metal containing at least 16% aluminum and the balance essentially iron. Thereafter, the ingot is heated to its hot working temperature and extruded through sets of opposed rollers, with the direction of advance being in the direction of the bore. The extruding transforms the ingot into a lined tube.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: December 11, 2001
    Assignee: Nooter Corporation
    Inventor: John J. Meyer
  • Patent number: 6329077
    Abstract: A plate shaped compression mold, a process for producing the same and a process for making laminate therewith. The plate-shaped compression mold for producing sheet laminate including synthetic resin with a metal coating on at least one surface thereof has a surface for contacting the metal coating of the sheet laminate, which surface has a Rockwell C hardness of higher than about 44 and a thermal coefficient of linear expansion which differs from that of the metal coating by not more than about 2.5×10−6/K, thereby substantially preventing warping or wrinkling of the metal coating during the compression molding process.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: December 11, 2001
    Assignee: Bohler Bleche GmbH
    Inventors: Alfred Kügler, Werner Josef Jerlich
  • Patent number: 6316128
    Abstract: A three-layer clad material in which stainless steel is used as the substrate, Ni or an Ni alloy is monolithically pressure-welded to either principal plane of the substrate, and Cu is monolithically pressure-welded to the other principal plane, wherein this high-strength, high-drawability clad material allows the thickness ratio of the stainless steel to be further increased, mechanical strength (tensile strength) to be raised above that of a conventional two- or three-layer clad material, and the thickness of the entire clad material to be reduced. Uniform tension can be created across the entire thin sheet, folding or creasing can be prevented from occurring during pressure welding, the thickness of the thin Ni and Cu sheets prior to pressure welding can be reduced to about 5 &mgr;m, and the thickness ratio of each of the thin sheets in the three-layer clad material for cell cases can be reduced to about 0.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: November 13, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventor: Masaaki Ishio
  • Patent number: 6312834
    Abstract: The present invention, which is aimed at providing a method for manufacturing a clad material that can be used for the anode cases and cathode cases of button-type microbatteries and other miniature electronic devices requiring the use of comparatively thin, drawable sheets, allows the difference between r values, or Lankford values (which characterize the plastic anisotropy between the rolling/bonding direction of a clad material and a direction at a prescribed angle to the rolling/bonding direction) to be reduced by preforming cold rolling at a reduction of 30% or lower in addition to performing a conventional method for manufacturing a clad material, making it possible to substantially enhance the mechanical strength of the clad material and to mass-produce clad materials that have low reduction anisotropy.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: November 6, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Masaaki Ishio, Yoshiki Takai