Ni-base Component Patents (Class 428/680)
  • Patent number: 7422798
    Abstract: Vapour turbine operating with geothermal vapours containing corrosive agents or aggressive substances such as chlorides and/or sulfides in particular. The turbine comprises a series of stator blades and a series of rotor blades, each stator blade of the series of stator blades comprises a surfacing consisting of a nickel alloy containing a quantity of nickel ranging from 54% to 58% by weight to avoid the washing of the geothermal vapours, at the same time maintaining a high useful life of the series of stator blades and vapour turbine.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 9, 2008
    Assignee: General Electric Company
    Inventors: Eugenio Giorni, Riccardo Paoletti, Marco De Iaco, Paolo Bendinelli
  • Publication number: 20080206595
    Abstract: An oxidation resistant component is disclosed comprising a substrate and a protective layer. The protective layer consists of an inner MCrAlY layer contiguous with the substrate and an outer layer consisting of at least Ni and Al and having a ?-NiAl structure.
    Type: Application
    Filed: April 18, 2008
    Publication date: August 28, 2008
    Inventors: William J. Quadakkers, Werner Stamm
  • Patent number: 7416790
    Abstract: A coating process and system suitable for use on components subjected to high temperatures. The coating system includes an overlay coating of predominantly B2 phase rhodium aluminide (RhAl) intermetallic compound containing about 25 to about 90 atomic percent rhodium, about 10 to about 60 atomic percent aluminum, optionally up to a combined total of about 25 atomic percent of one or more platinum group metals chosen from the group consisting of platinum, palladium, ruthenium, and iridium, and up to about 20 atomic percent of the base metal and alloying constituents of the substrate. The RhAl intermetallic coating may serve as an environmental coating, a diffusion barrier layer for an overlying environmental coating, or both, with or without an outer ceramic coating.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 26, 2008
    Assignee: General Electric Company
    Inventors: Liang Jiang, Michael Francis Xavier Gigliotti, Jr., Mark Daniel Gorman, Ramgopal Darolia
  • Patent number: 7413974
    Abstract: A metal structure (100) for a contact pad of a semiconductor, which has interconnecting traces of a first copper layer (102). The substrate is protected by an insulating overcoat (104). The first copper layer of first thickness and first crystallite size is selectively exposed by a window (110) in the insulating overcoat. A second copper layer (105) of second thickness covers conformably the exposed first copper layer. The second layer is deposited by an electroless process and consists of a transition zone, adjoining the first layer and having copper crystallites of a second size, and a main zone having crystallites of the first size. The distance a void can migrate from the second layer is smaller than the combined thicknesses of the first and second layers. A nickel layer (106) is on the second copper layer, and a noble metal layer (107) is on the nickel layer.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: August 19, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Howard R. Test, Donald C. Abbott
  • Publication number: 20080187777
    Abstract: A process for repairing a turbine component of a turbomachine, as well as a sintered preform used in the process and a high-gamma-prime nickel-base superalloy component repaired thereby. The sintered preform contains a sintered mixture of powders of a cobalt-base braze alloy and a cobalt-base wear-resistant alloy. The braze alloy constitutes at least about 10 up to about 35 weight percent of the sintered preform and contains a melting point depressant such as boron. The preform is formed by mixing powders of the braze and wear-resistant alloys to form a powder mixture, and then sintering the powder mixture. To use the preform, a surface portion of the turbine component is removed to expose a subsurface portion, followed by diffusion bonding of the preform to the subsurface portion to form a wear-resistant repair material containing the braze alloy dispersed in a matrix of the wear-resistant alloy.
    Type: Application
    Filed: October 4, 2007
    Publication date: August 7, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Sujith Sathian
  • Publication number: 20080176097
    Abstract: A turbine engine component is provided which has a substrate, a yttria-stabilized zirconia coating applied over the substrate, and a molten silicate resistant outer layer. The molten silicate resistant outer layer is formed from gadolinia or gadolinia-stabilized zirconia. A method for forming the coating system of the present invention is described.
    Type: Application
    Filed: January 20, 2006
    Publication date: July 24, 2008
    Inventors: Kevin W. Schlichting, Michael J. Maloney, David A. Litton, Melvin Freling, John G. Smeggil, David B. Snow
  • Patent number: 7393594
    Abstract: A laminated metal thin plate produced by electrodeposition is composed of a plurality of metal layers provided by at least two kinds of materials different in composition from each other. The laminated metal thin plate includes a first layer excellent in mechanical characteristics and/or chemical resistance and a second layer excellent in electrical characteristics such as electrical conductivity. The first and the second layers are adhered to each other in atomic level directly at their interface, with composition gradient at their interface, or with an adherence buffer layer such as a copper thin film interposed therebetween. The first layer is at first deposited on an electrode substrate. The second layer is deposited on the first layer. Deposition is repeatedly carried out in such a way that the first layers on opposite sides of the second layer are equal in thickness. Finally, the electrode substrate is dissolved and removed.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: July 1, 2008
    Inventors: Tohru Yamasaki, Takayasu Mochizuki
  • Publication number: 20080131720
    Abstract: A coating process and system for an article having a substrate formed of a metal alloy that is prone to the formation of a secondary reaction zone (SRZ). The coating system includes an aluminum-containing overlay coating and a stabilizing layer between the overlay coating and the substrate. The overlay coating contains aluminum in an amount greater by atomic percent than the metal alloy of the substrate, such that there is a tendency for aluminum to diffuse from the overlay coating into the substrate. The stabilizing layer is predominantly or entirely formed of at least one platinum group metal (PGM), namely, platinum, rhodium, iridium, and/or palladium. The stabilizing layer is sufficient to inhibit diffusion of aluminum from the overlay coating into the substrate so that the substrate remains essentially free of an SRZ that would be deleterious to the mechanical properties of the alloy.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Mark Daniel Gorman, Brian Thomas Hazel, Brett Allen Rohrer Boutwell, Ramgopal Darolia
  • Patent number: 7378132
    Abstract: There is provided a method for depositing a modified MCrAlY coating on a surface of a gas turbine engine component. The method includes cold gas dynamic spraying techniques to provide a metallurgical bond between a substrate, such as a superalloy substrate, and the modified MCrAlY composition. The method further includes post deposition heat treatments including hot isostatic pressing. The modified MCrAlY composition includes one or more elements of Pt, Hf, Si, Zr, Ta, Re, Ru, Nb, B, and C, which improves the corrosion and environmental resistance of the coated component.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: May 27, 2008
    Assignee: Honeywell International, Inc.
    Inventors: Federico Renteria, Murali N. Madhava, Yiping Hu, Derek Raybould, Huu-Duc Trinh-Le
  • Patent number: 7368177
    Abstract: An oxidation resistant component is disclosed comprising a substrate and a protective layer.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: May 6, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Willem J. Quadakkers, Werner Stamm
  • Patent number: 7364801
    Abstract: An environmental coating suitable for use on turbine components, such as turbine disks and turbine seal elements, formed of alloys susceptible to oxidation and hot corrosion. The environmental coating is predominantly a solid solution phase of nickel, iron, and/or cobalt. The coating contains about 18 weight percent to about 60 weight percent chromium, which ensures the formation of a protective chromia (Cr2O3) scale while also exhibiting high ductility. The coating may further contain up to about 8 weight percent aluminum, as well as other optional additives. The environmental coating is preferably sufficiently thin and ductile to enable compressive stresses to be induced in the underlying substrate through shot peening without cracking the coating.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: April 29, 2008
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Michael James Weimer
  • Patent number: 7361302
    Abstract: The present invention relates to a metallic coating to be deposited on gas turbine engine components. The metallic coating comprises up to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.1 to 1.0 wt % yttrium, up to 0.6 wt % hafnium, up to 0.3 wt % silicon, 3.0 to 10 wt % tantalum, up to 9.0 wt % tungsten, 1.0 to 6.0 wt % rhenium, up to 10 wt % molybdenum, and the balance nickel.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 22, 2008
    Assignee: United Technologies Corporation
    Inventors: Russell Albert Beers, Allan A. Noetzel, Abdus Khan
  • Patent number: 7354660
    Abstract: Alloy compositions which are resistant to metal dusting corrosion are provided by the present invention. Also provided are methods for preventing metal dusting on metal surfaces exposed to carbon supersaturated environments. The alloy compositions include an alloy (PQR), and a multi-layer oxide film on the surface of the alloy (PQR). The alloy (PQR) includes a metal (P) selected from the group consisting of Fe, Ni, Co, and mixtures thereof, an alloying metal (Q) comprising Cr, Mn, and either Al, Si, or Al/Si, and an alloying element (R). When the alloying metal (Q) includes Al, the multi-layer oxide film on the surface of the alloy includes at least three oxide layers. When the alloying metal (Q) includes Si, the multi-layer oxide film on the surface of the alloy (PQR) includes at least four oxide layers. When the alloying metal (Q) includes Al and Si, the multi-layer oxide film on the surface of the alloy (PQR) includes at least three oxide layers.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: April 8, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Trikur A. Ramanarayanan
  • Patent number: 7341796
    Abstract: A copper foil with a blackened surface or layer wherein one or both surfaces of a copper foil is subject to black treatment, and having a color difference ?L*??70 and chroma C*?15 of a black-treated surface when measured by a color difference meter represented by black; ?L*=?100, white; ?L*=0. The copper foil with a blackened surface or layer is especially useful for a plasma display panel (PDP) and has superior shielding characteristics of effectively shielding electromagnetic waves, near infrared rays, stray light, outside light and the like, has sufficient contrast, has a deep blackened color, is able to limit the reflected light of incoming light from the outside and reflected light of outgoing light from a plasma display panel, and has superior etching characteristics.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: March 11, 2008
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventor: Mikio Hanafusa
  • Patent number: 7338719
    Abstract: MCrAl layers according to prior art often display chipping of the thermally grown aluminum oxide layer (TGO) as a result of thermally induced stresses, which significantly reduces the oxidation behavior or the bonding behavior of ceramic heat insulating layers. An inventive MCrAl layer is designed in such a way that the TGO created thereon is microporous and thus allows expansion. The microporosity of the TGO is ensured by adding elements into the MCrAl layer in a targeted manner.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 4, 2008
    Assignees: Siemens Aktiengesellschaft, Forschungszentrum Julich GmbH
    Inventors: Willem J. Quadakkers, Werner Stamm
  • Patent number: 7335428
    Abstract: The invention relates to a cooking vessel comprising a base made of a multilayer material and a side wall, the said multilayer material comprising, in succession from the outside of the vessel to the inside of the vessel: an outer part, having a thickness eE, consisting of a layer of a ferromagnetic Nickel based alloy having a Curie temperature of between 30 and 350° C. and a thermal expansion coefficient of greater than or equal to 6.5.10?6 K?1, and a core, having a thickness ec, comprising at least one layer selected among aluminium, aluminium alloy and copper.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: February 26, 2008
    Assignees: Imphy Alloys, Alinox AG
    Inventors: Hervé Fraisse, Yves Grosbety, Thierry Waeckerle, Markus Spring, Norbert Hoffstaedter
  • Patent number: 7335429
    Abstract: A coating and coating process for incorporating surface features on an air-cooled substrate surface of a component for the purpose of promoting heat transfer from the component. The coating process generally comprises depositing a first metallic coating material on the surface of the component using a first set of coating conditions to form a first environmental coating layer, and then depositing a second metallic coating material using a second set of coating conditions that differ from the first set, such that an outer environmental coating layer is formed having raised surface features that cause the surface of the outer environmental coating layer to be rougher than the surface of the first environmental coating layer.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: February 26, 2008
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Robert Edward Schafrik, Ramgopal Darolia, Joseph David Rigney
  • Publication number: 20080038575
    Abstract: There is provided a method for depositing a modified MCrAlY coating on a surface of a gas turbine engine component. The method includes cold gas dynamic spraying techniques to provide a metallurgical bond between a substrate, such as a superalloy substrate, and the modified MCrAlY composition. The method further includes post deposition heat treatments including hot isostatic pressing.
    Type: Application
    Filed: December 14, 2004
    Publication date: February 14, 2008
    Inventors: Federico Renteria, Murali N. Madhava, Yiping Hu, Derek Raybould, Huu-Duc Trinh-Le
  • Patent number: 7329311
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: February 12, 2008
    Assignee: Entegris, In.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7311981
    Abstract: A gas turbine part comprises a superalloy metal substrate, a bonding underlayer formed on the substrate and comprising an intermetallic compound of aluminum, nickel, and platinum, and a ceramic outer layer anchored on the alumina film formed on the bonding underlayer. The bonding underlayer essentially comprises an Ni—Pt—Al ternary system constituted by an aluminum-enriched ?-NiPt type structure, in particular an Ni—Pt—Al ternary system having a composition NizPtyAlx in which z, y, and x are such that 0.05?z?0.40, 0.30?y?0.60, and 0.15?x?0.40.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: December 25, 2007
    Assignee: SNECMA
    Inventors: Bertrand Saint Ramond, Manuel Silva, John Nicholls, Maxime Carlin
  • Patent number: 7300708
    Abstract: An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: November 27, 2007
    Assignee: General Electric Company
    Inventors: Michael Francis Xavier Gigliotti, Jr., Canan Uslu Hardwicke, Liang Jiang, John William Short, Don Mark Lipkin, Jonathan Paul Blank, Krishnamurthy Anand
  • Patent number: 7294413
    Abstract: A protected article includes a substrate having a surface, and a protective system overlying and contacting a first portion of the surface of the substrate. The protective system has a nickel-base superalloy bond coat, an aluminide layer overlying and contacting the bond coat, and a dense vertically microcracked ceramic thermal barrier coating overlying and contacting the aluminide layer.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: November 13, 2007
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, D. Keith Patrick, Thomas John Tomlinson, David Walter Parry
  • Patent number: 7291384
    Abstract: The piston ring of the present invention comprises a thermal spray coating comprising chromium carbide particles having an average particle size of 5 ?m or less, and a matrix metal composed of a Ni—Cr alloy or a Ni—Cr alloy and Ni at least on an outer peripheral surface, said thermal spray coating having an average pore diameter of 10 ?m or less and a porosity of 8% or less by volume. A piston ring having excellent wear resistance, scuffing resistance and peeling resistance with little attackability on a mating member is obtained by forming a homogeneous thermal spray coating having a fine microstructure.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 6, 2007
    Assignee: Kabushiki Kaisha Riken
    Inventors: Ryou Obara, Katsumi Takiguchi, Yukio Hosotsubo
  • Patent number: 7291401
    Abstract: A steel material that has on its surface a non-hexavalent-chromium type corrosion-resistant coating film formed by a composite of a metal layer and a resin layer. The steel material having or not having a copper layer is formed with 1) a Zn and/or Zn-based alloy layer, 2) a Zn/Ni alloy layer which is on this Zn and/or Zn-based alloy layer, 3) a de-Zn layer which is on the Zn/Ni alloy layer and is obtained by chemically treating the surface of the Zn/Ni alloy layer, and 4) at least one resin covering layer which is on this de-Zn layer, which are successively formed to make a corrosion-resistant coating film, the corrosion-resistant coating film, which is superior in adhesion between the metal layer and resin layer, being obtained by way of taking into account the use of a trivalent chromium type chromate layer instead of a hexavalent chromium type chromate layer (which is a substance that places a burden on the environment).
    Type: Grant
    Filed: September 4, 2002
    Date of Patent: November 6, 2007
    Assignee: USUI Kokusai Sangyo Kabushiki Kaisha, Ltd.
    Inventors: Kazuo Suzuki, Iyoshi Watanabe
  • Patent number: 7288328
    Abstract: An article for use in hostile thermal environments, such as a component of a gas turbine engine. The article includes a nickel-base superalloy substrate that is prone to formation of a deleterious secondary reaction zone (SRZ), and an overlay coating having a predominantly gamma prime-phase nickel aluminide (Ni3Al) composition suitable for use as an environmental coating, including a bond coat for a thermal barrier coating. The coating comprises a chromium-containing nickel aluminide intermetallic overlay coating of predominantly the gamma prime phase, in which aluminum is present in the coating in an amount approximately equal to the aluminum content of the superalloy substrate so as to inhibit diffusion of aluminum from the overlay coating into the superalloy substrate.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: October 30, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, William Scott Walston
  • Patent number: 7285337
    Abstract: A composite resistive to high-temperature corrosion and abnormal oxidization, maintains original excellent high-temperature characteristics of Ni alloys over a long period of time, and suitable for applications in a high-temperature such as gas turbines, jet engines, and elements for exhaust-gas systems. A heat-resistant Ni-alloy composite has excellent high-temperature oxidation resistance, including a Ni-alloy substrate that has been subjected to an Al-diffusing treatment. The surface coat has a multi-layer structure including an inner layer composed of an ?-Cr phase and an outer layer composed of a ? phase (Ni—Al—Cr) and a ?? phase (Ni3Al(Cr)) on the substrate surface. The Al content in the outer layer is at least 20 atomic percent. The ?-Cr phase functions as a diffusion-barrier layer. The outer layer retains and secures a high Al content required for self-regeneration of a defective portion of the Al2O3 layer damaged in an operating condition.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: October 23, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Toshio Narita, Daisuke Yoshida
  • Publication number: 20070235902
    Abstract: Disclosed herein is a microstructured tool having a microstructured layer having a polymer and a microstructured surface; a nickel layer disposed adjacent the microstructured layer opposite the microstructured surface; and a base layer disposed adjacent the nickel layer opposite the microstructured layer. The microstructured surface may have at least one feature having a maximum depth of up to about 1000 um. Also disclosed herein is a method of making the microstructured tool using laser ablation. The microstructured tool may be used to make articles suitable for use in optical applications.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 11, 2007
    Inventors: Patrick R. Fleming, Paul E. Humpal, Thomas R.J. Corrigan, Todd R. Williams, Tadesse G. Nigatu
  • Patent number: 7279229
    Abstract: A nickel-base braze material suitable for closing holes in a high temperature component, such as a tip cap hole in a turbine blade. The braze material comprises first and second filler materials and a binder. The first filler material comprises particles of a first alloy, and the second filler material comprises particles of at least a second alloy having a lower melting temperature than the first alloy. The second alloy consists essentially of, by weight, about 8 to about 23 percent chromium, about 4 to about 18 percent cobalt, about 1.5 to about 6.0 percent tantalum, about 1.0 to about 6.0 percent aluminum, about 0.3 to about 1.5 percent boron, about 2.0 to about 6.0 percent silicon, up to 0.2 percent carbon, the balance being nickel and incidental impurities.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: October 9, 2007
    Assignee: General Electric Company
    Inventors: David Edwin Budinger, Richard Ludwig Schmidt, Mark David Veliz, Michael Howard Rucker
  • Patent number: 7278829
    Abstract: A repaired gas turbine blade includes a turbine blade body having a monocrystalline airfoil made of a first nickel-base superalloy, and a repair squealer tip welded to a tip of the airfoil. The repair squealer tip is made of a second nickel-base superalloy different from the first nickel-base superalloy and having less than about 0.15 weight percent total of carbon, boron, silicon, zirconium, and hafnium.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: October 9, 2007
    Assignee: General Electric Company
    Inventors: Lawrence Joseph Roedl, Rabon Hensley
  • Patent number: 7273662
    Abstract: An alloy including a Pt-group metal, Ni and Al in relative concentration to provide a ?-Ni+??-Ni3Al phase constitution, and a coating including the alloy.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 25, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian Gleeson, Daniel Sordelet, Wen Wang
  • Patent number: 7267889
    Abstract: The present invention provides a sprayable composition comprising a ceramic particulate including albite, illite, and quart, and a metallic composition, including nickel, chromium, iron, and silicon. The sprayable composition may be a composite particle, a blend, or a cored wire. The present invention further provides an abradable coating formed on a metal substrate according to a method comprising the step of depositing the abradable coating on the metal substrate by thermal spraying of a sprayable composition comprising a ceramic particulate including albite, illite, and quartz, and a metallic composition, including nickel, chromium, iron and silicon. The sprayable composition may be a composite particle, a blend, or a cored wire. The abradable coating may be applied to a metal substrate such as steel, nickel-based alloys, and titanium.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: September 11, 2007
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Karel Hajmrle, Anthony Peter Chilkowich
  • Patent number: 7264888
    Abstract: An overlay coating for articles used in hostile thermal environments. The coating has a predominantly gamma prime-phase nickel aluminide (Ni3Al) composition suitable for use as an environmental coating and as a bond coat for a thermal barrier coating. The coating has a composition of, by weight, at least 6% to about 15% aluminum, about 2% to about 5% chromium, optionally one or more reactive elements in individual or combined amounts of up to 4%, optionally up to 2% silicon, optionally up to 60% of at least one platinum group metal, and the balance essentially nickel. A thermal-insulating ceramic layer may be deposited on the coating.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 4, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, William Scott Walston
  • Patent number: 7255929
    Abstract: The invention provides spray coatings to achieve circumferentially non-uniform seal clearances in turbomachines. In steam and gas turbines it is desirable to assemble the machines with elliptical seal clearances to compensate for expected casing distortion, rotordynamics or phenomena that cause circumferentially non-uniform rotor-stator rubs. The claimed invention allows the casing hardware to be fabricated round, and a spray coating is applied to the radially inner surface such that the coating thickness varies circumferentially, providing the desired non-uniform rotor-stator clearance during assembly.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: August 14, 2007
    Assignee: General Electric Company
    Inventors: Norman Arnold Turnquist, Mark William Kowalczyk, Farshad Ghasripoor
  • Patent number: 7250224
    Abstract: A coating system and coating method for damping vibration in an airfoil of a rotating component of a turbomachine. The coating system includes a metallic coating on a surface of the airfoil, and a ceramic coating overlying the metallic coating. The metallic coating contains metallic particles dispersed in a matrix having a metallic and/or intermetallic composition. The metallic particles are more ductile than the matrix, and have a composition containing silver and optionally tin. The method involves ion plasma cleaning the surface of the airfoil before depositing the metallic coating and then the ceramic coating.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 31, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Matthew Mark Weaver, Dennis Martin Corbly, Boris Alexeevich Movchan, Anatolii Ivanovich Ustinov
  • Patent number: 7250225
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, incidental impurities, and optionally hafnium.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 31, 2007
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Ramgopal Darolia, Brett Allen Rohrer Boutwell, David John Wortman
  • Patent number: 7250222
    Abstract: A system for bonding layers (1) of different chemical compositions, such as bonding a thermal barrier layer to a metal substrate on a surface of a gas turbine component. A substrate (4) made either of a ceramic material or particularly of a metal super-alloy may be bonded to an outer layer (16) such as a ceramic by means of a fine-grained intermediate layer (7) bonded to the substrate (4), and a coarse-grained layer (10) bonded to the intermediate layer (7) to create a studded surface (9). The fine and coarse layers (7, 10) provide a transition between the substrate (4) and the outer layer (16) for improved bonding between them. The studded surface (9) may provide at least a 20% increase in bonding surface area for the outer layer (16). Additionally, a medium-grained layer (13) may be applied to the studded surface (9) before applying the outer layer(16).
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: July 31, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Knut Halberstadt, Werner Stamm
  • Patent number: 7247393
    Abstract: An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, one or more of chromium, silicon, tantalum, and cobalt, optionally one or more of hafnium, yttrium, zirconium, lanthanum, and cerium, and incidental impurities.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: July 24, 2007
    Assignee: General Electric Company
    Inventors: Brian Thomas Hazel, Ramgopal Darolia, Brett Allen Rohrer Boutwell, David John Wortman
  • Patent number: 7244452
    Abstract: Disclosed is a member which is superior in anti-fungus property and anti-alga property, and is coated with a surface treatment coating comprising at least a layer having anti-fungus property and/or anti-alga property laminated between a topmost surface functional layer and a base, wherein the layer having anti-fungus property and/or anti-alga property comprises 80% or more of Ni, 0.1 to 10% of P, and 0.0001 to 1% of hydrogen, holes reaching the surface of the layer having anti-fungus property and/or anti-alga property are present in the topmost surface functional layer so as to penetrate the topmost surface functional layer, the opening area ratio thereof to the total area when the topmost surface functional layer is viewed in plan being from 0.001 to 10%, or the elution amount of Ni is from 0.1 to 50 ?g/cm2/week when the member is immersed in still water at 30° C.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: July 17, 2007
    Assignee: Kobe Steel, Ltd.
    Inventors: Wataru Urushihara, Takenori Nakayama, Sadako Yamada
  • Patent number: 7238432
    Abstract: There is provided a metal member capable of realizing a corrosion resistance and wear resistance, which are equivalent to or better than those when expensive PdNi is used even if PdNi is not used, and of being produced at relatively low costs. A first layer essentially consisting of nickel and unavoidable impurities is formed on the surface of a base metal member. On the first layer, a second layer essentially consisting of nickel, phosphorus and unavoidable impurities is formed. On the second layer, a third layer essentially consisting of a noble metal or an alloy thereof is formed. The second layer contains 10 to 15 wt % of phosphorus. The thickness of the first layer is 3 ?m or more, and the thickness of the second layer is 0.1 ?m or more.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: July 3, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventor: Naoki Haketa
  • Patent number: 7238433
    Abstract: A plated automotive part and method of plating are provided. One or more semi-bright finish layers of nickel are plated onto an automotive part. One or more bright finish layers of nickel are plated onto the outermost, semi-bright finish layer of nickel. One or more layers of an alloy are plated onto the outermost, bright-finish layer of nickel. The alloy has a Vickers hardness of 400 VHN or greater.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: July 3, 2007
    Assignee: Takata Corporation
    Inventors: Shigetsugu Nakamura, Yoshihiko Kawai, Ichiro Horide
  • Publication number: 20070141374
    Abstract: An environmentally resistant gas turbine engine disk is disclosed. The disk includes a substrate metal having locally enriched surface regions, the locally enriched surface regions comprising alloying elements present in a higher percentage than found in the substrate metal. A method for making the disk and other articles is also disclosed. The method includes furnishing a plurality of powder particle substrates made of a substrate metal, providing a nonmetallic precursor of a metallic coating material, wherein the metallic coating material includes an alloying element that is thermophysically melt incompatible with the substrate metal, contacting the powder particle substrates with the nonmetallic precursor, and chemically reducing the nonmetallic precursor to form coated powder particles comprising the powder particle substrates having a surface-enriched layer of the metallic coating material thereon, wherein the step of chemically reducing is performed without melting the powder particle substrates.
    Type: Application
    Filed: December 19, 2005
    Publication date: June 21, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David P. Mourer, Kenneth R. Bain
  • Patent number: 7229701
    Abstract: The present invention provides a chromium and active elements modified platinum aluminide coating that may be used on a surface of a gas turbine engine component such as a turbine blade. The coating may be used as a protective coating that impedes the progress of corrosion, oxidation, and sulfidation in superalloy materials that comprise the substrate of the turbine blade. Additionally, the coating may be used as a bond coat onto which a thermal barrier coating is deposited. The presence of active elements as well as chromium and platinum provides improved corrosion, oxidation, and sulfidation resistance. The coating is applied using an electron beam physical vapor deposition. The coating is applied alternatively using selected sequential diffusion processing steps involving chromium, platinum and aluminum.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: June 12, 2007
    Assignee: Honeywell International, Inc.
    Inventors: Murali Madhava, Timothy R. Duffy, Margaret Floyd, George Reimer
  • Patent number: 7211333
    Abstract: The present invention is to provide a resin-forming mold having high releasability and permitting a production without increasing production costs. The resin-forming mold can be used to produce a resin-molded product having minute uneven portions on a front face thereof, such as a surface light source device-use light guide for a liquid crystal display, an aspherical micro-lens, micro-Fresnel lens and an optical disk. In the stamper (resin-forming mold) 10 provided with an electroformed layer 11 and a conductive film 12 formed on the electroformed layer 11, the front face layer 12c of the conductive film 12 is formed of aluminum and a back face 12d is formed of nickel as an electroconductive metal. In addition, the constituent composition of the aluminum and the nickel continuously changes from the front face 12c toward the back face 12d. The front face 12c may be formed of aluminum and oxygen. The aluminum may combine with the oxygen to form an oxide of aluminum.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: May 1, 2007
    Assignee: Kuraray Co., Ltd.
    Inventors: Yukihiro Yanagawa, Takumi Yagi, Masaru Karai
  • Patent number: 7208232
    Abstract: A coating suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating is used in a coating system deposited on a substrate formed of a superalloy material. The coating contacts a surface of the superalloy substrate and is formed of a coating material having a tensile strength of more than 50% of the superalloy material. The coating material is predominantly at least one metal chosen from the group consisting of platinum, rhodium, palladium, and iridium, and has sufficient strength to significantly contribute to the strength of the component on which the coating is deposited.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 24, 2007
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Ramgopal Darolia
  • Patent number: 7179540
    Abstract: A plate type heat exchanger wherein contacting portions of laminated plural plates and fins or contacting portions of laminated plural plates are brazed to form a heat exchange area, characterized in that at least the surface of a plate or fin contacting with a fluid is covered with an alloy comprising in weight ratio 25–35% of chromium, 5–7% of phosphorus, 3–5% of silicon, 0.001–0.1% of at least one selected from the group consisting of aluminum, calcium, yttrium and mischmetal, and balance containing mainly nickel. The alloy may contain 15% or less of iron and or 10% or less of molybdenum. The plate type exchanger exhibits enhanced pressure resistance and is excellent in corrosion resistance.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 20, 2007
    Assignees: Brazing Co., LTD., Fukuda Metal Foil & Power Co., LTD.
    Inventor: Kaoru Tada
  • Patent number: 7172820
    Abstract: A strengthened bond coat for improving the adherence of a thermal barrier coating to an underlying metal substrate to resist spallation without degrading oxidation resistance of the bond coat. The bond coat comprises a bond coating material selected from the group consisting of overlay alloy coating materials, aluminide diffusion coating materials and combinations thereof. Particles comprising a substantially insoluble bond coat strengthening compound and having a relatively fine particle size of about 2 microns or less are dispersed within at least the upper portion of the bond coat in an amount sufficient to impart strengthening to the bond coat, and thus limit ratcheting or rumpling thereof.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: February 6, 2007
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney, Gillion Herman Marijnissen, Eric Richard Irma Carolus Vergeldt, Annejan Bernard Kloosterman
  • Patent number: 7172821
    Abstract: A coating material has a first layer deposited on a base material and a second layer deposited on the first layer. The first layer is made of a Ni-base alloy or a Co-base alloy containing carbon as an unavoidable impurity. The second layer is made of a hard material containing carbide and a metal component. The first layer serves as a barrier for preventing carbon from being diffused from the second layer into the base material to prevent the base material from being carburized.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: February 6, 2007
    Assignee: Ebara Corporation
    Inventors: Kenichi Sugiyama, Satoshi Kawamura, Shuhei Nakahama, Hirokazu Takayama, Matsuho Miyasaka
  • Patent number: 7169480
    Abstract: A clad pipe includes an external layer and a coating layer made of Ni base anticorrosion alloy. Both end portion areas of the coating layer are formed by a build-up welded layer (Ni base alloy of composition 1) on the inner surface of the external layer. Other areas are formed by a Ni base alloy layer (Ni base alloy of composition 2) fusion-bonded to the build-up welded layers and the inner surface of the pipe, a solidus-curve temperature of the Ni base alloy layer being 1300° C. or below and lower than a solidus-curve temperature of the Ni base alloy formed by build-up welding by 150° C. or more. Composition 1 and composition 2 are adjusted so that, in the same environment, corrosion resistance of the Ni base alloy of composition 1 is equivalent to or superior to that of the Ni base alloy of composition 2.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: January 30, 2007
    Assignee: Dai-Ichi High Frequency Co., Ltd.
    Inventors: Yoichi Matsubara, Akihiro Takeya, Seiichiro Miyata
  • Patent number: 7169478
    Abstract: Multinary alloys, in particular for use as coatings, if appropriate in combination with other types of layers, for components which are exposed to high temperatures and corrosive gases. The alloys are of the general form: Al—Ni—Ru-M, where at least one B2 phase is present, the aluminum content being in the range from 26–60 atomic percent and where M may be one or more metals and/or semimetals selected from the group consisting of: precious metal, transition metal, rare earths, semimetal. Multinary alloys of this type are very stable with respect to oxidation, have a low thermal conductivity and in particular have similar coefficients of thermal expansion to superalloys, which are usually used as substrates for protective coatings of this type in gas turbine components.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: January 30, 2007
    Assignee: Alstom Technology Ltd.
    Inventors: Anton Kaiser, Valery Shklover, Walter Steurer, Ivan Victor Vjunitsky
  • Patent number: 7163754
    Abstract: A sprocket has a base steel member including an outer toothed profile surface, at least a portion of the outer toothed profile surface having a wear and corrosion resistant coating disposed thereon; the coating comprising an alloy, the alloy comprising at least 60 weight % iron, cobalt, nickel, or alloys thereof. A method of producing a wear and corrosion resistant sprocket includes: (i) machining a base steel member to form an outer toothed profile surface thereon; (ii) applying a coating to at least a portion of the surface; and (iii) fusing the coating to the base steel member.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: January 16, 2007
    Assignee: Deere & Company
    Inventors: Gopal S. Revankar, Timothy D. Wodrich, Todd B. Niemann