With Head Pole Component Patents (Class 428/815.2)
  • Publication number: 20150056473
    Abstract: Depositing a seed layer for a high-moment shield onto a write pole may have a deleterious effect on the magnetic response of the write pole. Instead, an amorphous separation layer may be deposited between the write pole and the seed layer. In one embodiment, the seed layer is formed directly on the amorphous layer. In addition to separating the seed layer from the write pole, the amorphous separation layer permits the seed layer to dictate the crystallographic orientation of the shield which is subsequently deposited on the magnetic head. That is, the amorphous layer provides a substrate that allows the seed layer to have a crystalline structure independent of the layers that were deposited previously. The amorphous separation layer may comprise an amorphous metal—e.g., NiNb or NiTa—or an insulative material—e.g., alumina or silicon dioxide.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Donald G. Allen, Wen-Chien D. Hsiao, Quan-chiu H. Lam, Ning Shi
  • Patent number: 8830624
    Abstract: A write pole structure disclosed herein includes a write pole layer, a bottom layer including a beveled surface, and a cap layer between the write pole layer and the bottom layer, wherein the cap layer is made of a material with hardness less than hardness of the write pole layer.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 9, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yong Luo, Zhe Shen, Dong Lin, Huaqing Yin
  • Publication number: 20140168816
    Abstract: Various methods for attaching a crystalline write pole onto an amorphous substrate and the resulting structures are described in detail herein. Further, the resulting structure may have a magnetic moment exceeding 2.4 Tesla. Still further, methods for depositing an epitaxial crystalline write pole on a crystalline seed or template material to ensure that the phase of the write pole is consistent with the high moment phase of the template material are also described in detail herein.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Mark Anthony Gubbins, Marcus Benedict Mooney
  • Publication number: 20130344351
    Abstract: A write pole structure disclosed herein includes a write pole layer, a bottom layer including a beveled surface, and a cap layer between the write pole layer and the bottom layer, wherein the cap layer is made of a material with hardness less than hardness of the write pole layer.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Yong Luo, Zhe Shen, Dong Lin, Huaqing Yin
  • Publication number: 20130057987
    Abstract: A thin-film magnetic head is constructed such that a main magnetic pole layer, a write shield layer, a gap layer, and a thin-film coil are laminated on a substrate. The thin-film magnetic head has a leading shield part opposing the main magnetic pole layer on the substrate side of the main magnetic pole layer. The thin-film magnetic head has a substrate side coil layer disposed between the main magnetic pole layer and the substrate. In the thin-film magnetic head, a space between a lower end face of the leading shield part and the substrate and a space between an upper end face in the substrate side coil layer and the substrate are formed equal to each other.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 7, 2013
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Shigeki Tanemura, Kazuki Sato, Atsushi Iijima
  • Publication number: 20130022841
    Abstract: The application discloses a magnetic pole assembly having a pole tip arranged in a magnetic flux path and side shields separated from the pole tip by non-magnetic gap regions. The side shields are shaped to provide a differential shielding effect alongside the pole tip. As described, the sides shields are shaped to provide a non-magnetic gap region having a width that increases in the downtrack direction along a length of the pole tip. The increasing non-magnetic gap region alongside the pole tip provides a smaller non-magnetic gap region separating the pole tip from the side shields at the leading edge than the non-magnetic gap region separating the pole tip from the side shields at the trailing edge of the pole tip.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 24, 2013
    Applicant: Seagate Technology LLC
    Inventor: Seagate Technology LLC
  • Publication number: 20130022840
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered leading edge formed on a substrate having a tapered surface and a wrap-around, trailing magnetic shield. The method uses a multi-layer anti-reflective coating prior to formation of the shield so that reflection from the tapered surface of the substrate does not affect the lithography of the mask used to form the trailing shield. The multi-layer antireflective coating is constructed of materials that can be left in the finished head, thereby eliminating problems associated with removal of the anti-reflective coating.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: Wen-Chien D. Hsiao, Ning Shi, Yi Zheng
  • Publication number: 20130004795
    Abstract: A write element for magnetic recording includes a main pole and a shield. The main pole has first and second sides with respect to a down-track direction. The shield at least partially surrounds the main pole with a continuously concave inner sidewall. The angle between the inner sidewall of the shield and the direction of motion of the write element is greater than the angle between the sides of the main pole and the direction of motion.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: Seagate Technology LLC
    Inventors: Kaizhong Gao, Mourad Benakli
  • Publication number: 20120295133
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with main pole and a trailing edge shield antiferromagnetically coupled across a write gap by either having the write gap layer formed as a synthetic antiferromagnetic tri-layer (SAF) or formed as a monolithic layer of antiferromagnetic material. The coupling improves the write performance of the writer by enhancing the perpendicular component of the write field and its gradient. Methods of fabricating the writer are provided.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 22, 2012
    Inventors: Tai Min, Yuhui Tang, Lijie Guan, Min Li
  • Publication number: 20120295132
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with a main pole and a trailing edge shield having surfaces and interior portions that may include synthetic antiferromagnetic multi-layered superlattices (SAFS) formed on and/or within them respectively. The SAFS, which are multilayers formed as periodic multiples of antiferromagnetically coupled tri-layers, provide a mechanism for enhancing the component of the writing field that is vertical to the magnetic medium by exchange coupling to the magnetization of the pole and shield and constraining the directions of their magnetizations to lie within the film plane of the SAFS.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 22, 2012
    Inventors: Tai Min, Yuhui Tang, Suping Song, Lijie Guan
  • Publication number: 20120282492
    Abstract: A thin-film magnetic head is constructed such that a main magnetic pole layer, a write shield layer, a gap layer, and a thin-film coil are laminated on a substrate. The thin-film magnetic head includes a return magnetic pole layer and a connecting magnetic layer. The return magnetic pole layer is formed at a position distanced from the medium-opposing surface on the side opposite to the write shield layer with the main magnetic pole layer intervening therebetween. The connecting magnetic layer is formed using a magnetic material so as to connect the return magnetic pole layer to the write shield layer on the side closer to the medium-opposing surface than is the thin-film coil. The thin-film coil is wound as a flat spiral around the write shield layer. A part of the thin-film coil wound as the flat spiral is disposed only at a position distanced from the substrate than is the main magnetic pole layer.
    Type: Application
    Filed: May 3, 2011
    Publication date: November 8, 2012
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka SASAKI, Hiroyuki ITO, Shigeki TANEMURA, Kazuki SATO, Atsushi IIJIMA
  • Patent number: 8233234
    Abstract: A stepped main pole for a perpendicular write head and methods of making the stepped main pole. The stepped main pole has a main pole tip and a base portion. The main pole tip has a surface that forms part of the ABS and a first thickness. The base portion extends from the main pole tip and has a thickness that varies from the first thickness to a second thickness to form a slanted surface with an apex angle adjacent the main pole tip. By placing the base portion away from the ABS and providing a thickness that increases in a direction away from the ABS, the stepped pole can provide the necessary magnetic flux for writing, while avoiding undesired leakage and fringing. To form embodiments of the stepped main pole of the invention, a fluorine-based reactive ion etch (RIE) may be used. By using an RIE to define the stepped main pole, the apex angle can be better controlled and tight edge control can be achieved.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien D. Hsiao, Ming Jiang, Sue S. Zhang, Yi Zheng
  • Publication number: 20120164486
    Abstract: A method and apparatus for a high-moment magnetic material used in a write head deposited on a gap layer that was grown using a nickel-chromium seed layer. The nickel-chromium seed layer provides the correct crystallographic orientation for both the nonmagnetic gap layer and the high-moment magnetic material such that the high-moment magnetic material has soft-magnetic properties and is useful as either a main pole or as shield layer in a write head. Moreover, the nickel-chronium seed layer, which may be exposed on the air bearing surface (ABS) of the write head, has an etch rate similar to other metals found in the ABS, thereby avoiding pole tip protrusion during later processing.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Inventors: Christian René Bonhôte, Stefan Maat, Ning Shi, Brian R. York
  • Publication number: 20120154954
    Abstract: A perpendicular magnetic write head having a laminated trailing return pole structure that reduces magnetic eddy currents in the return pole for improved write head efficiency. The trailing magnetic return pole includes multiple magnetic layers. Each magnetic layer is separated from an adjacent magnetic layer of the return pole by a non-magnetic layer. The non-magnetic layer terminates at a region that is removed from the air bearing surface in order to allow contact between the magnetic layers at the ABS, thereby preventing stray magnetic fields from emitting from the magnetic layers of the write pole.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 21, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien D. Hsiao, Yimin Hsu, Jennifer Leung
  • Publication number: 20120140354
    Abstract: According to one embodiment, there is provided a spin torque oscillator including an oscillation layer formed of a magnetic material, a spin injection layer formed of a magnetic material and configured to inject a spin into the oscillation layer, and a current confinement layer including an insulating portion formed of an oxide or a nitride and a conductive portion formed of a nonmagnetic metal and penetrating the insulating portion in a direction of stacking. The conductive portion of the current confinement layer is positioned near a central portion of a plane of a device region including the oscillation layer and the spin injection layer.
    Type: Application
    Filed: November 8, 2011
    Publication date: June 7, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Akihiko TAKEO, Satoshi SHIROTORI, Kenichiro YAMADA, Katsuhiko KOUI
  • Publication number: 20120106001
    Abstract: A write element for magnetic recording includes a main pole and a shield. The main pole has first and second sides with respect to a down-track direction. The shield at least partially surrounds the main pole with a continuously concave inner sidewall. The angle between the inner sidewall of the shield and the direction of motion of the write element is greater than the angle between the sides of the main pole and the direction of motion.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Kaizhong Gao, Mourad Benakli
  • Publication number: 20120107645
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole, and then depositing a refill layer. A mask structure can be formed over the writ pole and refill layer, the mask structure being configured to define a stitched pole. An ion milling or reactive ion milling can then be performed to remove portions of the refill layer that are not protected by the mask structure. Then a magnetic material can be deposited to form a stitched write pole that defines a secondary flare point. The stitched pole can also be self aligned with an electrical lapping guide in order to accurately locate the front edge of the secondary flare point relative to the air bearing surface of the write head.
    Type: Application
    Filed: December 28, 2011
    Publication date: May 3, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yi Zheng, Yimin Hsu, Wen-Chien David Hsiao, Ming Jiang, Aron Pentek, Sue Siyang Zhang, Edward Hin Pong Lee, Hung-Chin Guthrie, Ning Shi, Vladimir Nikitin, Prabodh Ratnaparkhi, Yinshi Liu
  • Publication number: 20120002325
    Abstract: According to one embodiment, a magnetic recording head includes a main magnetic pole generating a recording magnetic field in a magnetic recording medium, a return yoke paired with the main magnetic pole, and a spin torque oscillator interposed between the main magnetic pole and the return yoke and including a spin injection layer, an oscillation layer, a nonmagnetic metal layer, and spin assist layer stacked in this order, wherein the nonmagnetic metal layer includes at least one metal selected from the group consisting of Cu, Au, Ag, Al, Pd, Pt, Os, and Ir, and the spin assist layer is a soft magnetic layer whose saturation magnetic flux density (Bs), diamagnetic field coefficient (N) and gap magnetic field (Hg) show a relationship expressed by Bs×N>Hg.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Soichi OIKAWA, Katsuhiko Koui
  • Publication number: 20110300409
    Abstract: An example magnetic recording head includes: a main magnetic pole; a laminated body; and a pair of electrodes. The laminated body includes a first magnetic layer having a coercivity lower than magnetic field applied by the main magnetic pole, a second magnetic layer having a coercivity lower than the magnetic field applied by the main magnetic pole, and an intermediate layer provided between the first magnetic layer and the second magnetic layer. The pair of electrodes is operable to pass a current through the laminated body.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 8, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenichiro Yamada, Hitoshi Iwasaki, Junichi Akiyama, Masayuki Takagishi, Tomomi Funayama, Masahiro Takashita, Mariko Shimizu, Shuichi Murakami, Tadashi Kai
  • Publication number: 20100159282
    Abstract: A method according to another embodiment includes forming a side shield layer of ferromagnetic material above a substrate; masking the side shield layer; milling an unmasked region of the side shield layer for forming a pole trench therein; and forming a pole layer in the pole trench. A structure according to one embodiment includes a substrate; a side shield layer of ferromagnetic material on the substrate, wherein the substrate has a region covered by the side shield layer and a region not covered by the side shield layer; a pole trench in the side shield layer and the region of the substrate not covered by the side shield layer; a layer of nonmagnetic material in the pole trench; and a pole layer in the pole trench, wherein the pole layer has a greater thickness above the region of the substrate not covered by the side shield layer than above the region of the substrate covered by the side shield layer.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Edward Hin Pong Lee, Aron Pentek
  • Patent number: 7679860
    Abstract: Embodiments of the invention provide a magnetic film capable of providing a higher saturation magnetic flux density as compared with the conventional one, a process of forming the magnetic film, a thin film magnetic head that makes use of the magnetic film, and a magnetic disk drive having this thin film magnetic head. In one embodiment, a magnetic film contains Co, Ni, and Fe, and its composition is such that 10?Co<20 wt %, 0?Ni?2 wt %, and 80<Fe?90 wt %. This magnetic film is a plating layer formed by electroplating. The face interval variation of crystal surface perpendicular to the layer surface relative to a crystal surface parallel to the layer surface is about 0.4% or more, whereby the saturation magnetic flux density (Bs) is greater than about 2.4 T.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Kazue Kudo, Gen Oikawa, Youji Maruyama, Hiromi Shiina
  • Patent number: 7515380
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: April 7, 2009
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina
  • Patent number: 7485378
    Abstract: A magnetic film capable of generating strong magnetic fields even in a high frequency region, a manufacturing method therefore and a thin film magnetic head capable of recording even in a high frequency region are provided. In one embodiment, the magnetic film is manufactured by using a 88FeNi film of 200 nm thick having minimum Hk of 0.32 Oe (25.6 A/m) as a main magnetic film and selecting a 20 wt % FeNi film of a similar FeNi alloy plating film having low Hk and low Hc as an interlayer material. A stacked film comprising (88FeNi/20FeNi)×10 layers is prepared so that the total thickness of the main magnetic film is 2 ?m. The 88FeNi film is prepared by application of a DC current in a 88FeNi plating bath, and the 20FeNi film is prepared by pulse plating successively in the same bath.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: February 3, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Gen Oikawa, Kazue Kudo, Youji Maruyama, Hiromi Shiina
  • Patent number: 7459221
    Abstract: In the magnetic film, projection of a magnetic pole, which is caused when a magnetic head is heated, can be restrained. The magnetic film can be applied to a magnetic head of a hard disk drive unit capable of recording data with high recording density. The magnetic film comprises: a first alloy film made of an alloy of iron (Fe) and platinum (Pt), or an alloy of iron (Fe), platinum (Pt) and other metal or metals; and a second alloy film directly layered on the first alloy film, the second alloy film made of an alloy of at least two metals selected from a group including iron (Fe), nickel (Ni) and cobalt (Co). Molar content of iron (Fe) in the first alloy film is 63-74%.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: December 2, 2008
    Assignee: Fujitsu Limited
    Inventor: Kenji Noma
  • Patent number: 7355813
    Abstract: An article is formed as a substrate having a projection extending outwardly therefrom. The article may be a magnetic recording head and the projection a write pole. The projection has a width in a thinnest dimension measured parallel to a substrate surface of no more than about 0.3 micrometers and a height measured perpendicular to the substrate of not less than about 5 times the width. The article is fabricated by forming an overlying structure on the substrate with an edge thereon, depositing a replication layer lying on the edge, depositing a filler onto the edge and the substrate, so that the filler, the replication layer, and the overlying structure in combination comprise a continuous layer on the substrate, selectively removing at least a portion of the replication layer from a free surface of the continuous layer inwardly toward the substrate, to form a defined cavity, and depositing a projection material into the defined cavity to form the projection.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: April 8, 2008
    Assignee: International Business Machines Corporation
    Inventors: James Kruger, Benjamin L. Wang, Patrick R. Webb, Howard G. Zolla
  • Patent number: 7312951
    Abstract: The invention provides a magnetic head for perpendicular magnetic recording having an air bearing surface positioned facing the recording surface of a recording medium, which records magnetic information on the recording medium by generating magnetic flux toward the recording surface of the recording medium, and comprises a magnetic pole which generates magnetic flux toward the recording surface of the recording medium and a return yoke having one end connected to the magnetic pole and the other end positioned facing the recording surface of the recording medium, wherein the material composing the magnetic pole has a magnetostriction constant ? of at least 0 and less than 10×10?6, with a parameter P represented by the formula: P=Hk/(?×?) (where Hk represents the magnetic anisotropic field (A/m), ? represents the stress (MPa) and ? represents the magnetostriction constant) of larger than 0.1 and less than 200.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: December 25, 2007
    Assignee: TDK Corporation
    Inventors: Kei Hirata, Kiyoshi Noguchi, Tetsuya Roppongi, Atsushi Yamaguchi
  • Patent number: 7288333
    Abstract: A soft magnetic film of the present invention is a plated film composed of Co and Fe, and columnar crystals extending in the film thickness direction are provided. In the present invention, columnar crystals extending in the film thickness direction are provided so that an improvement in the surface roughness of the film surface and an improvement in the corrosion resistance can be achieved. Furthermore, the saturation magnetic flux density Bs can also be improved by making the crystal fine and eliminating the need for addition of the noble metal element. That is, according to a CoFe alloy of the present invention, both the corrosion resistance and the saturation magnetic flux density Bs can be improved, and specifically, the above-mentioned saturation magnetic flux density Bs can be increased to 2.35 T or more.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: October 30, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventors: Mitsuo Kawasaki, Hisayuki Yazawa, Yoshihiro Kanada
  • Patent number: 7157160
    Abstract: The magnetic thin film has high saturation magnetic flux density and superior soft magnetic characteristics. The magnetic thin film of the present invention comprises: a base layer being made of FeCo/NiFe; and a plated layer being formed on the base layer, the plated layer being made of FeCo.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: January 2, 2007
    Assignee: Fujitsu Limited
    Inventors: Yuko Miyake, Daiju Kaneko
  • Patent number: 7112375
    Abstract: A seed layer structure for improved crystallographic orientation of grains in a hard magnetic material is disclosed. The seed layer structure is comprised of alternating layers of a metal and a dielectric. Hard magnetic materials deposited on the seed layer structure have superior properties and performance in providing hard bias to a ferromagnetic layer in a magnetic sensor. The seed layer structure also accommodates a relatively large total thickness, which is preferable in magnetic sensors with an ultra contiguous junction arrangement.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: September 26, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernest E. Marinero, Brian Rodrick York
  • Patent number: 7101633
    Abstract: An electroplated magnetic thin film consisting of an electroplated film of Fe—Co alloy containing Fe by an amount of 52–86 wt % and having a highly packed fine crystal grain structure, a flat and glossy surface, a high saturation magnetic flux density not less than 2.1 T, a low coercive force of 5–10 Oe, and being particularly suitable as a pole portion of a thin film magnetic head is proposed. The electroplated magnetic thin film is deposited on a substrate by an electroplating process with a pulsatory current or direct current having a current density of 3–120 mA/cm2 while using an electroplating bath containing one or both of sulfate salt and hydrochloric salt serving as supply sources of Fe ions and Co ions, saccharin sodium serving as a stress relaxation agent by an amount not less than 1 g/l, boric acid as a pH buffer agent, ammonium chloride as an electrically conductivity salt, and sodium lauryl sulfate as a surfactant.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: September 5, 2006
    Assignee: TDK Corporation
    Inventors: Atsushi Yamaguchi, Tetsuya Mino, Seiji Yari, Shigeru Ichihara