Inorganic Compound Encapsulated Or Coated Magnetic Particles (e.g., Co Coated Fe2o3, Etc.) Patents (Class 428/842.6)
  • Patent number: 8906498
    Abstract: A method of making a sandwich of impact resistant material, the method comprising: providing a powder; performing a spark plasma sintering process on powder to form a tile; and coupling a ductile backing layer to the tile. In some embodiments, the powder comprises micron-sized particles. In some embodiments, the powder comprises nano-particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the ductile backing layer comprises an adhesive layer. In some embodiments, the ductile backing layer comprises: a layer of polyethylene fibers; and an adhesive layer coupling the layer of polyethylene fibers to the tile, wherein the adhesive layer comprises a thickness of 1 to 3 millimeters.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 9, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: Maximilian A. Biberger
  • Patent number: 8295786
    Abstract: The present invention provides a magnetic sheet with improved resistance to folding while maintaining good magnetic characteristics and reliability; a method for producing the magnetic sheet; an antenna; and a portable communication device. A magnetic sheet of the present invention includes a flat magnetic powder, and a resin binder capable of dissolving in a solvent, wherein the magnetic sheet has a gradient of the content ratio of the magnetic powder to the resin binder in a thickness direction thereof, wherein, in use, the magnetic sheet is folded so that, of the front and back surfaces thereof, one surface whose magnetic powder content is lower than that of the other is folded inward, and wherein the difference in glossiness measured at a light-incident angle of 60° between the front and back surfaces is 9.4 or more.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Sony Chemical & Information Device Corporation
    Inventors: Keisuke Aramaki, Junichiro Sugita, Morio Sekiguchi
  • Patent number: 7700204
    Abstract: A magnetic recording medium comprising a nonmagnetic support and a magnetic layer formed on the support and containing a magnetic powder and a binder, wherein said magnetic powder comprises substantially spherical or ellipsoidal particles and at least one element selected from the group consisting of rare earth elements, silicon and aluminum, and has a Fe16N2 phase, an average particle size of 5 to 30 nm and an axis ratio (a ratio of a major axis to a minor axis) of 1 to 2. This magnetic recording medium achieves a high output and has excellent short wavelength recording properties, since it uses a magnetic powder having a very small particle size and has a very high coercive force and a saturation magnetization suitable for high density recording.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 20, 2010
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Yuji Sasaki, Mikio Kishimoto, Naoki Usuki
  • Publication number: 20090087688
    Abstract: An aspect of the present invention relates to an iron nitride powder. The iron nitride powder is comprised chiefly of Fe16N2 and comprises, on at least a portion of the powder surface, a coating layer comprising at least one element selected from the group consisting of rare earth metal elements, aluminum, and silicon, and cobalt-containing ferrite having a composition denoted by (CoxFe1?x)Fe2O4, wherein 0<x?1. The present invention further relates to a method of manufacturing iron nitride powders and a magnetic recording medium comprising the iron nitride powder.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 2, 2009
    Applicant: FUJIFILM Corporation
    Inventor: Kouichi Masaki
  • Patent number: 7510790
    Abstract: A magnetic powder consisting of substantially spherical or ellipsoidal particles comprising a transition metal which comprises iron and a rear earth element which is mainly present in the outer layer of the magnetic powder particles, and having a particle size of 5 to 200 nm, a coercive force of 80 to 400 kA/m and a saturation magnetization of 10 to 25 ?Wb/g.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: March 31, 2009
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Mikio Kishimoto, Yuji Sasaki, Yumiko Kitahata, legal representative, Hideaki Watanabe, Shinichi Kitahata
  • Patent number: 7445858
    Abstract: A magnetic recording medium comprising a non-magnetic support, at least one primer layer formed on one surface of the non-magnetic support, comprising a non-magnetic powder and a binder resin, at least one magnetic layer formed on the primer layer, comprising a magnetic powder and a binder resin, and a back layer formed on the other surface of the non-magnetic support, wherein the magnetic powder contained in the uppermost layer of the magnetic layer is a rare earth metal-iron type magnetic powder of substantially spherical or ellipsoidal particles comprising a rare earth element and iron or a transition metal which comprises iron, and has a number average particle size of 5 to 50 nm and an average axis ratio of 1 to 2, and the total thickness of the magnetic recording medium is less than 6 ?m. This magnetic recording medium can achieve an excellent block error rate.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: November 4, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Sadamu Kuse, Tsugihiro Doi, Tetsutaro Inoue, Mikio Kishimoto, Yuji Sasaki, Hideaki Watanabe
  • Patent number: 7344779
    Abstract: A fine magnetic powder suitable for magnetic tape capable of high-density magnetic recording is provided that helps to prevent degradation of tape surface property and durability with increasing fineness of the magnetic powder particles, which magnetic powder consists of particles composed chiefly of Fe whose surface layer contains an oxide of at least one of Al, Si and Ra (where Ra represents one or more rare earth elements, defined as including Y), has an average particle diameter of less than 70 nm, the number of basic sites on the particle surface of not greater than 0.85 sites/nm2, and the number of acid sites on the particle surface of not greater than 0.75 sites/nm2.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: March 18, 2008
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Kimitaka Sato
  • Patent number: 7297423
    Abstract: A PCB that can transmit a high frequency signal of a GHz band with a low loss includes an insulator and magnetic nanoparticles dispersed in the insulator.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: November 20, 2007
    Assignees: Sony Corporation, Migaku Takahashi
    Inventors: Mikihisa Mizuno, Yuichi Sasaki, Makoto Inoue, Kenji Yazawa, Migaku Takahashi, Yasuo Tateno, Teiichi Miyauchi
  • Patent number: 7291409
    Abstract: A magnetic recording medium comprising a non-magnetic support, at least one primer layer formed on one surface of the non-magnetic support, comprising a non-magnetic powder and a binder resin, at least one magnetic layer formed on the primer layer, comprising a magnetic powder and a binder resin, and a back layer formed on the other surface of the non-magnetic support, wherein the magnetic powder contained in the uppermost layer of the magnetic layer is a rare earth metal-iron type magnetic powder of substantially spherical or ellipsoidal particles comprising a rare earth element and iron or a transition metal which comprises iron, and has a number average particle size 5 to 50 nm and an average axis ratio of 1 to 2, and the total thickness of the magnetic recording medium is less than 6 ?m. This magnetic recording medium can achieve an excellent block error rate, which cannot be realized with magnetic recording media comprising conventional acicular magnetic powders.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: November 6, 2007
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Sadamu Kuse, Tsugihiro Doi, Tetsutaro Inoue, Mikio Kishimoto, Yuji Sasaki, Hideaki Watanabe
  • Patent number: 7267896
    Abstract: A magnetic recording medium comprising a non-magnetic support; at least one lower magnetic layer containing magnetic powder and a binder resin, which is formed on one side of the non-magnetic support with or without a non-magnetic primer layer interposed between the non-magnetic support and the lower magnetic layer; at least one non-magnetic intermediate layer containing non-magnetic powder and a binder resin, which is formed on the lower magnetic layer; at least one upper magnetic layer containing magnetic powder and a binder resin, which is formed on the non-magnetic intermediate layer; and a back layer which is formed on the other side of the non-magnetic support, characterized in that the magnetic powder contained in the uppermost magnetic layer of the upper magnetic layer is iron type magnetic powder which comprises substantially spherical or ellipsoidal particles with a number-average particle diameter of 5 to 50 nm and an average axial ratio of 1 to 2, each of said particles containing iron or containi
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: September 11, 2007
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Sadamu Kuse, Tsugihiro Doi, Tetsutaro Inoue, Mikio Kishimoto, Yuji Sasaki, Hideaki Watanabe