Responsive To Heat Patents (Class 429/112)
  • Publication number: 20130244076
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Application
    Filed: April 29, 2013
    Publication date: September 19, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Syozo FUJIWARA
  • Patent number: 8492021
    Abstract: The present invention is directed toward a laminated electrode and porous separator film combination including a solid electrolyte salt within the porous separator film, the combination comprising layer of powdered cathode material adhering to a surface of a separator film with a solid electrolyte therebetween; the separator film comprising 50% to 95% by weight of electrically non-conductive ceramic fibers having a coating of magnesium oxide on the surface of the fibers in an amount in the range of 5% to 50% by weight; wherein the ceramic fibers comprise Al2O3, AlSiO2, BN, AlN, or a mixture of two or more of the foregoing; and the magnesium oxide coating interconnects the ceramic fibers providing a porous network of magnesium oxide-coated fibers having a porosity of not less than 50% by volume; the pores of the network containing a solid electrolyte salt in an amount of up to 95% by volume based on pore volume of the network.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: July 23, 2013
    Inventor: Thomas D Kaun
  • Publication number: 20130183551
    Abstract: A method for producing power from a liquid reserve battery. The method including heating a liquid electrolyte and forcing the heated liquid electrolyte into gaps dispersed in a battery cell.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: OMNITEK PARTNERS LLC
    Inventor: Jahangir S. Rastegar
  • Patent number: 8440342
    Abstract: Cathode materials for use in thermal batteries are disclosed. The cathode material includes a primary active material and an amount of a bi-metal sulfide such as CuFeS2. Batteries (e.g., thermal batteries) that contain such cathode materials are also disclosed.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 14, 2013
    Assignee: Eaglepicher Technologies, LLC
    Inventors: Geoffrey Swift, Charles Lamb
  • Patent number: 8394520
    Abstract: Ternary or quaternary electrolyte material for use in thermal batteries that is substantially free of binders is disclosed. Composites of electrodes and electrolytes that contain the electrolyte material and batteries that contain the electrolyte material are also disclosed.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: March 12, 2013
    Assignee: Eaglepicher Technologies, LLC
    Inventors: Geoffrey Swift, Charles Lamb
  • Publication number: 20130029241
    Abstract: An energy storage system is disclosed. The energy storage system comprises an energy storage device configured to operate above ambient temperature, and a thermal insulator at least partially surrounding the energy storage device, wherein heat losses from one or more other devices are received within the thermal insulator to provide heat energy to the energy storage device. Utilising heat losses from one or more other devices, such as associated electronic components, enables the energy storage device to be maintained at its elevated operational temperature for longer providing extended battery life. In the application of wireline logging, this results in more data log available per trip in a well.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Inventors: Guy Harvey Mason, Steven Bill Ellenby, Keith Robert Wootten
  • Patent number: 8313853
    Abstract: A thin, flexible, porous ceramic composite (PCC) film useful as a separator for a molten-salt thermal battery comprises 50% to 95% by weight of electrically non-conductive ceramic fibers comprising a coating of magnesium oxide on the surface of the fibers in an amount in the range of 5% to 50% by weight. The ceramic fibers comprise Al2O3, AlSiO2, BN, AlN, or a mixture of two or more of the foregoing; and the magnesium oxide coating interconnects the ceramic fibers providing a porous network of magnesium oxide-coated fibers having a porosity of not less than 50% by volume. The pores of the film optionally can include a solid electrolyte salt. A laminated electrode/PCC film combination is also provided, as well as a thermal battery cell comprising the PCC film as a separator.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: November 20, 2012
    Inventor: Thomas D. Kaun
  • Publication number: 20120276433
    Abstract: The present invention provides a molten salt containing at least two salts, and having a melting point of 350° C. or more and 430° C. or less and an electric conductivity at 500° C. of 2.2 S/cm or more. The present invention also provides a thermal battery including the molten salt as an electrolyte.
    Type: Application
    Filed: June 14, 2012
    Publication date: November 1, 2012
    Applicant: Panasonic Corporation
    Inventor: Syozo FUJIWARA
  • Patent number: 8253008
    Abstract: There is provided an AMTEC (alkali metal thermal-electric converter) with a heat pipe and more particularly, to an AMTEC with a heat pipe minimized a heating part and a condensation part of the AMTEC and improved in efficiency of thermal to electric conversion through installing the heating and cooling heat pipes in the AMTEC, in which a metal fluid is heated by latent heat of an operating fluid of the heat pipe, instead of the heat conduction from a heat source, thereby reducing a temperature difference needed for heat transfer to vaporize the metal fluid even by a heat source of a lower temperature than a conventional heat source; improving a cooling performance in a condensation part to result in the high efficiency of thermal to electric conversion; using no additional driving components for driving the heat pipe.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 28, 2012
    Assignee: Korea Institute of Energy Research
    Inventors: Ki-Woo Lee, Won-Pyo Chun
  • Publication number: 20120200250
    Abstract: A reserve power source for charging a device, such as a depleted power source or a vehicle. The reserve power source including: a reserve battery which requires activation to produce power, such as a thermal battery or a liquid reserve battery; an activator for activating the reserve power upon one of an electrical or mechanical activation; and a pair of terminals operatively connected to the reserve battery for outputting the produced power. The reserve power source can also include a cable connected to each of the pair of terminals for connecting outputting the produced power to the depleted power source and/or conditioning circuitry for conditioning the produced power prior to output at the terminals. The reserve battery can also include a stop for preventing the activator from activating the reserve power source, where the stop is selectively removable when activation is desired.
    Type: Application
    Filed: February 5, 2011
    Publication date: August 9, 2012
    Applicant: OMNITEK PARTNERS LLC
    Inventor: Jahangir S. Rastegar
  • Publication number: 20120201759
    Abstract: Hierarchical nanostructures and methods of fabrication. The structures include particles having a metal oxide outer shell with metal oxide wires extending from the outer shell. A multiscale structure according to the invention has particles above and below a critical size wherein the particles above the critical size have wires extending from the surface. These structures may be fabricated from a mixture prepared of relatively smaller metal particles having a size threshold below a threshold for nanowire formation and of relatively larger metal particles having a size above the threshold for nanowire formation. The mixture is oxidized at a selected temperature and for a selected time whereby the relatively smaller particles sinter and nanowires grow on the relatively larger particles thereby creating tunable hierarchical structures with metal-to-metal contact between the particles.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 9, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Christopher Jameson Love, J. David Smith, Kripa K. Varanasi
  • Publication number: 20120135280
    Abstract: A thermal battery including: a casing; a thermal battery cell disposed in the casing and operatively connected to electrical connections exposed from the casing; a fuel and oxidizer mixture disposed at least partially between the casing and the battery cell; and one or more initiators for initiating one or more of the thermal battery cell and the fuel and oxidizer mixture; wherein the fuel and oxidizer mixture produces an exothermic reaction upon initiation and forms a reaction product being a thermal insulator.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicants: VESTA SCIENCES INC., OMNITEK PARTNERS LLC
    Inventors: Jahangir S. Rastegar, Shanthi Subramanian
  • Publication number: 20120088134
    Abstract: An improved emergency power system is disclosed for providing electrical power to a load such as a blowout preventer of a petroleum drilling apparatus. The improved emergency power system comprises a thermal battery having an anode and a cathode with a separator containing an electrolyte disposed therebetween. An internal heat layer is located in proximity to the separator containing the electrolyte. A squib is provided for activating the internal heat layer. The thermal battery remains dormant until the squib is energized to ignite the squib enabling the heat layer to render the electrolyte molten thereby activating battery to provide electrical power to the load. The squib may be energized remotely, mechanically or electrically.
    Type: Application
    Filed: October 5, 2011
    Publication date: April 12, 2012
    Applicant: The Enser Corporation
    Inventors: Bradford A. Wood, James K. Pugh, Juan A. Cubero
  • Patent number: 8088508
    Abstract: A thermal battery includes a plurality of unit cells. Each unit cell includes a cathode, an anode, and an electrolyte disposed between the cathode and the anode. The electrolyte includes a salt molten at the thermal battery operating temperatures. The cathode includes a titanium-containing sulfide as an active material.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: January 3, 2012
    Assignee: Panasonic Corporation
    Inventor: Syozo Fujiwara
  • Publication number: 20110318624
    Abstract: A cathode material includes a primary active cathode material and an amount of NiS2. Primary batteries (e.g., thermal batteries) can be provided that contain such a cathode material.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 29, 2011
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Geoffrey SWIFT, Charles LAMB, Jim FERRARO
  • Patent number: 8052764
    Abstract: A method of manufacturing thermal batteries is disclosed. In the method according to the present invention, pellets used in the manufacture of thermal batteries are grouped together based on certain material characteristics such as weight, thickness, and density. Pellets with different material characteristics can be grouped together in a single thermal battery to produce a thermal battery with characteristics that are the average of the characteristics of the pellets used to manufacture the thermal battery.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: November 8, 2011
    Assignee: EaglePicher Technologies, LLC
    Inventors: Graham Dixon, Mark Hart, Ola Pettersson, Chad Sneath
  • Patent number: 8039138
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and improvements in energy and power density. A problem concerning gas-evolution reactions is solved by eliminating chloride ions, sodium ions, and moisture contaminants. One step is to avoid any chlorine-containing substances in any battery component. The decomposition of such substances into chloride ions results in passivating-film breakdown and gas-producing reactions with the electrolyte. Sodium ions also react with the anode and lead to decreased stability. Thus, the use of sodium ions in components of the battery is avoided. The effect of water in the melt relates to both the reactivity and out-gassing problem. Water in the melt will react with, and breach the insoluble and protective oxide film and can produce hydrogen gas. A method to measure water in the nitrate electrolyte melt via cyclic voltammetry, as well as means of eliminate water from the melt is presented.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 18, 2011
    Assignee: Millennium Engineering and Integration Company
    Inventors: Melvin H. Miles, Adam A. Grumet, Kurt W. Solomon
  • Publication number: 20110217582
    Abstract: A battery is disclosed that includes two contact areas, an electrolyte, and an electronically conductive material that, at a neutralization trip point temperature, increases electronic conductivity internal to the battery between the first contact area and the second contact area. In one embodiment, the electronically conductive material is void from being activated external to the battery. In another embodiment, the battery includes a semiconductor material that includes custom doping to provide the increased electron conductivity at the neutralization trip point temperature. In yet another embodiment, the battery includes an insulator for separating the electronically conductive material until a temperature internal to the battery reaches the neutralization trip point temperature, at which point permits the electronically conductive material to increase the electronic conductivity between the first contact area and the second contact area.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Inventors: Bouziane Yebka, Joseph Anthony Holung, Tin-Lup Wong, Kenneth Scott Seethaler
  • Patent number: 8001677
    Abstract: The present invention is directed at a system for automatically manufacturing thermal batteries. In the present invention, thermal batteries are manufactured using a press system, a stacking system and an enclosing system. The present invention uses a tracking, storage, and/or retrieval system to track various components used in the manufacturing process to improve manufacturing quality and to track the various components throughout the manufacturing process.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 23, 2011
    Assignee: EaglePicher Technologies, LLC
    Inventors: Graham Dixon, Mark Hart, Ola Pettersson, Chad Sneath
  • Publication number: 20110171511
    Abstract: An inertial igniter including: a body having a base and three or more posts, each post having a hole; a locking ball corresponding to each post, wherein a portion of the locking balls are disposed in the hole; a striker mass movably disposed relative to the posts and having a surface corresponding to the posts, the striker mass further having a concave portion corresponding to the locking balls, wherein a second portion of each locking ball is disposed in a corresponding concave portion for retaining the striker mass relative to the posts; a collar movable relative to the posts; and a biasing element for biasing the collar in a first position which retains the striker mass, the biasing element permitting movement of the collar to a second position to release the striker mass relative to the posts upon a predetermined acceleration profile.
    Type: Application
    Filed: July 13, 2010
    Publication date: July 14, 2011
    Applicant: OMNITEK PARTNERS LLC
    Inventors: Jahangir S. Rastegar, Richard T. Murray, Jacques Fischer
  • Patent number: 7939192
    Abstract: A battery module for use in an electric vehicle is disclosed. The battery module includes a plurality of cells arranged in a predetermined pattern within the module. The battery module also includes an optical pyrometer arranged inside the module. The optical pyrometer is installed within the module after being tuned to detect a predetermined frequency or band of frequencies. The pyrometer will be used to detect an increase in short wave radiation density from one of the battery cells within the module wherein that battery cell has a temperature above a predetermined threshold. The optical pyrometer will be used to communicate an electric signal to a control system of the electric vehicle wherein that control system will implement a predetermined mitigation process to contain the thermal event of that one cell within the battery module.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: May 10, 2011
    Assignee: Tesla Motors, Inc.
    Inventor: Weston A. Hermann
  • Patent number: 7935437
    Abstract: A battery includes a plurality of closed cells disposed in a predetermined feature pattern on at least a first surface of an electrode. Each of the closed cells has an inner surface. The battery also includes a plurality of cell electrodes. Each of the cell electrodes is disposed along a portion of the inner surface of a respective one of the closed cells in the plurality of closed cells.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: May 3, 2011
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7926169
    Abstract: An automated system and method for manufacturing a thermal battery is disclosed. In an exemplary embodiment, the system comprises a press system, a stacking system, and an enclosing system to automate the manufacturing process of thermal batteries. A method of manufacturing a thermal battery using the system is also disclosed. An automated tracking, storage, and retrieval system for pellets used in the manufacturing process and a pellet pairing system are also disclosed.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: April 19, 2011
    Assignee: EaglePicher Technologies, LLC
    Inventors: Graham Dixon, Mark Hart, Ola Pettersson, Chad Sneath
  • Patent number: 7875088
    Abstract: The present invention is directed at a system for automatically manufacturing thermal batteries. In the present invention, thermal batteries are manufactured using a press system, a stacking system and an enclosing system. The present invention uses a tracking, storage, and/or retrieval system to track various components used in the manufacturing process to improve manufacturing quality and to track the various components throughout the manufacturing process.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: January 25, 2011
    Assignee: EaglePicher Technologies
    Inventors: Graham Dixon, Mark Hart, Ola Pettersson, Chad Sneath
  • Patent number: 7871447
    Abstract: An automated system and method for manufacturing a thermal battery is disclosed. In an exemplary embodiment, the system comprises a press system, a stacking system, and an enclosing system to automate the manufacturing process of thermal batteries. A method of manufacturing a thermal battery using the system is also disclosed. An automated tracking, storage, and retrieval system for pellets used in the manufacturing process and a pellet pairing system are also disclosed.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: January 18, 2011
    Assignee: EaglePicher Technologies
    Inventors: Graham Dixon, Mark Hart, Ola Pettersson, Chad Sneath
  • Publication number: 20100310917
    Abstract: Ternary or quaternary electrolyte material for use in thermal batteries that is substantially free of binders is disclosed. Composites of electrodes and electrolytes that contain the electrolyte material and batteries that contain the electrolyte material are also disclosed.
    Type: Application
    Filed: April 5, 2010
    Publication date: December 9, 2010
    Applicant: EaglePicher Technologies, LLC
    Inventors: Geoffrey Swift, Charles Lamb
  • Patent number: 7833653
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 16, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Thomas Nikita Krupenkin, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7785733
    Abstract: A battery having an electrode with at least one nanostructured surface is disclosed wherein the nanostructured surface is divided into cells and is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the portion of electrode associated with each cell. When a voltage is passed over the nanostructured surface associated with a particular cell, the electrolyte fluid is caused to penetrate the nanostructured surface of that cell and to contact the electrode, thus activating the portion of the battery associated with that cell. The current/voltage generated by the battery is controlled by selectively activating only a portion of the cells. Multiple cells can be active simultaneously to produce the desired voltage. The more cells that are active, the higher the current/voltage and the lower the overall life of the battery. The life of the battery can be extended by activating fewer cells simultaneously.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: August 31, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Thomas Nikita Krupenkin, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7749646
    Abstract: A battery having a nanostructured battery electrode is disclosed wherein it is possible to reverse the contact of the electrolyte with the battery electrode and, thus, to return a battery to a reserve state after it has been used to generate current. In order to achieve this reversibility, the nanostructures on the battery electrode comprise a plurality of closed cells and the pressure within the enclosed cells is varied. In a first embodiment, the pressure is varied by varying the temperature of a fluid within the cells by, for example, applying a voltage to electrodes disposed within said cells. In a second illustrative embodiment, once the battery has been fully discharged, the battery is recharged and then the electrolyte fluid is expelled from the cells in a way such that it is no longer in contact with the battery electrode.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 6, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Marc Scott Hodes, Paul Robert Kolodner, Timofei Nikita Kroupenkine, Alan Michael Lyons, Mary Louise Mandich, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7740976
    Abstract: A fluid consuming battery (10) is provided with a fluid regulating system (50) for regulating fluid entry into the battery. The battery (10) includes a fluid consuming cell (20) having a cell housing with fluid entry ports for the passage of a fluid into the cell housing. A first fluid consuming electrode and a second electrode are disposed within the cell housing. The fluid regulating system (50) includes a valve having a moving plate (66) disposed adjacent to a fixed plate (62). The moving plate and fixed plate both have fluid entry ports (68, 64) that align in an open valve position and are misaligned in a closed valve position. The fluid regulating system (50) also includes an actuator that may include one or more shape memory alloy (SMA) components (82a, 82b) for moving the moving plate (66) relative to the fixed plate (62) to open and close the valve.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 22, 2010
    Assignee: Eveready Battery Company, Inc.
    Inventors: Richard A. Langan, John M. Somerville, Michael J. Brandon, II, Robert M. Janmey, Jean-Francois Audebert
  • Patent number: 7732089
    Abstract: A fluid consuming battery (10) is provided with a fluid regulating system (50) for regulating fluid entry into the battery. The battery (10) includes a fluid consuming cell (20) having a cell housing with fluid entry ports for the passage of a fluid into the cell housing. A first fluid consuming electrode and a second electrode are disposed within the cell housing. The fluid regulating system (50) includes a valve having a moving plate (66) disposed adjacent to a fixed plate (62). The moving plate and fixed plate both have fluid entry ports (68, 64) that align in an open valve position and are misaligned in a closed valve position. The fluid regulating system (50) also includes an actuator that may include one or more shape memory alloy (SMA) components (82a, 82b) for moving the moving plate (66) relative to the fixed plate (62) to open and close the valve.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Eveready Battery Company, Inc.
    Inventors: Oliver W. Burstall, David M. Blakey, John C. Bailey, John M. Somerville, Richard A. Langan, Michael J. Mingay
  • Patent number: 7732088
    Abstract: A fluid consuming battery (10) is provided with a fluid regulating system (50) for regulating fluid entry into the battery. The battery (10) includes a fluid consuming cell (20) having a cell housing with fluid entry ports for the passage of a fluid into the cell housing. A first fluid consuming electrode and a second electrode are disposed within the cell housing. The fluid regulating system (50) includes a valve having a moving plate (66) disposed adjacent to a fixed plate (62). The moving plate and fixed plate both have fluid entry ports (68, 64) that align in an open valve position and are misaligned in a closed valve position. The fluid regulating system (50) also includes an actuator that may include one or more shape memory alloy (SMA) components (82a, 82b) for moving the moving plate (66) relative to the fixed plate (62) to open and close the valve.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 8, 2010
    Assignee: Eveready Battery Company, Inc.
    Inventors: John M. Somerville, Richard A. Langan, John C. Bailey
  • Publication number: 20100092851
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and improvements in energy and power density. A problem concerning gas-evolution reactions is solved by eliminating chloride ions, sodium ions, and moisture contaminants. One step is to avoid any chlorine-containing substances in any battery component. The decomposition of such substances into chloride ions results in passivating-film breakdown and gas-producing reactions with the electrolyte. Sodium ions also react with the anode and lead to decreased stability. Thus, the use of sodium ions in components of the battery is avoided. The effect of water in the melt relates to both the reactivity and out-gassing problem. Water in the melt will react with, and breach the insoluble and protective oxide film and can produce hydrogen gas. A method to measure water in the nitrate electrolyte melt via cyclic voltammetry, as well as means of eliminate water from the melt is presented.
    Type: Application
    Filed: December 8, 2009
    Publication date: April 15, 2010
    Applicant: Millennium Engineering and Integration Company
    Inventors: Melvin H. Miles, Adam A. Grumet, Kurt W. Solomon
  • Patent number: 7695550
    Abstract: An apparatus that comprises a membrane having a plurality of fluid-support-structures and openings located between the fluid-support-structures. The fluid-support-structures have at least one dimension that that is about 1 millimeter or less. The apparatus also comprises a wicking material positioned adjacent to a surface of the membrane. When a fluid locatable on a surface of the fluid-support-structures penetrates the fluid-support-structures, at least a portion of the fluid passes through the openings and into the wicking material.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 13, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Thomas Nikita Krupenkin, Victor Alexander Lifton, Joseph Ashley Taylor, Brijesh Vyas
  • Patent number: 7629075
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and marked improvements in energy and power densities over present thermal batteries. However, a major problem is gas-evolution reactions involving the molten nitrate electrolytes. This gassing problem has blocked the advantages offered by thermal batteries using molten nitrates. The solution to this gassing problem is to eliminate the chloride ion contaminates. The most important step in reducing chloride contamination is the avoidance of potassium perchlorate (KClO4) or any other chlorine-containing substances that can decompose to produce chloride ions in any thermal battery component. The Fe+KClO4 pyrotechnic used to activate thermal batteries is a key example. The decomposition of such substances into chloride ions (Cl—) results in passivating-film breakdown and gas-producing reactions with the molten nitrate electrolyte.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: December 8, 2009
    Assignee: Millennium Engineering and Integration Company
    Inventor: Melvin H. Miles
  • Publication number: 20090047573
    Abstract: Thermal batteries using molten nitrate electrolytes offer significantly higher cell voltages and marked improvements in energy and power densities over present thermal batteries. However, a major problem is gas-evolution reactions involving the molten nitrate electrolytes. This gassing problem has blocked the advantages offered by thermal batteries using molten nitrates. The solution to this problem is the use of chloride-free molten nitrate electrolytes. Most important is the avoidance of potassium perchlorate (KClO4) or any other chlorine-containing substances that can decompose to produce chloride ions in any thermal battery component. The Fe+KClO4 pyrotechnic used to activate thermal batteries is a key example. The decomposition of such substances into chloride ions (Cl?) results in passivating-film breakdown and gas-producing reactions with the molten nitrate electrolyte. These reactions largely involve the lithium-component of the anode used in thermal batteries such as Li—Fe (LAN), Li—Si, and Li—Al.
    Type: Application
    Filed: August 14, 2007
    Publication date: February 19, 2009
    Applicant: Millennium Engineering and Integration Company
    Inventor: Melvin H. Miles
  • Publication number: 20090042065
    Abstract: A method of activating a micro-cell in which the micro-cell includes a first compartment, a second compartment, a fluid in the first compartment, an element in the second compartment and a porous barrier separating the first compartment from the second compartment. The porous barrier, in a first state, is operable to prevent the fluid from entering the second compartment whereas the porous barrier, in a second state, is operable, in response to an event, to allow the fluid to enter the second compartment and interact with the element in the second compartment so as to generate an activation signal.
    Type: Application
    Filed: August 10, 2007
    Publication date: February 12, 2009
    Applicant: MPHASE TECHNOLOGIES, INC.
    Inventors: Steve Simon, Victor A. Lifton
  • Patent number: 7462416
    Abstract: A secondary battery having an improved electrical connection structure of a secondary protective device by positioning a thermo-breaker in a protective device groove, in order to improve the stability of the secondary battery while minimizing the occupation of the inner space of the can. The secondary battery includes an electrode assembly having positive and negative electrode tabs. A can contains the electrode assembly therein. A cap assembly has an insulated electrode terminal and a cap plate for sealing the top opening of the can. A protective device groove is formed on the bottom surface of the cap plate. A thermo-breaker is seated in the protective device groove while being connected between the first electrode tab and the electrode terminal. When the temperature inside the battery reaches a predetermined value, the bimetal loses contact and the electrical current inside the battery is interrupted, avoiding overcharge/over-discharge or explosion of the battery.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: December 9, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jun Ho Kim
  • Publication number: 20080268332
    Abstract: The invention relates to a solid-state chemical current source and to a method for increasing a discharge power thereof. The inventive current source can be used in electrochemical engineering, in particular for primary and secondary solid-state chemical power sources, which are based on solid ion conductors and exhibit a high discharge power and for a method for increasing the said discharge power. The solid-state chemical current source comprises a body provided with current leading-out wires and solid-state galvanic cells which are arranged therein, are connected to the current leading-out wires, are based on solid ion conductors and perform the function of heating elements. A heat insulation for reducing heat losses of the heated galvanic cells is arranged inside and\or outside the body.
    Type: Application
    Filed: July 9, 2008
    Publication date: October 30, 2008
    Applicant: THE POTANIN INSTITUTE LIMITED
    Inventor: Aleksander Arkadievich POTANIN
  • Patent number: 7432011
    Abstract: An actuated galvanic cell is described which generated electric current responsive to introduction of electrolyte from a secondary containment means. Also housed within the containment means is a propellant which serves to drive the electrolyte from the containment means into the reaction chamber for electric current production. This propellant system is chosen from thermal, phase change, and other systems which as opposed to physical pumps impel the electrolyte into the reaction chamber without the need for additional introduction apparatus.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: October 7, 2008
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Robert Frederick Benson, Lawrence C. Langebrake, David P. Fries
  • Patent number: 7420295
    Abstract: The present invention provides a power unit for conveyance, having a main power source and a standby power source. The power unit has a thermal battery provided as the standby power source. The conveyance is provided with an electronic control system and the power unit for conveyance of the present invention, and electric power for operating the electronic control system is supplied to the electronic control system from the power unit for conveyances. By employing such a thermal battery as the standby power source, the standby power source does not require to be charged, thereby ensuring a long-term reliability of the standby power source.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: September 2, 2008
    Assignee: GS Yuasa Corporation
    Inventors: Takao Omae, Ken Sawai
  • Publication number: 20080124619
    Abstract: A collector for a fuel-battery cell stack, which is formed by a mesh-like metallic material, has a basic grid structure with 100 to 500 meshes, and includes a surface concavo-convex pattern having a surface pattern pitch A from one peak p to a next peak p? which is greater than a basic pitch P0 forming the basic grid structure, where a size of direct flame type fuel battery module can be reduced by laminating a plurality of cells in a vertical direction with this collector interposed in-between.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 29, 2008
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Yasue Tokutake, Shigeaki Suganuma, Jun Yoshiike, Fumimasa Katagiri
  • Publication number: 20080110365
    Abstract: An inertial igniter including: a first member having a wall and internal cavity; a second member slidable in the internal cavity, a striker disposed thereon and a first concave portion; a third member slidable on an exterior surface of the wall, a second concave portion; biasing springs for biasing the first and second members in a direction opposite an acceleration; locking balls in the first and second concave portions for preventing movement of the second and third members when the acceleration time profile is below a predetermined threshold; and a percussion cap primer on the first member; wherein when the acceleration time profile is greater than the predetermined threshold the locking balls are released from the concave portions to first permit relative movement of the third member with the first member and after a time delay to permit relative movement of the second member with the first member.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventors: Jahangir S. Rastegar, Richard Murray, Gary Chen, Raymond Michael Hartley
  • Patent number: 7354678
    Abstract: A solid anode composite material for use in thermal batteries that comprises about 65-85% by weight (about 34 to 40 atom percent) particulate iron, about 15-35% by weight (50 to 70 atom percent) lithium, and about 0.1-10% by weight (1.7 to 2.3 atom percent) aluminum. Lithium and Aluminum are only slightly or not alloyed with the particulate iron. The iron and/or the aluminum may be in the form of a powder. The aluminum may be in the form of lithium-aluminum alloy.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: April 8, 2008
    Assignee: Rafael Advanced Defense Systems Ltd.
    Inventors: Dario Machado, Shlomo Golan, Igal Londner, Eli Jacobsohn
  • Publication number: 20080047956
    Abstract: A warming system includes a thermal battery for storing energy and warming an item. The thermal battery includes a porous, electrically-conductive material and a phase-change substance. The phase change substance is interspersed in a plurality of pores in the porous, electrically conductive materially. The warming system includes a first and second compartment. The first compartment is for receiving an item to be warmed, and the second compartment is for retaining the thermal battery therein.
    Type: Application
    Filed: August 21, 2007
    Publication date: February 28, 2008
    Inventor: Richard Dudman
  • Patent number: 7227235
    Abstract: A method and apparatus are disclosed wherein a battery comprises an electrode having at least one nanostructured surface. The nanostructured surface is disposed in a way such that an electrolyte fluid of the battery is prevented from contacting the electrode, thus preventing discharge of the battery when the battery is not in use. When a voltage is passed over the nanostructured surface, the electrolyte fluid is caused to penetrate the nanostructured surface and to contact the electrode, thus activating the battery. In one illustrative embodiment, the battery is an integrated part of an electronics package. In another embodiment, the battery is manufactured as a separate device and is then brought into contact with the electronics package. In yet another embodiment, the electronics package and an attached battery are disposed in a projectile that is used as a military targeting device.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: June 5, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Timofei Nikita Kroupenkine, Joseph Ashley Taylor, Donald Weiss
  • Patent number: 7160639
    Abstract: An reversible engine (10) is disclosed having a conduit system (11), a first electrochemical cells (12), and a second electrochemical cell (13). The conduit system (11) includes a first conduit (15) extending from the first electrochemical cell (12) to the second electrochemical cell (13), and a second conduit (16) extending from the second electrochemical cell (13) to the first electrochemical cell (12). The heat engine (10) also includes a heater (18) mounted in thermal communication with the conduit system (11) adjacent the second electrochemical cell (13), a cooler (19) mounted in thermal communication with the conduit system (11) adjacent the first electrochemical cell (12), and a regenerative heat exchanger (20) thermally coupled to the first and second conduits (15) and (16) for the transfer of heat therebetween.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: January 9, 2007
    Assignee: Johnson Research & Development Co., Inc.
    Inventors: Lonnie G. Johnson, James R. Muller
  • Patent number: 6818344
    Abstract: A thermal battery is housed in a chamber that utilizes micro-electromechanical systems (MEMS)-based technology to offer superior chemical stability and advantageous mechanical and thermal properties. The thermal battery of the present invention is activated by heat, for example heat generated by a pyrotechnic charge, for example thermite, for immediate and thorough activation of the electrolyte. The anode, cathode and electrolyte of the battery are formed of pellets having a curved interface for increased current density. The electrolyte preferably comprises a three-component eutectic salt mixture. In this manner, the thermal battery of the present invention is well suited for applications that require highly integrated thermal batteries that are relatively small in physical size, yet are capable of reliable performance over a wide range of operating conditions.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: November 16, 2004
    Assignee: Textron Systems
    Inventor: Sami Daoud
  • Publication number: 20040137318
    Abstract: A thermal battery which comprises a number of stacked cells, each cell consisting essentially of an anode with a lithium compound, a lithium free pyrotechnic heat source pellet which includes a cathode precursor and an all lithium electrolyte layer separating between the anode and the pyrotechnic heat source pellet. Upon ignition of the heat source, an oxide of the cathode precursor is obtained which is lithiated by the lithium supplied by the all lithium electrolyte ion source.
    Type: Application
    Filed: November 12, 2003
    Publication date: July 15, 2004
    Applicant: RAFAEL-ARMAMAMENT DEVELOPMENT AUTHORITY LTD.
    Inventors: Dario R. Dekel, Daniel Laser
  • Publication number: 20030211383
    Abstract: A thermal battery for operation at temperatures below about 250° C. and preferably not above about 200° C. includes a primarily CFx cathode, an electrolyte, and a lithium-based anode. The electrolyte is an organoborate lithium salt or an ionically conductive solid polymer electrolyte.
    Type: Application
    Filed: May 9, 2002
    Publication date: November 13, 2003
    Applicant: LITHIUM POWER TECHNOLOGIES, INC.
    Inventors: M. Zafar A. Munshi, Fazlil Coowar