Zinc Component Patents (Class 429/229)
  • Patent number: 8877379
    Abstract: Disclosed is a positive active material for a rechargeable lithium battery and a rechargeable lithium battery including the same, and the positive active material includes a carbon material having a structure with “n” polycyclic nano sheets, wherein “n” is an integer of 1 to 30 with hexagonal rings having six carbon atoms condensed and substantially aligned in a plane, the polycyclic nano sheets are laminated in a vertical direction to the plane; and a lithium-containing olivine-based compound attached to the surface of the carbon material is formed with a carbon-coating layer on its surface.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woon-Suk Jang, Chae-Woong Cho, Bum-Jin Chang, Ki-Jun Kim, Kwi-Seok Choi
  • Publication number: 20140322607
    Abstract: A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 30, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Sun-Ho KANG
  • Publication number: 20140315085
    Abstract: Several embodiments related to batteries having electrodes with nanostructures, compositions of such nanostructures, and associated methods of making such electrodes are disclosed herein. In one embodiment, a method for producing an anode suitable for a lithium-ion battery comprising preparing a surface of a substrate material and forming a plurality of conductive nanostructures on the surface of the substrate material via electrodeposition without using a template.
    Type: Application
    Filed: June 2, 2012
    Publication date: October 23, 2014
    Applicant: WASHINGTON STATE UNIVERSITY
    Inventors: M. Grant Norton, Uttara Sahaym
  • Publication number: 20140315086
    Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core (11) comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1<y<3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 23, 2014
    Inventors: Stijn Put, Jan Gilleir, Kris Driesen, Jean-Sebastien Bridel, Nicolas Marx, Delphine Longrie, Dan V. Goia, John I. Njagi
  • Publication number: 20140315100
    Abstract: A rechargeable lithium-sulfur cell comprising an anode, a separator and/or electrolyte, a sulfur cathode, an optional anode current collector, and an optional cathode current collector, wherein the cathode comprises (a) exfoliated graphite worms that are interconnected to form a porous, conductive graphite flake network comprising pores having a size smaller than 100 nm; and (b) nano-scaled powder or coating of sulfur, sulfur compound, or lithium polysulfide disposed in the pores or coated on graphite flake surfaces wherein the powder or coating has a dimension less than 100 nm. The exfoliated graphite worm amount is in the range of 1% to 90% by weight and the amount of powder or coating is in the range of 99% to 10% by weight based on the total weight of exfoliated graphite worms and sulfur (sulfur compound or lithium polysulfide) combined. The cell exhibits an exceptionally high specific energy and a long cycle life.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu, Yi-jun Lin
  • Publication number: 20140308544
    Abstract: A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 16, 2014
    Applicant: Alveo Energy, Inc.
    Inventors: Colin Deane Wessells, Ali Firouzi, Shahrokh Motallebi, Sven Strohband
  • Publication number: 20140295273
    Abstract: An anode, a lithium battery including the anode, and a method of manufacturing the anode. The anode includes: an anode active material including a metal alloyable with lithium; and a metal-carbon composite conducting agent having a density of 3.0 grams per cubic centimeter or greater.
    Type: Application
    Filed: November 1, 2013
    Publication date: October 2, 2014
    Applicants: Samsung SDI Co., Ltd., Samsung Electronics Co., Ltd.
    Inventors: Sang-kook MAH, Jeong-kuk SHON
  • Publication number: 20140272589
    Abstract: A negative electrode active material for an electric device according to the present invention includes crystalline metal having a structure in which a size in a perpendicular direction to a crystal slip plane is 500 nm or less. More preferably, the size in the perpendicular direction to the crystal slip plane is controlled to become 100 nm or less. As described above, a thickness in an orientation of the slip plane is controlled to become sufficiently small, and accordingly, micronization of the crystalline metal is suppressed even if breakage occurs from the slip plane taken as a starting point. Hence, a deterioration of a cycle lifetime can be prevented by applying the negative electrode active material for an electric device, which is as described above, or a negative electrode using the same, to an electric device, for example, such as a lithium ion secondary battery.
    Type: Application
    Filed: October 1, 2012
    Publication date: September 18, 2014
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Takashi Sanada, Wataru Ogihara, Manabu Watanabe, Atsushi Ito
  • Patent number: 8835052
    Abstract: A negative electrode active material for an electric device. The negative electrode active material including an alloy having a composition formula SixTiyZnz, where (1) x+y+z=100, (2) 38?x<100, (3) 0<y<62, and (4) 0<z<62 in terms of mass percent.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: September 16, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Manabu Watanabe, Osamu Tanaka
  • Publication number: 20140248540
    Abstract: A process of electroless plating a tin or tin-alloy active material onto a metal substrate for the negative electrode of a rechargeable lithium battery comprising steps of (1) immersing the metal substrate in an aqueous plating solution containing metal ions to be plated, (2) plating tin or tin-alloy active material onto the metal substrate by contacting the metal substrate with a reducing metal by swiping one on the other, and (3) removing the plated metal substrate from the plating bath and rinsing with deionized water. A rechargeable lithium battery using tin or tin-alloy as the anode active material.
    Type: Application
    Filed: May 13, 2014
    Publication date: September 4, 2014
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventor: Shengshui ZHANG
  • Patent number: 8822075
    Abstract: A negative electrode active material for an electric device, including an alloy having a composition formula SixZnyAlz, where x++y=100 , 26?x?47, 18?y?44, and 22?z?46 are satisfied.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: September 2, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Manabu Watanabe, Osamu Tanaka, Takashi Miyamoto
  • Publication number: 20140242460
    Abstract: Disclosed are an anode active material for lithium secondary batteries and a method for manufacturing same, the anode active material comprising: a core part including a carbon-silicon complex and having a cavity therein; and a coated layer which is formed on the surface of the core part and includes a phosphor-based alloy.
    Type: Application
    Filed: May 1, 2014
    Publication date: August 28, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Sang-Wook Woo, Je-Young Kim
  • Publication number: 20140242474
    Abstract: Disclosed is a high-capacity electrochemical energy storage device in which a conversion reaction proceeds as the oxidation-reduction reaction, and the separation (hysteresis) between the electrode potentials for oxidation and reduction is small. The electrochemical energy storage device includes a first electrode including a first active material, a second electrode including a second active material, and a non-aqueous electrolyte interposed between the first and second electrodes. At least one of the first and second active materials is a metal salt having a polyatomic anion and a metal ion, and the metal salt is capable of oxidation-reduction reaction involving reversible release and acceptance of the polyatomic anion.
    Type: Application
    Filed: March 11, 2013
    Publication date: August 28, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tooru Matsui, Zempachi Ogumi, Toshiro Hirai, Akiyoshi Nakata
  • Patent number: 8815454
    Abstract: A lithium secondary battery includes a positive electrode, a negative electrode, a separator separating the positive electrode and the negative electrode, and an electrolyte. The negative electrode active material of the negative electrode includes a material that is capable of reversibly intercalating and deintercalating lithium ions and a metallic material capable of alloying with lithium. The electrolyte includes a chemical compound containing a nitrile (—CN) radical.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 26, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Yong-Shik Kim, Jin-Bum Kim, Jin-Sung Kim, Na-Rae Park
  • Publication number: 20140234710
    Abstract: A negative active material includes a conductive unit bound in island-like form to silicon-based nanowires on a carbonaceous base. Such negative active material may improve the electrical conductivity of the silicon-based nanowires, and suppress separation of the silicon-based nanowires caused from volume expansion, and thus may improve lifetime characteristics of a lithium battery.
    Type: Application
    Filed: January 9, 2014
    Publication date: August 21, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Su-Kyung Lee, So-Ra Lee, Kyu-Nam Joo, Yu-Jeong Cho, Ui-Song Do, Chang-Su Shin, Ha-Na Yoo, Sang-Eun Park, Jae-Myung Kim
  • Patent number: 8808912
    Abstract: A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: August 19, 2014
    Assignee: Uchicago Argonne, LLC
    Inventors: Michael M. Thackeray, Sun-Ho Kang
  • Publication number: 20140227596
    Abstract: A cathode material for a lithium ion secondary battery includes an oxide represented by a composition formula Li2-xMIIyM(Si,MB)O4, wherein MII represents a divalent element; M represents at least one element selected from the group consisting of Fe, Mn, Co and Ni; and MB represents, as an optional component, an element substituted for Si to compensate for a difference between an electric charge of [Li2]2+ and an electric change of [Li2-xMIIy]n+ as needed. In the composition formula representing the oxide, x and y are ?0.25<x?0.25 and 0<y?0.25.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 14, 2014
    Applicant: Shoei Chemical Inc.
    Inventors: Hirokazu Sasaki, Atsushi Nemoto, Masahiko Miyahara
  • Publication number: 20140227595
    Abstract: The specification relates to a composite particle for storing lithium. The composite particle is used in an electrochemical cell. The composite particle includes a metal oxide on the surface of the composite particle, a major dimension that is approximately less than or equal to 40 microns and a formula of MM?Z, wherein M is from the group of Si and Sn, M? is from a group of Mn, Mg, Al, Mo, Bronze, Be, Ti, Cu, Ce, Li, Fe, Ni, Zn, Co, Zr, K, and Na, and Z is from the group of O, Cl, P, C, S, H, and F.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Inventor: Shailesh Upreti
  • Publication number: 20140227592
    Abstract: A negative electrode active material for a zinc anode alkaline electrochemical cell includes (i) particles, comprising bismuth, and (ii) powder, comprising zinc. The particles have an average particle size of at most 135 nm.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Nanophase Technologies Corporation
    Inventor: Nanophase Technologies Corporation
  • Publication number: 20140220392
    Abstract: A system and method producing electrodes in an aqueous electrolyte battery that maximizes energy storage, reduces electrochemical decomposition of the electrolyte, and uses Prussian Blue analogue materials for both electrodes, with an anode electrode including an electrochemically active hexacyanometalate group having two possible redox reactions of different potentials. These potentials may be tuned by substituting different electrochemically inactive components.
    Type: Application
    Filed: May 29, 2013
    Publication date: August 7, 2014
    Applicant: ALVEO ENERGY, INC.
    Inventors: Colin Deane Wessells, Robert Alan Huggins
  • Publication number: 20140212694
    Abstract: A composite anode active material, an anode including the composite anode active material, a lithium battery including the anode, and a method of preparing the composite anode active material, the composite anode active material including a core including a ternary alloy, the ternary alloy being capable of intercalating and deintercalating lithium; and a carbonaceous coating layer on the core.
    Type: Application
    Filed: December 16, 2013
    Publication date: July 31, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Yo-Han PARK, Young-Ugk KIM, Seung-Uk KWON, Jae-Hyuk KIM, Soon-Sung SUH, Yury MATULEVICH, Duk-Hyoung YOON, Hee-Young CHU, Chang-Ui JEONG
  • Publication number: 20140199597
    Abstract: The present disclosure provides an embodiment of an integrated structure that includes a first electrode of a first conductive material embedded in a first semiconductor substrate; a second electrode of a second conductive material embedded in a second semiconductor substrate; and a electrolyte disposed between the first and second electrodes. The first and second semiconductor substrates are bonded together through bonding pads such that the first and second electrodes are enclosed between the first and second semiconductor substrates. The second conductive material is different from the first conductive material.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chyi-Tsong Ni, I-Shi Wang, Yi Hsun Chiu, Ching-Hou Sue
  • Publication number: 20140193711
    Abstract: Embodiments of the present disclosure pertain to methods of preparing porous silicon particulates by: (a) electrochemically etching a silicon substrate, where electrochemical etching comprises exposure of the silicon substrate to an electric current density, and where electrochemical etching produces a porous silicon film over the silicon substrate; (b) separating the porous silicon film from the silicon substrate, where the separating comprises a gradual increase of the electric current density in sequential increments; (c) repeating steps (a) and (b) a plurality of times; (d) electrochemically etching the silicon substrate in accordance with step (a) to produce a porous silicon film over the silicon substrate; (e) chemically etching the porous silicon film and the silicon substrate; and (f) splitting the porous silicon film and the silicon substrate to form porous silicon particulates.
    Type: Application
    Filed: January 7, 2014
    Publication date: July 10, 2014
    Applicants: Lockheed Martin Corporation, William Marsh Rice University
    Inventors: Sibani Lisa Biswal, Michael S. Wong, Madhuri Thakur, Steven L. Sinsabaugh
  • Patent number: 8771883
    Abstract: An alkaline battery of this invention includes: a negative electrode including a negative electrode mixture that contains a zinc alloy as an active material, the zinc alloy containing at least aluminum; an alkaline electrolyte; and a positive electrode. The alkaline electrolyte includes an aqueous KOH solution and LiOH and an aluminum compound that are dissolved in the aqueous KOH solution. The alkaline battery has excellent high-rate discharge characteristics.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: July 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Harunari Shimamura, Koshi Takamura, Nobuharu Koshiba
  • Publication number: 20140186707
    Abstract: A method is provided for fabricating a battery using an anode preloaded with consumable metals. The method forms an ion-permeable membrane immersed in an electrolyte. A preloaded anode is immersed in the electrolyte, comprising MeaX, where X is a material such as carbon, metal capable of being alloyed with Me, intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. Me is a metal such as alkali metals, alkaline earth metals, and combinations of the above-listed metals. A cathode is also immersed in the electrolyte and separated from the preloaded anode by the ion-permeable membrane. The cathode comprises M1YM2Z(CN)N.MH2O. After a plurality of initial charge and discharge operations are preformed, an anode is formed comprising MebX overlying the current collector in a battery discharge state, where 0?b<a.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140186711
    Abstract: In an alkaline secondary battery including a gelled negative electrode containing zinc alloy powder, an aspect ratio of a particle of the zinc alloy powder is within a range of 2.0-2.4, and the zinc alloy contains 150-350 ppm of bismuth, and 600-1500 ppm of indium.
    Type: Application
    Filed: December 5, 2011
    Publication date: July 3, 2014
    Inventors: Jun Nunome, Fumio Kato, Machiko Tsukiji
  • Publication number: 20140186706
    Abstract: A method is presented for fabricating an anode preloaded with consumable metals. The method provides a material (X), which may be one of the following materials: carbon, metals able to be electrochemically alloyed with a metal (Me), intercalation oxides, electrochemically active organic compounds, and combinations of the above-listed materials. The method loads the metal (Me) into the material (X). Typically, Me is an alkali metal, alkaline earth metal, or a combination of the two. As a result, the method forms a preloaded anode comprising Me/X for use in a battery comprising a M1YM2Z(CN)N·MH2O cathode, where M1 and M2 are transition metals. The method loads the metal (Me) into the material (X) using physical (mechanical) mixing, a chemical reaction, or an electrochemical reaction. Also provided is preloaded anode, preloaded with consumable metals.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 3, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Long Wang, Yuhao Lu, Jong-Jan Lee
  • Patent number: 8753544
    Abstract: Ink is manufactured by mixing unoxidized metallic particles to a binder. The ink is printed on an object (502) and hardened for forming a conductor. The process is performed in an inert atmosphere or in vacuum for maintaining the electrical conductivity of the conductor (500).
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 17, 2014
    Assignee: Valtion Teknillinen Tutkimuskeskus
    Inventors: Tiina Maaninen, Arto Maaninen, Markus Tuomikoski
  • Publication number: 20140154575
    Abstract: A method is provided for fabricating a cyanometallate cathode battery. The method provides a cathode of AXM1YM2Z(CN)N.MH2O, where “A” is selected from a first group of metals, and where M1 and M2 are transition metals. The method provides an anode and a metal ion-permeable membrane separating the anode from the cathode. A third electrode is also provided including “B” metal ions selected from the first group of metals. Typically, the first group of metals includes alkali and alkaline metals. The method intercalates “B” metal ions from the third electrode to the anode, the cathode, or both the anode and cathode to form a completely fabricated battery. In one aspect, a solid electrolyte interface (SEI) layer including the “B” metal ions overlies a surface of the anode, the cathode, or both the anode and cathode. A cyanometallate cathode battery is also provided.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Long Wang, Jong-Jan Lee
  • Publication number: 20140147749
    Abstract: Provided is an electrode powder and an electrode plate for a lithium ion battery. The electrode powder includes a core and a nano-coating layer. The core contains a lithium compound. The nano-coating layer is disposed on a surface of the core and consists of a plurality of nanosheets.
    Type: Application
    Filed: December 25, 2012
    Publication date: May 29, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventor: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
  • Patent number: 8734989
    Abstract: A negative electrode for rechargeable lithium batteries includes a current collector, a porous active material layer having a metal-based active material disposed on the current collector, and a high-strength binder layer on the porous active material layer. The high-strength binder layer has a strength ranging from 5 to 70 MPa. The negative active material for a rechargeable lithium battery according to the present invention can improve cycle-life characteristics by suppressing volume expansion and reactions of an electrolyte at the electrode surface.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: May 27, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Min Lee, Nam-Soon Choi, Goo-Jin Jeong, Yong-Mook Kang, Min-Seok Sung, Wan-Uk Choi, Sung-Soo Kim
  • Patent number: 8728659
    Abstract: The present disclosure generally relates to an alkaline electrochemical cell comprising an additive for improved discharge performance. The additive is a finely dispersed superabsorbent material comprising particles having a substantially uniform shape and a small particle size relative to typical materials used in alkaline cells. The superabsorbent material results in enhanced discharge performance of the alkaline cell by increasing access of zinc to the electrolyte.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 20, 2014
    Assignee: Spectrum Brands, Inc.
    Inventors: M. Edgar Armacanqui, Andrew J. Roszkowski, Donald Raymond Crowe, Jr.
  • Patent number: 8728652
    Abstract: Provided is a cylindrical alkaline battery in which the packing density Dc of the manganese dioxide in the positive electrode is 2.8 to 3.0 g/cm3 and the packing density Da of zinc or a zinc alloy in the negative electrode is 2.0 to 2.3 g/cm3. The packing density Dc of the manganese dioxide, the packing density Da of the zinc or zinc alloy, the thickness Tc of the positive electrode in a radial direction, and the thickness Ta of the negative electrode in a radial direction satisfy one of the following relational formulas (1) to (3): ?1.975×(Tc/Ta)+2.745<Dc/Da<?1.690×(Tc/Ta)+2.734??(1) ?11.652×(Tc/Ta)2+14.470×(Tc/Ta)?3.095<Dc/Da<11.652×(Tc/Ta)2?18.420×(Tc/Ta)+8.585??(2) ?8.895×(Tc/Ta)2+12.864×(Tc/Ta)?3.258<Dc/Da<8.895×(Tc/Ta)2?16.244×(Tc/Ta)+8.726??(3).
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: May 20, 2014
    Assignee: Panasonic Corporation
    Inventors: Tadaya Okada, Yasuhiko Syoji
  • Publication number: 20140113191
    Abstract: An electrode material for a secondary battery includes crystal primary particles of an electrode active material which releases or absorbs cations of a monovalent or divalent metal when subjected to electrochemical oxidation or reduction and which has a crystal lattice in which the cations can move only in a one-dimensional movable direction during the process of oxidation or reduction. The electrode material also includes an ion-conductive substance and conductive carbon which coexist on the surface of the primary particles, in which the ion-conductive substance has a property which allows two or three-dimensional movement of the cations, and the cations are movable via a layer in which the ion-conductive substance and the conductive carbon coexist.
    Type: Application
    Filed: March 28, 2012
    Publication date: April 24, 2014
    Applicants: UNIVERSITY OF HYOGO, MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Tatsuya Nakamura, Naoki Hatta, Noriyuki Shimomura, Yusuke Yoshida, Hironari Miyauchi
  • Publication number: 20140113194
    Abstract: To provide a cathode active material for a lithium ion secondary battery, and its production process. A lithium-containing composite oxide containing a transition metal element and a composition (1) are contacted to obtain particles (I) having a compound containing a metal element (M) attached, which are mixed with a compound which generates HF by heating, and the mixture is heated to obtain particles (III) having a covering layer (II) containing the metal element (M) and fluorine element formed on the surface of the lithium-containing composite oxide. Composition (1): a composition having a compound containing no Li element and containing at least one metal element (M) selected from Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, Cu, Zn, Al, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er and Yb dissolved or dispersed in a solvent.
    Type: Application
    Filed: December 24, 2013
    Publication date: April 24, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kentaro TSUNOZAKI, Haisheng ZENG, Takeshi KAWASATO
  • Publication number: 20140113193
    Abstract: To provide a process for producing a cathode active material for a lithium ion secondary battery, a cathode for a lithium ion secondary battery, and a lithium ion secondary battery. A production process which comprises contacting a lithium-containing composite oxide containing Li element and a transition metal element with a composition (1) {an aqueous solution containing cation M having at least one metal element (m)} and a composition (2) {an aqueous solution containing anion N having at least one element (n) selected from the group consisting of S, P, F and B, forming a hardly soluble salt when reacted with the cation M}, wherein the total amount A (mL/100 g) of the composition (1) and the composition (2) contacted per 100 g of the lithium-containing composite oxide is in a ratio of 0.1<A/B<5 based on the oil absorption B (mL/100 g) of the lithium-containing composite oxide.
    Type: Application
    Filed: December 24, 2013
    Publication date: April 24, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kentaro TSUNOZAKI, Haisheng Zeng, Takeshi Kawasato
  • Patent number: 8691439
    Abstract: Alkaline electrochemical cells having extended service life and acceptable gassing and corrosion properties are disclosed. An amphoteric surfactant can be incorporated into the gelled anode mixture of an alkaline electrochemical cell, optionally with an organic phosphate ester surfactant or a sulfonic acid type organic surfactant or both. Zinc particles having a defined distribution of particle sizes can also be incorporated into a zinc anode. The electrolyte included, in the anode mixture can have a reduced hydroxide concentration.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: April 8, 2014
    Assignee: Spectrum Brands, Inc.
    Inventors: Ernest Ndzebet, Mario Destephen, William C Bushong, M. Edgar Armacanqui, Andrew J Roszkowski, Viet H Vu
  • Publication number: 20140087255
    Abstract: A composite anode active material, an anode including the composite anode active material, a lithium battery including the anode, and a method of preparing the composite anode active material. The composite anode active material includes: a shell including a hollow carbon fiber; and a core disposed in a hollow of the hollow carbon fiber, wherein the core includes a first metal nanostructure and a conducting agent.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 27, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sang-won KIM, Jong-jin PARK, Jin-hwan PARK, Hyung-wook HA
  • Publication number: 20140087274
    Abstract: The Invention provides a zinc-air cell comprising at least one zinc-incorporating structure, at least one oxygen evolving structure and at least one air electrode; wherein said zinc-air cell comprises a first pair of electrodes for the charging of said air cell, said electrode pair comprising said at least one zinc-incorporating structure and said at least one oxygen evolving structure; and wherein said zinc-air cell comprises a second pair of electrodes for the discharging of said air cell, said electrode pair comprising said at least one zinc-incorporating structure and said at least one air electrode.
    Type: Application
    Filed: May 16, 2012
    Publication date: March 27, 2014
    Inventors: Dekel Tzidon, Jonathan R. Goldstein, Avi Yadgar
  • Publication number: 20140072872
    Abstract: A biodegradable battery is provided. The battery includes an anode comprising a material including an inner surface and an outer surface, wherein electrochemical oxidation of the anode material results in the formation of a reaction product that is substantially non-toxic and a cathode comprising a material including an inner surface and an outer surface, the inner surface of the cathode being in direct physical contact with the inner surface of the anode, wherein electrochemical reduction of the cathode material results in the formation of a reaction product that is substantially non-toxic, and wherein the cathode material presents a larger standard reduction potential than the anode material.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 13, 2014
    Applicant: Covidien LP
    Inventors: Gerald Hodgkinson, William O. Powers, Ahmad Robert Hadba
  • Publication number: 20140072874
    Abstract: A composite cathode active material, a cathode including the same, a lithium battery including the cathode, and preparation method thereof are disclosed. The composite cathode active material includes: a core capable of intercalating and deintercalating lithium; and a crystalline coating layer disposed on at least part of a surface of the core, wherein the coating layer include a metal oxide.
    Type: Application
    Filed: March 13, 2013
    Publication date: March 13, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Ji-Hyun Kim, Yong-Chan You, Chang-Wook Kim, Jun-Seok Park
  • Patent number: 8663842
    Abstract: Silver positive electrode for alkali secondary batteries having an enhanced cycling capability, and consequently a longer lifetime in cycling of the storage batteries incorporating it, by optimizing, in recharge mode, the conditions for electrochemically reducing the oxidized silver species. The silver electrode according to the invention is of the plasticized type, and a high-porosity collector, such as a woven fabric, a felt or a reticulated cellular metal foam, is used. The active compound introduced into the collector is prepared in paste form, in which the active material consists of metallic silver particles and/or silver monoxide particles, and may advantageously include a metal oxide acting as pore-forming and wetting agent for the electrode. Such an electrode is particularly intended for mounting in silver-zinc storage batteries operating in open mode or sealed mode.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 4, 2014
    Assignee: S.C.P.S. Societe de Conseil et de Prospective Scientifique, S.A.
    Inventors: Bernard Bugnet, Denis Doniat, Fabrice Fourgeot, Robert Rouget
  • Patent number: 8663844
    Abstract: The present disclosure describes a rechargeable zinc ion battery, in which anodic zinc will be electrochemically dissolved as Zn2+ ions, diffuses to the cathodic electrode/electrolyte interface through the electrolyte, and zinc ions are subsequently intercalated into manganese dioxide during discharging. In charging, above-mentioned process will be reversed. The rechargeable zinc ion battery comprises a cathode formed from a compressed mixture of alpha manganese dioxide particles, electrically conductive particles and one or more binder(s); a zinc anode separated from cathode; an aqueous electrolyte contains zinc ions in which the pH value may be controlled between 4 and 7.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 4, 2014
    Assignee: Graduate School at Shenzhen, Tsinghua University
    Inventors: Feiyu Kang, Chengjun Xu, Baohua Li, Hongda Du
  • Patent number: 8663849
    Abstract: Lithium ion battery positive electrode material are described that comprise an active composition comprising lithium metal oxide coated with an inorganic coating composition wherein the coating composition comprises a metal chloride, metal bromide, metal iodide, or combinations thereof. Desirable performance is observed for these coated materials. In particular, the non-fluoride metal halide coatings are useful for stabilizing lithium rich metal oxides.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: March 4, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Subramanian Venkatachalam, Deepak Kumaar Kandasamy Karthikeyan, Herman A. Lopez
  • Publication number: 20140057171
    Abstract: An anode includes a plurality of metal fibers with a three-dimensional (3D) network structure, and a silicon-containing layer having a thickness of about 0.3 ?m or less formed on a surface of and inside the 3D network structure of the plurality of metal fibers.
    Type: Application
    Filed: March 13, 2013
    Publication date: February 27, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Ju-Hee SOHN, Jong-Ki LEE, Tae-Sik KIM
  • Publication number: 20140050979
    Abstract: The present invention relates to an anode active material for a lithium secondary battery, comprising a carbon material, and a coating layer formed on the surface of particles of the carbon material and having a plurality of Sn-based domains having an average diameter of 1 ?m or less. The inventive anode active material having a Sn-based domains coating layer on the surface of a carbon material can surprisingly prevent stress due to volume expansion which generates by an alloy of Sn and lithium. Also, the inventive method for preparing an anode active material can easily control the thickness of the coating layer.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sang-Wook Woo, Ki-Tae Kim, Yo-Han Kwon
  • Publication number: 20140023928
    Abstract: An anode active material for a lithium secondary battery having a high capacity and a high efficiency of charge discharge characteristics. The anode active material includes a silicon mono-phase and an alloy phase formed of silicon with a metal element at least one selected from the group consisting of Ti, Ni, Cu, Fe, Mn, Al, Cr, Co, and Zn. The anode active material is a powder in which the silicon mono-phase is uniformly distributed in a matrix of the alloy phase, has particle size distribution defined as D0.1 and D0.9, and the value of D0.1-D0.9 is in a range from about 3 ?m to about 15 ?m.
    Type: Application
    Filed: October 31, 2012
    Publication date: January 23, 2014
    Applicant: MK ELECTRON CO., LTD.
    Inventors: Sung Min JEON, Jong Soo CHO, Jeong Tak MOON
  • Publication number: 20140017566
    Abstract: A lithium ion secondary battery includes: a positive electrode; a negative electrode; and an electrolytic solution, at least one of the positive electrode and the negative electrode being capable of storing and releasing lithium ions, and containing an active material that satisfies predetermined conditions.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: SONY CORPORATION
    Inventors: Asuki Yanagihara, Satoshi Fujiki, Yosuke Hosoya, Guohua Li
  • Publication number: 20130344383
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 26, 2013
    Applicant: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Publication number: 20130344354
    Abstract: Energy storage devices having hybrid anodes can address at least the problems of active material consumption and anode passivation that can be characteristic of traditional batteries. The energy storage devices each have a cathode separated from the hybrid anode by a separator. The hybrid anode includes a carbon electrode connected to a metal electrode, thereby resulting in an equipotential between the carbon and metal electrodes.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: Battelle Memorial Institute
    Inventors: Jun Liu, Jie Xiao, Cheng Huang