Alkaline Earth Metal Or Magnesium (mg) Component Is Active Material Patents (Class 429/231.6)
  • Patent number: 8586241
    Abstract: The present invention relates to a process for the preparation of compounds of general Formula (I) La-bM1bFe1-cM2cPd-eM3eOx (I), wherein Fe has the oxidation state +2 and M1, M2, M3, a, b, c, d, e and x are: M1: Na, K, Rb and/or Cs, M2: Mn, Mg, Al, Ca, Ti, Co, Ni, Cr, V, M3: Si, S, F a: 0.8-1.9, b: 0-0.3, c: 0-0.9, 15 d: 0.8-1.9, e: 0-0.5, x: 1.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 19, 2013
    Assignee: BASF SE
    Inventors: Kirill Bramnik, Hartmut Hibst, Jordan Keith Lampert
  • Publication number: 20130302685
    Abstract: In one aspect, a composite cathode active material including at least one large-diameter active material, and at least one small-diameter active material, a cathode including the composite cathode active material and a lithium battery including the cathode is provided.
    Type: Application
    Filed: September 11, 2012
    Publication date: November 14, 2013
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Ji-Hyun Kim, Do-Hyung Park, Seon-Young Kwon, Min-Han Kim, Joong-Ho Moon, Kyoung-Hyun Kim, Han-Eol Park, Ki-Hyun Kim, Ming-Zi Hong, Myong-A Woo
  • Patent number: 8580429
    Abstract: Disclosed are (1) a nonaqueous electrolytic solution for lithium battery comprising an electrolyte dissolved in a nonaqueous solvent, which contains at least one hydroxy acid derivative compound represented by the formulae (I) and (II) in an amount of from 0.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 12, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuyuki Kawabe
  • Publication number: 20130295461
    Abstract: Since pseudo-capacitance transition metal oxides (for example, MnO2) have high theoretical capacitance and are eco-friendly, inexpensive, and abundant in the natural world, pseudo-capacitance transition metal oxides are gaining attention as promising capacitor electrode materials. However, pseudo-capacitance transition metal oxides have relatively low electronic conductivity and limited charging and discharging rates, and a it is therefore difficult to use pseudo capacitance transition metal oxides for high output power applications. If a plating process accompanying a liquid-phase precipitation reaction is performed on a nanoporous metal such as nanoporous gold (NPG) to deposit a ceramic material (for example, MnO2 or SnO2) on the surface of a core metal (for example, NPG), a nanoporous metal-ceramic composite having particular structural characteristics and comprising a metal core part and a ceramic deposition part can be obtained.
    Type: Application
    Filed: December 21, 2011
    Publication date: November 7, 2013
    Applicant: Tohoku University
    Inventors: Mingwei Chen, Xingyou Lang, Takeshi Fujita
  • Patent number: 8574765
    Abstract: Li—Ni composite oxide particles for a non-aqueous electrolyte secondary battery with a large charge/discharge capacity and excellent thermal stability in a charged condition. The Li—Ni composite oxide secondary particles form core particles having a composition Lix1Ni1-y1-z1-w1Coy1Mnz1Mw1O2 in which 0.9?x1?1.3; 0.1?y1?0.3; 0.0?z1?0.3; 0?w1?0.1; and M is Al or Fe. The Li—Ni composite oxide has a composition Lix2Ni1-y2-z2-w2Coy2Mnz2Mw2O2 in which 0.9?x2?1+z2; 0?y2?0.33; 0?z2?0.5; 0?w2?0.1; and M is Al, Fe, Mg, Zr or Ti and is coated or present on a surface of the secondary particles.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: November 5, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Kazuhiko Kikuya, Osamu Sasaki, Teruaki Santoki, Hiroshi Yamamoto
  • Publication number: 20130288127
    Abstract: The invention provides a method for producing a carbon material as a negative electrode active material that can dope and undope a sodium ion. The production method of a carbon material for a sodium secondary battery includes a step of heating at a temperature of 800 to 2500° C. a compound according to Formula (1), Formula (2) or Formula (3), and having 2 or more oxygen atoms, or a mixture of an aromatic derivative 1 having an oxygen atom in the molecule and an aromatic derivative 2 having a carboxyl group in the molecule and being different from the aromatic derivative 1.
    Type: Application
    Filed: December 12, 2011
    Publication date: October 31, 2013
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shingo Matsumoto, Taketsugu Yamamoto, Junji Suzuki
  • Patent number: 8563174
    Abstract: A composite Li1+xMn2?x?yMyO4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li1+xMn2?x?yMyO4 cathode material utilizing a dry mixing and firing process.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: October 22, 2013
    Assignee: Farasis Energy, Inc.
    Inventors: Hongjian Liu, Keith Douglas Kepler, Yu Wang
  • Publication number: 20130273402
    Abstract: A secondary battery includes: a fiber negative electrode having a surface on which a negative electrode active material coating is formed, the coating containing a compound of AaMbXcZd; a fiber positive electrode including a positive electrode active material coating containing nickel hydroxide; an aqueous electrolyte solution; and a separator. The negative electrode coating has an uncoated surface. A is selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba; M is selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Ru, Pd, Ag, Ta, W, Pr, Sm, Eu, and Pb; X is selected from the group consisting of B, Al, Si, P, S, Ga, and Ge; Z is selected from the group consisting of O, S, N, F, Cl, Br, and I; and 0?a?6, 1?b?5, 0?c?4, 0<d?12, and 0?a/b?4.
    Type: Application
    Filed: March 11, 2011
    Publication date: October 17, 2013
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Kazuo Tsutsumi, Kazuya Nishimura, Tomoaki Takasaki, Tetsuo Sakai, Jinhan Yao, Takashi Mukai
  • Patent number: 8557438
    Abstract: A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula NayLixNizMn1-z-z?Mz?Od, wherein M is a metal cation, x+y>1, 0<z<0.5, 0?z?<0.5, y+x+1 is less than d, and the value of d depends on the proportions and average oxidation states of the metallic elements, Li, Na, Mn, Ni, and M, if present, such that the combined positive charge of the metallic elements is balanced by the number of oxygen anions, d. The inventive material preferably has a spinel or spinel-like component in its structure. The value of y preferably is less than about 0.2, and M comprises one or more metal cations selected preferably from one or more monovalent, divalent, trivalent or tetravalent cations, such as Mg2+, Co2+, Co3+, B3+, Ga3+, Fe2+, Fe3+, Al3+, and Ti4+.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: October 15, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Christopher Johnson, Sun-Ho Kang
  • Publication number: 20130266867
    Abstract: Disclosed are an anode active material for secondary batteries, capable of intercalating and deintercalating ions, the anode active material including a core including a crystalline carbon-based material, and a composite coating layer including one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a hydrophilic material containing oxide capable of intercalating and deintercalating ions, wherein the composite coating layer includes a matrix comprising one component selected from (a) the one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon and (b) the hydrophilic material containing oxide capable of intercalating and deintercalating ions, and a filler including the other component, incorporated in the matrix, and a secondary battery including the anode active material.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Sung-Kyun CHANG, WonSeok CHANG, Je Young KIM, JungMin HAN
  • Publication number: 20130266865
    Abstract: A negative active material having controlled particle size distribution of silicon nanoparticles in a silicon-based alloy, a lithium battery including the negative active material, and a method of manufacturing the negative active material are disclosed. The negative active material may improve capacity and lifespan characteristics by inhibiting (or reducing) volumetric expansion of the silicon-based alloy. The negative active material may include a silicon-based alloy including: a silicon alloy-based matrix; and silicon nanoparticles distributed in the silicon alloy-based matrix, wherein a particle size distribution of the silicon nanoparticles satisfies D10?10 nm and D90?75 nm.
    Type: Application
    Filed: January 15, 2013
    Publication date: October 10, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Seung-Uk Kwon, Sung-Hwan Moon, Chun-Gyoo Lee, Jae-Hyuk Kim, Soon-Sung Suh, Chang-Ui Jeong, Yo-Han Park, Yury Matulevich, Jong-Seo Choi
  • Patent number: 8551654
    Abstract: Provided herein is an electrochemical cell for a secondary battery, which includes a positive electrode having an active intercalation cathode material of treated bentonite; a negative electrode material having an active anode material containing one of magnesium and sodium; an electrolyte positioned in contact with at least one of the positive electrode and the negative electrode; wherein, when the active anode material contains magnesium, the electrolyte is a solid gel polymeric electrolyte; and wherein, when the active anode material is sodium, the electrolyte is a salt electrolyte, both the anode material and the electrolyte are molten at the operating temperature of the battery, and the cell further comprises a beta alumina solid electrolyte separator between the negative electrode and the electrolyte.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: October 8, 2013
    Inventor: Edgar D. Young
  • Publication number: 20130260225
    Abstract: Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqueous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 3, 2013
    Applicant: Pellion Technologies, Inc.
    Inventors: Robert Ellis Doe, Craig Michael Downie, Christopher Fischer, George Hamilton Lane, Dane Morgan, Josh Nevin, Gerbrand Ceder, Kristin Aslaug Persson, David Eaglesham
  • Publication number: 20130260247
    Abstract: A lithium ion secondary battery includes a positive electrode including a positive electrode active material having a composition represented by the formula (1) LixNiyCozMtO2??(1) (wherein the element M is at least one kind selected from the group consisting of Mg, Ba, Al, Ti, Mn, V, Fe, Zr, and Mo and x, y, z, and t satisfy the following formulae: 0.9?x?1.2, 0?y?1.1, 0?z?1.1, and 0?t?1.1), and a negative electrode including a negative electrode active material mainly containing silicon and silicon oxide, and having an absorbance of 0.01 to 0.035 at 2110±10 cm?1 according to an FT-IR method.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 3, 2013
    Applicant: TDK CORPORATION
    Inventors: Yasuhiro IKEDA, Atsushi SANO
  • Publication number: 20130260237
    Abstract: Disclosed are an anode active material for secondary batteries, capable of intercalating and deintercalating ions, the anode active material including a core including a crystalline carbon-based material, and a composite coating layer including one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a hydrophilic material, wherein the composite coating layer includes a matrix comprising one component selected from one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a hydrophilic material, and a filler including the other component, incorporated in the matrix, and a secondary battery including the anode active material.
    Type: Application
    Filed: May 29, 2013
    Publication date: October 3, 2013
    Inventors: Sung-Kyun CHANG, WonSeok CHANG, Je Young KIM, JungMin HAN
  • Publication number: 20130252105
    Abstract: Provided are a positive electrode active material, a method of preparing the same, and a lithium secondary battery using the positive electrode active material, and more particularly, a positive electrode active material in which a surface of layer-structured lithium transition metal composite oxide is coated with one or more indium-based compounds selected from the group consisting of indium oxides and alloys including indium, a method of preparing the positive electrode active material, and a lithium secondary battery using the positive electrode active material. According to the present disclosure, degradation of cycle characteristics according to repetitive discharge of a battery may be prevented and thermal stability and rate characteristics may be improved.
    Type: Application
    Filed: December 28, 2012
    Publication date: September 26, 2013
    Applicant: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Mi Sun LEE, Yun Ju Cho, Se Won Kim, Pil Sang Yun, Doo Kyun Lee, Ha Yeon Lee, Shin Jung Choi
  • Publication number: 20130252104
    Abstract: Provided is a positive electrode for a lithium ion secondary battery sequentially including a positive electrode collector, a positive electrode active material layer able to insert/extract lithium ions, and a lithium ion conductive layer.
    Type: Application
    Filed: December 28, 2012
    Publication date: September 26, 2013
    Applicant: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Sung Nim JO, Hae In CHO, Se Won KIM, Shin Jung CHOI
  • Patent number: 8541133
    Abstract: An electrochemical device, having an anode containing magnesium; a cathode stable to a voltage of at least 3.2 V relative to a magnesium reference; and an electrolyte containing a solvent and a LiCl complex of a magnesium halide salt of a sterically hindered secondary amine is provided. In a preferred embodiment the electrolyte contains tetrahydrofuran and 2,2,6,6-tetramethylpiperidinyl-magnesium chloride-lithium chloride complex.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 24, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: John Muldoon, Hee Soo Kim, Masaki Matsui Matsui
  • Patent number: 8541136
    Abstract: A positive electrode material is provided including an electroactive material having one or more phases comprising lithium (Li), an electroactive metal (M), and phosphate (PO4), wherein in the fully lithiated state, the overall composition has a ratio of Li:M ranging from greater than about 1.0 to about 1.3, a ratio of (PO4):M ranging from about 1.0 to about 1.132, M is one or more metals selected from the group consisting of Cr, Mn, Fe, Co, and Ni, and at least one phase includes an olivine lithium electroactive metal phosphate. In some instances, a composite cathode material including an electroactive olivine transition metal phosphate and a lithium and phosphate rich secondary phase is disclosed for use in a lithium ion battery.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: September 24, 2013
    Assignee: A123 Systems LLC
    Inventors: Larry Beck, Anthony E. Pullen, Chuanjing Xu, Liya Wang, Phillip Sholtes
  • Publication number: 20130244109
    Abstract: The present technology is able to provide a solid electrolyte cell that uses a positive electrode active material which has a high ionic conductivity in an amorphous state, and a positive electrode active material which has a high ionic conductivity in an amorphous state. The solid electrolyte cell has a stacked body, in which, a positive electrode side current collector film, a positive electrode active material film, a solid electrolyte film, a negative electrode potential formation layer and a negative electrode side current collector film are stacked, in this order, on a substrate. The positive electrode active material film is made up with an amorphous-state lithium phosphate compound that contains Li; P; an element M1 selected from Ni, Co, Mn, Au, Ag, and Pd; and O, for example.
    Type: Application
    Filed: December 2, 2011
    Publication date: September 19, 2013
    Applicant: Sony Corporation
    Inventors: Yuichi Sabi, Susumu Sato, Saori Tsuda
  • Publication number: 20130236764
    Abstract: Presented herein is a rechargeable lithium battery that includes a cathode, a liquid electrolyte, a solid electrolyte, and an anode. The anode is at least partially coated or plated with the solid electrolyte. The cathode may be porous and infiltrated by the liquid electrolyte. The cathode may also include a binder having a solid graft copolymer electrolyte (GCE). In certain embodiments, the liquid electrolyte is a gel that includes a PIL and a GCE. The battery achieves a high energy density and operates safely over a wide range of temperatures.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Patent number: 8530095
    Abstract: Embodiments of the present invention are directed to negative active materials for rechargeable lithium batteries including lithium titanium oxides. The lithium titanium oxide has a full width at half maximum (FWHM) of 2? of about 0.08054° to about 0.10067° at a (111) plane (main peak, 2?=18.330°) as measured by XRD using a Cu K? ray.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Ji-Yong Eom
  • Patent number: 8530093
    Abstract: An electrode active material including a core active material and a coating layer, including a compound represented as the following Formula 1, on a surface of the core active material, a method of preparing the same, an electrode for a lithium secondary battery which includes the same, and a lithium secondary battery using the electrode. Lia-Mb-Nc??[Formula 1] where, M denotes an alkaline earth metal, a/(a+b+c) is in a range of about 0.10 to about 0.40, b/(a+b+c) is in a range of about 0.20 to about 0.50, and c/(a+b+c) is in a range of about 0.20 to about 0.50.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Hyuk Kim, Sung-Hwan Moon, Hee-Young Chu, Myung-Hwan Jeong, Chang-Ui Jeong, Yury Matulevich, Jong-Seo Choi
  • Publication number: 20130230777
    Abstract: An active anode (10) is provided that includes a framework (11) of a first anodic material which contains large cavities (12) that include particles (13) of a second anodic material. The cavities have to be large enough so that a fully lithiated particles of the second anodic material fits into the cavity that contains it and does not apply stress to the framework. The first anodic material has a lower lithium intercalation potential than the second anodic material. To produce the anode cavities the second anodic material is coated with an organic coating which is then removed once the anodic layer is produced from a mixture of the first and second anodic materials.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: Johnson IP Holding, LLC
    Inventors: Davorin Babic, Lonnie G. Johnson, William L. Rauch, Joykumar Thokchom
  • Publication number: 20130224597
    Abstract: A nonaqueous electrolyte secondary battery is obtained which shows good cycle characteristics even when charged to a high voltage. The nonaqueous electrolyte secondary battery has a positive electrode containing a positive active material, a negative electrode containing a negative active material and a nonaqueous electrolyte, wherein a lithium-containing transition metal oxide having a layered structure is contained in the positive electrode as the positive active material, an additive which is reductively decomposed in the range of +3.0-1.3 V versus metallic lithium is contained in the nonaqueous electrolyte, and the battery after assembled is overdischarged until a potential of the positive electrode falls down to a reductive potential of the additive or below.
    Type: Application
    Filed: October 31, 2012
    Publication date: August 29, 2013
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: SANYO ELECTRIC CO., LTD.
  • Publication number: 20130217961
    Abstract: Preparations for sexual enhancement may comprise a lubricant material along with one or more gel battery device. The gel battery devices may be fabricated from a gel anode material and a gel cathode material. The gel batteries may further comprise a gel electrolyte material. The gel materials may be in the form of thin films or capsules. The gel batteries, their anode, cathode, and electrolyte materials may all be non-toxic for an application to an animal. One or more devices for sexual enhancement may be contacted with the sexual enhancement preparation. The preparations or the devices with the preparations may be applied to one or more tissues of an animal.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 22, 2013
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventor: Glenn Godden
  • Publication number: 20130209881
    Abstract: A negative active material and a lithium battery including the negative active material. The negative active material includes a non-carbonaceous nanoparticle capable of doping or undoping lithium; and a crystalline carbonaceous nano-sheet, wherein at least one of the non-carbonaceous nanoparticle and the crystalline carbonaceous nano-sheet includes a first amorphous carbonaceous coating layer on its surface, and thus an electrical conductivity thereof is improved. In addition, a lithium battery including the negative active material has an improved efficiency and lifetime.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 15, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Ui-Song Do, Chang-Su Shin, So-Ra Lee, Beom-Kwon Kim, Jae-Myung Kim
  • Publication number: 20130202956
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Application
    Filed: June 13, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Publication number: 20130202969
    Abstract: A main object of the present invention is to provide a method for producing an anode material which enhances the reversibility of the conversion reaction and the cycle characteristics of lithium secondary batteries. The object is attained by providing a method for producing an anode material that is used in a lithium secondary battery, comprising a mechanical milling step of micronizing a raw material composition containing MgH2 by mechanical milling.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 8, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomoya Matsunaga, Hideki Nakayama, Makio Kon, Aoi Takano
  • Publication number: 20130202967
    Abstract: A negative active material for a rechargeable lithium battery includes a matrix including an Si—X based alloy, where X is not Si and is selected from alkali metals, alkaline-earth metals, Group 13 elements, Group 14 elements, Group 15 elements, Group 16 elements, transition elements, rare earth elements, or combinations thereof; silicon dispersed in the matrix; and oxygen in the negative active material, the oxygen being included at 20 at % or less based on the total number of atoms in the negative active material. A rechargeable lithium battery includes the negative active material.
    Type: Application
    Filed: July 12, 2012
    Publication date: August 8, 2013
    Inventors: Jae-Hyuk Kim, Sung-Hwan Moon, Seung-Uk Kwon, Soon-Sung Suh, Chang-Ui Jeong, Yo-Han Park, Chun-Gyoo Lee, Yury Matulevich, Jong-Seo Choi
  • Publication number: 20130196232
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Application
    Filed: March 13, 2013
    Publication date: August 1, 2013
    Applicant: LG Chem, Ltd.
    Inventor: LG Chem, Ltd.
  • Publication number: 20130183584
    Abstract: A production process for lithium-silicate-based compound is characterized in that: a lithium-silicate compound is reacted with a transition-metal-element-containing substance including iron and/or manganese at from 300° C. or more to 600° C. or less within a molten salt including at least one member being selected from the group consisting of alkali-metal salts under a mixed-gas atmosphere including carbon dioxide and a reducing gas; wherein said transition-metal-element-containing substance includes a deposit that is formed by alkalifying a transition-metal-containing aqueous solution including a compound that includes iron and/or manganese. In accordance with the present production process, lithium-silicate-based compounds including silicon excessively are obtainable.
    Type: Application
    Filed: October 31, 2011
    Publication date: July 18, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Toshikatsu Kojima, Mitsuharu Tabuchi, Takuhiro Miyuki, Tetsuo Sakai, Akira Kojima, Junichi Niwa, Kazuhito Kawasumi
  • Publication number: 20130183583
    Abstract: The present invention provides a method for manufacturing an anode active material for a lithium secondary battery comprising the following steps of: a) simultaneously mixing a first metallic salt aqueous solution including nickel, cobalt, manganese and optionally a transition metal, a chelating agent, and a basic aqueous solution in a reactor, and mixing with a lithium raw material and calcining to manufacture a center part including the compound of following Chemical Formula 1: Lix1[Ni1?y1?z1?w1Coy1Mnz1Mw1]O2??Chemical Formula 1 (wherein, 0.9?x1?1.3, 0.1?y1?0.3, 0.0?z1?0.3, 0?w1?0.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 18, 2013
    Applicant: ECOPRO CO LTD
    Inventors: Jik Soo Kim, Moon Ho Choi, Jong Ryeol Yu, Dong Gui Choi
  • Publication number: 20130171523
    Abstract: The present invention relates to the field of lithium-ion battery, and particularly to high-capacity cathode material, and high-energy density lithium-ion secondary battery prepared using the same. The cathode material comprises cathode active material, a binder and a conductive agent, in which the cathode active material is a compound material of lithium cobalt oxide-based active material A and nickel-based active material B pretreated before being mixed, and the mass ratio B/A of the lithium cobalt oxide-based active material A and nickel-based active material B is between 0.82 and 9. The present invention can produce a battery having both larger capacity and higher energy density, and address the problem of gas generation in the battery at high temperature.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Inventors: Zhi CHEN, Ying WANG, Fengguan ZHAO, Zilong YU, Yuansen XIE, Jianxun REN, Jiajai HU, Leimin XU
  • Patent number: 8475957
    Abstract: The present invention relates to a negative electrode structure for use in a non-aqueous electrolyte secondary battery and a method of making such negative electrode structure. The negative electrode structure comprises: a monolithic anode comprising a semiconductor material, and a uniform ion transport structure disposed at the monolithic anode surface for contacting a non-aqueous electrolyte, wherein the uniform ion transport structure serves as a current collector and the negative electrode structure does not contain another current collector. The present invention also relates to a battery comprising the negative electrode structure of the present invention, a cathode, and a non-aqueous electrolyte.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 2, 2013
    Assignee: Enovix Corporation
    Inventors: Murali Ramasubramanian, Robert M. Spotnitz, Nirav S. Shah, Ashok Lahiri
  • Publication number: 20130164635
    Abstract: The present invention relates to a solid composite for use in the cathode of a lithium- sulphur electric current producing cell wherein the solid composite comprises 1 to 75 wt.-% of expanded graphite, 25 to 99 wt.-% of sulphur, 0 to 50 wt.-% of one or more further conductive agents other than expanded graphite, and 0 to 50 wt.
    Type: Application
    Filed: May 26, 2011
    Publication date: June 27, 2013
    Applicant: Sion Power Corporation
    Inventors: Ruediger Schmidt, Alexander Panchenko, Bastian Ewald, Philip Hanefeld, Sorin Ivanovici, Helmut Moehwald, Igor P. Kovalev
  • Publication number: 20130143126
    Abstract: Disclosed is a current collector prepared by coating a primer on a metallic base and a magnesium secondary battery including the same. The primer includes a conductive material and a polymer material and enhances adhesive strength between a cathode current collector and an active material, thereby maintaining stability in an operating voltage range of the battery without increasing internal resistance.
    Type: Application
    Filed: January 29, 2013
    Publication date: June 6, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG CHEM, LTD.
  • Publication number: 20130143119
    Abstract: An anode active material for a lithium rechargeable battery, the anode active material including: a base material which is alloyable with lithium and a metal nitride disposed on the base material.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 6, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventor: Samsung Elecronics Co., Ltd
  • Publication number: 20130136988
    Abstract: [Objectives] The present invention provides a non-aqueous secondary battery in which a material containing Si and O as constituent elements is used in a negative electrode. The present invention provides a non-aqueous secondary battery having good charge discharge cycle characteristics, and suppressing the battery swelling associated with the charge and the discharge. Also, the present invention relates to a negative electrode that can provide the non-aqueous secondary battery. [Solution] The negative electrode includes a negative electrode active material, including a composite of a material containing Si and O as constitution elements (atom ratio x of O to Si is 0.5?x?1.5) in combination with a carbon material, and graphite. The graphite has an average particle diameter dg(?m) of 4 to 20 ?m. The material containing Si and O as constitution elements has an average particle diameter ds(?m) of 1 ?m or more. The ratio ds/dg (i.e., ds to dg) is 0.05 to 1.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 30, 2013
    Applicant: HITACHI MAXELL ENERGY, LTD.
    Inventors: Naokage Tanaka, Akira Inaba, Keiichiro Uenae, Masayuki Yamada, Kazunobu Matsumoto
  • Publication number: 20130136985
    Abstract: A secondary battery includes: a cathode; an anode; and an electrolytic solution. The cathode includes a lithium composite oxide, a first compound, and a second compound. The lithium composite oxide includes lithium (Li) and a transition metal element as constituent elements. The first compound includes a first metal element different from the transition metal element as a constituent element, the first compound existing on a surface and inside of the lithium composite oxide. The second compound includes a second metal element different from the first metal element as a constituent element, the second compound existing on the surface of the lithium composite oxide.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 30, 2013
    Applicant: SONY CORPORATION
    Inventor: Sony Corporation
  • Publication number: 20130130103
    Abstract: A cathode and a battery including a cathode active material including a layer-structured material having a composition of xLi2MO3-(1-x)LiMeO2; and a metal oxide having a perovskite structure. The cathode active material may have improved structural stability by intermixing a metal oxide having a similar crystalline structure with the layer-structured material, and thus, life and capacity characteristics of a cathode and a lithium battery including the metal oxide may be improved.
    Type: Application
    Filed: October 17, 2012
    Publication date: May 23, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myung-hoon KIM, Kyu-sung PARK, Min-sik PARK, Jin-hwan PARK
  • Patent number: 8445134
    Abstract: An electrochemical cell for a secondary battery is provided, which includes a positive electrode having an intercalation cathode material of bentonite; a negative electrode material having an anode material containing one of magnesium and sodium; an electrolyte positioned in contact with at least one of the positive electrode and the negative electrode; wherein, when the anode material contains magnesium, the electrolyte is a solid gel polymeric electrolyte; and wherein, when the anode material is sodium, the electrolyte is a salt electrolyte, both the anode material and the electrolyte are molten at the operating temperature of the battery, and the cell further comprises a beta alumina solid electrolyte separator between the negative electrode and the electrolyte. To increase its conductivity, the bentonite material is treated, before cell assembly, with an acid and/or intercalated with an anilinium ion, which is then polymerized to form a polyaniline within the bentonite framework.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: May 21, 2013
    Inventor: Edgar D. Young
  • Publication number: 20130122371
    Abstract: To provide a lithium secondary battery excellent in the life characteristic and the power density. A lithium secondary battery, comprising: a positive electrode capable of intercalating and deintercalating lithium; and an negative electrode capable of intercalating and deintercalating lithium, wherein the positive electrode contains a manganese-containing positive electrode active material of a spinel structure and an oxide that coats the surface of this positive electrode active material, wherein the oxide contains a metallic element, wherein the metallic element forms a solid solution with the positive electrode active material, and wherein the atomic concentration of the metallic element is approximately 0 at depths of from 50 to 100 nm from an external surface of the negative electrode.
    Type: Application
    Filed: January 8, 2013
    Publication date: May 16, 2013
    Inventors: Tatsuya Toyama, Kazushige Kohno
  • Publication number: 20130122369
    Abstract: A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The negative active material includes a carbon-nanoparticle composite including a crystalline carbon material including pores, and amorphous nanoparticles dispersed either inside the pores, or on the surface of the crystalline carbon material, or both inside the pores and on the surface of the crystalline carbon material. At least one of the amorphous nanoparticles includes a metal oxide layer in a form of a film on the surface, and the amorphous nanoparticles have a full width at half maximum of about 0.35 degree (°) or greater at a crystal plane producing the highest peak as measured by X-ray diffraction analysis.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 16, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Samsung SDI Co., Ltd.
  • Publication number: 20130115513
    Abstract: An electrode active material includes a core capable of intercalating and deintercalating lithium; and a surface treatment layer disposed on at least a portion of a surface of the core, wherein the surface treatment layer includes a lithium-free oxide having a spinel structure, and an intensity of an X-ray diffraction peak corresponding to impurity phase of the lithium-free oxide, when measured using Cu—K? radiation, is at a noise level of an X-ray diffraction spectrum or less.
    Type: Application
    Filed: July 23, 2012
    Publication date: May 9, 2013
    Applicants: SAMSUNG CORNING PRECISION MATERIALS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Won-chang CHOI, Gue-sung KIM, Min-sang SONG, Young-min CHOI, Ryoung-hee KIM, So-yeon KIM
  • Patent number: 8435680
    Abstract: A rechargeable lithium battery including: a positive electrode including a nickel-based positive active material; a negative electrode including a negative active material; and an electrolyte including a non-aqueous organic solvent, a lithium salt, a first fluoroethylene carbonate additive, a second vinylethylene carbonate additive, and a third alkane sultone additive, wherein when the battery is thicker than about 5mm, a mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 5:1 to about 10:1, or when the battery is thinner than about 5 mm, the mixing weight ratio of the first fluoroethylene carbonate additive to the second vinylethylene carbonate additive ranges from about 1:1 to about 4:1.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: May 7, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Na-Rae Park, Jin-Sung Kim, Su-Hee Han, Jin-Hyunk Lim
  • Publication number: 20130101880
    Abstract: A battery and method of making such battery, adapted to operate at low (typically ambient) temperatures for a short initial period and thereafter at higher temperatures. A Li—Mg alloy anode is provided, comprising up to 25% magnesium, in a liquid thionyl chloride bath which as the cathode for high temperature operation. A thin, substantially pure lithium layer is applied to a surface of the Li—Mg anode, preferably in the range of 0.0019 to 0.0025 inches (0.04826-0.0635 mm), to allow obtaining of sufficiently high power and voltage output at lower temperatures for a short period where at such lower temperatures the required voltage and power would not otherwise be available from a Li—Mg anode. Thereafter, the battery may thereafter be used in, and exposed to, higher temperatures of up to 220° C. where at such temperatures the necessary voltage and power from the remaining Li—Mg alloy anode is then available.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 25, 2013
    Applicant: Engeneered Power Services Inc.
    Inventors: Richard J. MARSHALL, Robert YETMAN
  • Publication number: 20130101886
    Abstract: In one aspect, a lithium secondary battery that includes a positive electrode including a high-voltage positive active material; and a separator is provided. The high voltage positive active material can have a discharge plateau voltage of greater than or equal to about 4.6V with respect to a Li counter electrode, and the separator can include a porous substrate having a porosity of about 40% to about 60%.
    Type: Application
    Filed: June 27, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Won-IL JUNG, Seon-Hye Kim
  • Publication number: 20130089784
    Abstract: A negative active material and a lithium battery including the negative active material. The negative active material includes primary particles, each including: a crystalline carbonaceous core having a surface on which silicon-based nanowires are disposed; and an amorphous carbonaceous coating layer that is coated on the crystalline carbonaceous core so as not to expose at least a portion of the silicon-based nanowires. Due to the inclusion of the primary particles, an expansion ratio is controlled and conductivity is provided and thus, a formed lithium battery including the negative active material may have improved charge-discharge efficiency and cycle lifespan characteristics.
    Type: Application
    Filed: July 19, 2012
    Publication date: April 11, 2013
    Inventors: Yu-Jeong Cho, So-Ra Lee, Ha-Na Yoo, Ui-Song Do, Chang-Su Shin, Su-Kyung Lee, Jae-Myung Kim
  • Publication number: 20130089786
    Abstract: An electrode active material for a lithium secondary battery, a method of preparing the electrode active material, an electrode for a lithium secondary battery which includes the same, a lithium secondary battery using the electrode. The electrode active material includes a core active material and a coating layer including magnesium aluminum oxide (MgAlO2) and formed on the core active material, 1s binding energy peaks of oxygen (O) in the electrode active material measured by xray photoelectron spectroscopy (XPS) are shown at positions corresponding to 529.4±0.5 eV, about 530.7 eV, and 531.9±0.5 eV, and a peak intensity at the position corresponding to 529,4±0.5 eV is stronger than a peak intensity at the position corresponding to about 530.7 eV.
    Type: Application
    Filed: August 14, 2012
    Publication date: April 11, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Chang-Ui Jeong, Sung-Hwan Moon, Jae-Hyuk Kim, Yury Matulevich, Hee-Young Chu, Myung-Hwan Jeong, Jong-Seo Choi