Zinc Oxide Patents (Class 429/231)
  • Patent number: 7659031
    Abstract: A size AA alkaline battery includes an anode principally composed of zinc functioning as an active material, a cathode principally composed of manganese dioxide or nickel oxyhydroxide functioning as an active material, a separator composed of a nonwoven fabric, an electrolyte composed of an aqueous solution of potassium hydroxide, and zinc oxide.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: February 9, 2010
    Assignee: Sony Corporation
    Inventors: Kuniyasu Oya, Kenta Yamamoto, Naoko Yamakawa
  • Patent number: 7655356
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode (1) containing lithium cobalt oxide as a positive electrode active material, a negative electrode (2) containing molybdenum dioxide as a negative electrode active material, and a non-aqueous electrolyte. The mass ratio of the negative electrode active material to the positive electrode active material is within the range of from 0.725 to 0.480. The conductive agent of the negative electrode consists of a carbon material having a lattice constant C0 along a stacking direction of from 6.7 ? to 6.8 ?, as determined by X-ray diffraction, or the negative electrode contains no conductive agent made of carbon material.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 2, 2010
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masanobu Takeuchi, Seiji Yoshimura
  • Publication number: 20090325064
    Abstract: Provided are an electrode assembly and a secondary battery having the same. The electrode assembly includes a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a separator for separating the positive and negative electrodes from each other. The negative electrode active material layer includes a metal capable of alloying with lithium or lithium vanadium oxide (LiV3O5), the separator includes a porous layer formed by combining a ceramic material with a binder, and the content of the binder is from about 5 to about 15 wt % with respect to 100 wt % of the porous layer.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 31, 2009
    Applicant: Samsung SDI Co., Ltd.
    Inventor: Young-Churl Chang
  • Publication number: 20090311608
    Abstract: A secondary battery capable of improving the cycle characteristics and the voltage retention characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolyte. The anode includes an anode current collector, an anode active material layer formed on the anode current collector and including an anode active material containing silicon as an element, and a coat formed on the anode active material layer and having an integral structure of three-dimensional network.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 17, 2009
    Applicant: SONY CORPORATION
    Inventors: Takakazu Hirose, Kenichi Kawase, Kazunori Noguchi, Takayuki Fujii, Masaki Kawata
  • Publication number: 20090305132
    Abstract: The invention relates to an electrode material and a composite electrode including same. The electrode material consists of particles or particulate aggregates of a complex LiiMmM?m?ZzOoNnFf oxide, wherein M is at least one transition metal, M? is at least one metal other than a transition metal, Z is at least one non-metal, coefficients i, m, m?, z, o, n and f are selected in such a way that the complex oxide is electrically neutral, with i=0, m>0, z=0, m?=0, o>0, n=0 and f=0. At least part of the complex oxide particle or particulate aggregate surface is coated with a carbon layer bound by chemical bonds and/or physical bonds to the carbon. The complex oxide has formula; the carbon has covalently bonded functional groups GF.
    Type: Application
    Filed: May 5, 2006
    Publication date: December 10, 2009
    Applicant: PHOSTECH LITHIUM INC.
    Inventors: Michel Gauthier, Christophe Michot
  • Publication number: 20090305135
    Abstract: This invention provides a nanocomposite-based lithium battery electrode comprising: (a) A porous aggregate of electrically conductive nano-filaments that are substantially interconnected, intersected, physically contacted, or chemically bonded to form a three-dimensional network of electron-conducting paths, wherein the nano-filaments have a diameter or thickness less than 1 ?m (preferably less than 500 nm); and (b) Sub-micron or nanometer-scale electro-active particles that are bonded to a surface of the nano-filaments with a conductive binder material, wherein the particles comprise an electro-active material capable of absorbing and desorbing lithium ions and wherein the electro-active material content is no less than 25% by weight based on the total weight of the particles, the binder material, and the filaments. Preferably, these electro-active particles are coated with a thin carbon layer. This electrode can be an anode or a cathode.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Inventors: Jinjun Shi, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20090297948
    Abstract: Provided are negative electrode compositions for lithium-ion electrochemical cells that include metal oxides and polymeric binders. Also provided are electrochemical cells and battery packs that include electrodes made with these compositions.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Inventors: Jeffrey R. Dahn, Jing Li, Mark N. Obrovac
  • Patent number: 7608206
    Abstract: A non-lead composition for use as a thick-film resistor paste in electronic applications. The composition comprises particles of Li2RuO3 of diameter between 0.5 and 5 microns and a lead-free frit. The particles have had the lithium at or near primarily the surface of the particle at least partially exchanged for atoms of other metals.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 27, 2009
    Assignee: E.I. duPont de Nemours & Company
    Inventors: Paul Douglas VerNooy, Alfred T. Walker, Kenneth Warren Hang
  • Publication number: 20090226809
    Abstract: An improved cathode suitable for lithium-sulfur batteries, a battery including the cathode, and a battery including a separator containing inorganic fillers are disclosed. The cathode includes sulfur and a metal oxide and optionally includes an additional polymeric material. The metal oxide reduces dissolution of sulfur at the cathode and reduces sulfur-containing deposits on the battery anode, thereby providing a battery with relatively high energy density and good partial discharge performance. The separator also reduces unwanted diffusion of sulfur species.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 10, 2009
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Viet Vu, Ramanathan Thillaiyan, Mai Sayarath, Ernest Mdzebet, Umamaheswari Viswanathan
  • Publication number: 20090214946
    Abstract: A negative electrode for a battery comprises a current collector, an inner coating on the current collector, and an outer coating on the inner coating. The inner and outer coatings comprise a carbonaceous material, and a lithium titanium oxide compound. The weight percentage of the carbonaceous material is higher than that of the lithium titanium oxide compound in the inner coating. The weight percentage of the carbonaceous material is lower than that of the lithium titanium oxide compound in the outer coating. The total weight percentage of the carbonaceous material in the combined inner and outer coatings is higher than the total weight percentage of the lithium titanium oxide compound in the combined inner and outer coatings.
    Type: Application
    Filed: November 18, 2008
    Publication date: August 27, 2009
    Inventors: Xi Shen, Yu Xia, Fuzhong Pan
  • Publication number: 20090186276
    Abstract: This invention provides a hybrid nano-filament composition for use as a cathode active material. The composition comprises (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network, wherein the filaments have a length and a diameter or thickness with the diameter or thickness being less than 500 nm; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises a cathode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 10 ?m, preferably less than 1 ?m and more preferably less than 500 nm. Also provided is a lithium metal battery or lithium ion battery that comprises such a cathode. Preferably, the battery includes an anode that is manufactured according to a similar hybrid nano filament approach.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 23, 2009
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 7563538
    Abstract: In a nonaqueous electrolyte secondary battery 10 containing a positive electrode 11 having a positive electrode active material capable of intercalating and deintercalating lithium ion; a negative electrode 12 having a negative electrode active material capable of intercalating and deintercalating lithium ion; and a nonaqueous electrolyte, the positive electrode active material contains both lithium cobalt oxide A in which 3 to 5 mol % of magnesium are homogeneously added and lithium cobalt oxide B in which 0.1 to 1 mol % of magnesium is homogeneously added which are mixed in a mixing ratio of lithium cobalt oxide A: lithium cobalt oxide B=2:8 to 8:2. By constituting a nonaqueous electrolyte secondary battery having the above constitution, a nonaqueous electrolyte secondary battery in which the thermal stability and the higher temperature cycle property are remarkably improved without lowering the battery capacity and the load performance.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 21, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shinya Miyazaki, Machiko Minoura
  • Publication number: 20090169996
    Abstract: This invention provides a hybrid nano-filament composition for use as an electrochemical cell electrode. The composition comprises: (a) an aggregate of nanometer-scaled, electrically conductive filaments that are substantially interconnected, intersected, or percolated to form a porous, electrically conductive filament network comprising substantially interconnected pores, wherein the filaments have an elongate dimension and a first transverse dimension with the first transverse dimension being less than 500 nm (preferably less than 100 nm) and an aspect ratio of the elongate dimension to the first transverse dimension greater than 10; and (b) micron- or nanometer-scaled coating that is deposited on a surface of the filaments, wherein the coating comprises an anode active material capable of absorbing and desorbing lithium ions and the coating has a thickness less than 20 ?m (preferably less than 1 ?m). Also provided is a lithium ion battery comprising such an electrode as an anode.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 2, 2009
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20090162745
    Abstract: An alkaline battery of the present invention includes a positive electrode, a negative electrode containing zinc particles or zinc alloy particles, and an alkaline electrolyte solution, wherein the ratio of the zinc particles or zinc alloy particles of the negative electrode capable of passing through a 200-mesh sieve is 10 to 80% by mass, and the ratio of a negative electrode capacity to a positive electrode capacity is 1.05 to 1.10. Furthermore, it is preferred that the ratio of the negative electrode capacity to the positive electrode capacity is 1.08 or less.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 25, 2009
    Inventors: Shinichi IWAMOTO, Yoshihisa HIROSE
  • Patent number: 7550230
    Abstract: Electrodes and electrolytes for nickel-zinc secondary battery cells possess compositions that limit dendrite formation and other forms of material redistribution in the zinc electrode. In addition, the electrolytes may possess one or more of the following characteristics: good performance at low temperatures, long cycle life, low impedance and suitability for high rate applications.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: June 23, 2009
    Assignee: PowerGenix Systems, Inc.
    Inventors: Jeffrey Phillips, Samaresh Mohanta
  • Publication number: 20090142670
    Abstract: Disclosed is an electrolytic solution including an organic solvent, a lithium salt, and an additive. The additive includes maleimide compound and vinylene carbonate. The maleimide compound can be maleimide, bismaleimide, polymaleimide, polybismaleimide, maleimide-bismaleimide copolymer, or combinations thereof. The lithium battery employing the described electrolytic solution has a higher capacity of confirmation, higher cycle efficiency, and longer operational lifespan.
    Type: Application
    Filed: February 25, 2008
    Publication date: June 4, 2009
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Fu-Ming Wang, Chang-Rung Yang, Jing-Pin Pan, Hung-Chun Wu
  • Publication number: 20090123839
    Abstract: A positive electrode for a lithium-ion secondary battery includes a positive-electrode mixture layer, which includes a positive-electrode active material containing lithium composite oxide, a conductive material, and a binder, and a current collector. The positive-electrode mixture layer contains a compound including sulfur and/or phosphorous, a first polymer serving as a main binder, and a second polymer different from the first polymer.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 14, 2009
    Applicant: SONY CORPORATION
    Inventors: Masanori Soma, Kenichi Kawase, Masayuki Ihara, Atsumichi Kawashima, Kazumi Izumitani
  • Patent number: 7524439
    Abstract: In a positive electrode of a non-aqueous electrolyte battery, at least one metal oxide selected from the group consisting of titanium dioxide, alumina, zinc oxide, chromium oxide, lithium oxide, nickel oxide, copper oxide and iron oxide is dispersed between particles of an active substance for the positive electrode, whereby a discharge capacity or a discharge-recharge capacity of the non-aqueous electrolyte battery is improved.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 28, 2009
    Assignee: Bridgestone Corporation
    Inventors: Masashi Otsuki, Shinichi Eguchi, Hiroshi Kanno
  • Publication number: 20090081547
    Abstract: The present invention aims to achieve both safety upon shorting by a nail penetration and safety upon overcharging. In a lithium ion secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, the positive electrode includes active material particles, the active material particles include secondary particles of the lithium composite oxide, and some of the secondary particles have a crack. At least a surface layer portion of the active material particles includes element Me of at least one selected from the group consisting of Mn, Al, Mg, Ca, Zr, B, W, Nb, Ta, In, Mo, and Sn. Element Me is distributed more in the surface layer portion compared with the inner portion of the active material particles.
    Type: Application
    Filed: June 26, 2006
    Publication date: March 26, 2009
    Inventor: Kensuke Nakura
  • Publication number: 20090042101
    Abstract: A method of forming battery electrodes with high specific surface and thin layers of active material is disclosed. The method enables low series resistance and high battery power.
    Type: Application
    Filed: August 9, 2007
    Publication date: February 12, 2009
    Inventors: Donald L. McGervey, Paul T. Szozdowski, Gerhard E. Welsch
  • Publication number: 20080311432
    Abstract: A cathode including an active material composite and a lithium battery using the same. The active material composite of the cathode includes a mixed oxide complex and a lithium-containing compound, the lithium-containing compound having a metal based compound coated on the surface of the lithium-containing compound.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 18, 2008
    Applicant: Samsung SDI Co. Ltd.
    Inventors: Kyu-sung Park, Jae-gu Yoon, Seok-gwang Doo
  • Patent number: 7459238
    Abstract: Disclosed is a positive electrode active material for a lithium ion secondary battery, including lithium-transition metal composite oxide of a layer crystal structure, in which the lithium-transition metal composite oxide contains an element that improves conductivity of electrons in the lithium-transition metal composite oxide. Use of this positive electrode active material can improve cycle characteristics, high rate characteristics and thermal stability of lithium ion secondary batteries. Furthermore, by use of this positive electrode active material, gas generation in batteries can be decreased.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: December 2, 2008
    Assignee: Nichia Corporation
    Inventors: Takeshi Takahashi, Masuhiro Morizaki, Atsushi Takeoka, Junichi Tokuno
  • Publication number: 20080248400
    Abstract: A positive electrode includes a current collector and a positive electrode active material layer. The positive electrode active material layer includes a positive electrode active material including a core including a compound LiaCO1?bMbO2 and a surface-treatment layer. In the core compound, 0.95?a?1.1, 0.002?b?0.02, and M is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Tl, Si, Ge, Sn, P, As, Sb, Bi, S, Se, Te, Po. The surface-treatment layer includes a compound including element of P, and one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, In, Ti, Si, Ge, Sn, As, Sb, Bi, S, Se, Te, Po.
    Type: Application
    Filed: August 16, 2007
    Publication date: October 9, 2008
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Duck-Chul HWANG, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu, Jong-Hwa Lee, Euy-Young Jung, So-Hyun Hur
  • Publication number: 20080145758
    Abstract: A negative active material for a rechargeable lithium battery includes a compound represented by the following Formula 1: Li1+xTi1?x?yMyO2+z ??(1) wherein, in the above Formula 1, 0.01?x?0.5, 0?y?0.3, ?0.2?z?0.2, and M is an element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, W, Ag, Sn, Ge, Si, Al, and combinations thereof. The negative active material has high capacity and excellent cycle-life characteristics, and particularly, can provide a rechargeable lithium battery having high capacity at high-rate charge and discharge.
    Type: Application
    Filed: November 19, 2007
    Publication date: June 19, 2008
    Inventors: Yang-Soo Kim, Wan-Uk Choi, Ri-Zhu Yin, Joon-Sup Kim, Sung-Soo Kim
  • Publication number: 20080145757
    Abstract: Provided are a porous anode active material, a method of preparing the same, and an anode and a lithium battery employing the same. The porous anode active material includes fine particles of metallic substance capable of forming a lithium alloy; a crystalline carboneous substance; and a porous carboneous material coating and attaching to the fine particles of metallic substance and the crystalline carboneous substance, the porous anode active material having pores exhibiting a bimodal size distribution with two pore diameter peaks as measured by a Barrett-Joyner-Halenda (BJH) pore size distribution from a nitrogen adsorption. The porous anode active material has the pores having a bimodal size distribution, and thus may efficiently remove a stress occurring due to a difference of expansion between a carboneous material and a metallic active material during charging and discharging.
    Type: Application
    Filed: July 27, 2007
    Publication date: June 19, 2008
    Inventors: Sang-kook Mah, Han-su Kim, Dong-min Im
  • Publication number: 20080138710
    Abstract: A composition for use in an electrochemical redox reaction is described. The composition may comprise a material represented by a general formula MyXO4 or AxMyXO4, where each of A (where present), M, and X independently represents at least one element, O represents oxygen, and each of x (where present) and y represent a number, and an oxide of at least one element, wherein the material and the oxide are cocrystalline, and/or wherein a volume of a crystalline structural unit of the composition is larger than a volume of a crystalline structural unit of the material alone. An electrode comprising such a composition is also described, as is an electrochemical cell comprising such an electrode. A process of preparing a composition for use in an electrochemical redox reaction is also described.
    Type: Application
    Filed: November 14, 2007
    Publication date: June 12, 2008
    Inventors: Ben-Jie Liaw, Wen-Ren Liu, Sheng-Shih Chang
  • Patent number: 7381498
    Abstract: To provide a lithium-nickel-cobalt-manganese composite oxide powder for a positive electrode of a lithium secondary battery, which has a large volume capacity density and high safety and is excellent in the charge and discharge cyclic durability. A positive electrode active material powder for a lithium secondary battery characterized by comprising a first granular powder having a compression breaking strength of at least 50 MPa and a second granular powder having a compression breaking strength of less than 40 MPa, formed by agglomeration of many fine particles of a lithium composite oxide represented by the formula LipNixCoyMnzMqO2-aFa (wherein M is a transition metal element other than Ni, Co and Mn, Al or an alkaline earth metal element, 0.9?p?1.1, 0.2?x?0.8, 0?y?0.4, 0?z?0.5, y+z>0, 0?q?0.05, 1.9?2?a?2.1, x+y+z+q=1 and 0?a?0.02) to have an average particle size D50 of from 3 to 15 ?m, in a weight ratio of the first granular powder/the second granular powder being from 50/50 to 90/10.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: June 3, 2008
    Assignee: Seimi Chemical Co., Ltd.
    Inventors: Manabu Suhara, Takuya Mihara, Koichiro Ueda, Yukimitsu Wakasugi
  • Publication number: 20080085452
    Abstract: Cathode active materials including lithium composite metal oxides having layered-spinel composite structures are provided. The lithium metal oxide may be represented by the formula xLi2MO3-yLiMeO2-zLi1+dM?2?dO4, in which 0?d?0.33, 0<x<1, 0<y<1, 0<z<1 and x+y+z=1. In the formula M is selected from Mn, Ti, Zn, and combinations thereof. Me is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr, B and combinations thereof. M? is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, Zr, B, and combinations thereof. The cathode active materials have layered-spinel composite structures in which lithium can be intercalated and deintercalated. Lithium batteries including the cathode active materials show high initial coulombic efficiencies and high capacity retention ratios.
    Type: Application
    Filed: August 17, 2007
    Publication date: April 10, 2008
    Inventor: Kyu-sung Park
  • Patent number: 7300721
    Abstract: The invention relates to secondary alkaline electrochemical generators with a zinc anode in an electrolyte, the active mass of said anode comprising at least one conductive ceramic. According to the invention, the electrolyte of the generator is made up of a highly-concentrated alkaline solution and/or the active mass of the zinc anode contains an additive comprising at least one alkaline titanate having general formula (M2O)n(Ti)2)mxH2O, wherein M denotes Li, Na, K, Rb or Cs, n being between 0.5 and 2, m being between 1 and 10 and x being between 0 and 10, or alkaline earth having general formula (MO)n(TiO2)mxH2O, wherein M denotes Mg, Ca, Sr or Ba, n being between 1 and 5, m being between 1 and 10 and x being between 0 and 10. The invention also relates to the zinc anode of the generators used in the invention and the production method thereof.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: November 27, 2007
    Assignee: S.C.P.S. Societe de Conseil et de Prospective Scientifique S.A.
    Inventors: Bernard Bugnet, Denis Doniat, Robert Rouget
  • Patent number: 7255720
    Abstract: A zinc electrode for use in alkaline batteries comprises a mixture of 0.425 to 1.55 volume parts of zinc oxide with a volume part of a metallic oxide chosen from the group consisting of: calcium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a binder. The electrode is prepared by mixing zinc oxide with the chosen metallic oxide in an aqueous medium such as water or potassium hydroxide, stirring overnight, filtering and drying the mixture, optionally adding a further small amount of zinc oxide, optionally adding other metallic oxides, and adding hydroxy-ethyl cellulose, an oxide dispersant, and a binder. The aqueous paste os slurry thus formed is placed on a conductive substrate, drawn through a sizing gap, cut and dried, to form low cost pasted zinc oxide electrodes.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 14, 2007
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 7033700
    Abstract: A zinc electrode is provided for use in electrochemical cells having an alkaline electrolyte and high cycle life. The zinc electrode comprises a mixture of zinc oxide together with an inorganic fibre which contains silica and alumina. Preferably, the composition of the inorganic fibre is in the range of 80% to 99% alumina, and 1% to 20% silica. Typically, the zinc electrode will further comprise an inorganic fibre additive in the range of 2% to 15% by weight of the zinc oxide electrode. Also, the zinc electrode will typically further include 2% up to 10% of bismuth oxide.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 25, 2006
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 7026068
    Abstract: Disclosed is a positive electrode active material for a lithium ion secondary battery, including lithium-transition metal composite oxide of a layer crystal structure, in which the lithium-transition metal composite oxide contains an element that improves conductivity of electrons in the lithium-transition metal composite oxide. Use of this positive electrode active material can improve cycle characteristics, high rate characteristics and thermal stability of lithium ion secondary batteries. Furthermore, by use of this positive electrode active material, gas generation in batteries can be decreased.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: April 11, 2006
    Assignee: Nichia Corporation
    Inventors: Takeshi Takahashi, Masuhiro Morizaki, Atsushi Takeoka, Junichi Tokuno
  • Patent number: 7008566
    Abstract: The invention provides an electrochemical cell which includes a first electrode and a second electrode which is a counter electrode to said first electrode, and an electrolyte material interposed there between. The first electrode includes an active material having an alkali metal-containing oligo phosphate-based electrode active material.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: March 7, 2006
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi
  • Patent number: 6991874
    Abstract: The compositions comprise: (a) from 1 to 99% by weight of a pigment (I) having a primary particle size of from 5 nm to 100 ?m which is a solid Ia or a compound Ib which acts as cathode material in electrochemical cells or a compound Ic which acts as anode material in electrochemical cells or a mixture of the solid Ia with the compound Ib or the compound Ic, (b) from 1 to 99% by weight of a polymeric material (II) which comprises: (IIa) from 1 to 100% by weight of a polymer or copolymer (IIa) which has, as part of the chain, at the end(s) of the chain and/or laterally on the chain, reactive groups (RG) which are capable of crosslinking reactions under the action of heat and/or UV radiation, and (IIb) from 0 to 99% by weight of at least one polymer or copolymer (IIb) which is free of reactive groups RG.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: January 31, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Helmut Möhwald, Gerhard Dötter, Rainer Blum, Peter Keller, Stephan Bauer, Bernd Bronstert
  • Patent number: 6953639
    Abstract: A heavy metal-free rechargeable Zinc electrode for use in storage cells having alkaline electrolyte has been developed. The electrode includes a current collector and an active mass based on metallic zinc and zinc oxide powders, calcium hydroxide, indium hydroxide, indium sulfate, bismuth-oxide and a binder. The electrodes have been successfully used in Ni—Zn and Ag—Zn cells. The electrodes lead to environmentally benign alkaline cells. The electrodes have additional advantages over the prior art electrodes in terms of initial capacity and cyclability.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: October 11, 2005
    Assignee: Rechargeable Battery Corporation
    Inventors: Ramesh C. Kainthla, David J. Manko, Charles Sesock
  • Patent number: 6919143
    Abstract: A positive active material composition for a lithium-sulfur battery includes a positive active material, a conductive agent, an organic mixing solvent to which solubility of sulfur is equals to or less than 50 mM, and a binder capable of dissolving in the organic mixing solvent.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: July 19, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Duck Chul Hwang, Yun Suk Choi, Soo Seok Choi, Jea Woan Lee, Yong Ju Jung, Joo Soak Kim, Zin Park
  • Patent number: 6835499
    Abstract: A zinc electrode composition is provided for use in low toxicity, high energy density cells having alkaline electrolytes. The zinc electrode comprises zinc oxide, a binder, and from 0.1% up to 10% of a fluoride of an element chosen from the group consisting of silver, gallium, indium, tin, tellurium, lead, bismuth, and combinations thereof. The invention also provides an electrochemical cell having an electrode as noted above. The inventive cell further comprises an electrolyte which contains a mixture of sodium, potassium, and lithium hydroxides, together with boric acid. The excess alkali hydroxide is present in the range of 2.7 to 5M, and the concentration of boric acid is between 0.6 and 1.3 moles per liter.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: December 28, 2004
    Assignee: PowerGenix, Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 6818350
    Abstract: A nickel zinc alkaline cell has a zinc oxide negative electrode supported on a conductive substrate, an alkaline electrolyte, and a positive electrode having nickel hydroxide paste supported on a conductive substrate. The negative zinc oxide electrode comprises 85% to 95% zinc oxide powder, 1% to 10% bismuth oxide, 1% to 2% of a binder, and 0.05% to 5% by weight of a fluoride salt chosen from the group consisting of: sodium, potassium, rubidium, caesium, lithium, and mixtures thereof. Typically, the fluoride salt is potassium fluoride, in the amount of 0.5% by weight of the zinc oxide.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: November 16, 2004
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 6811926
    Abstract: A zinc electrode is provided for use in electrochemical cells having an alkaline electrolyte and high cycle life. The zinc electrode comprises a mixture of zinc oxide together with an inorganic fiber which contains silica and alumina. Preferably, the composition of the inorganic fiber is in the range of 80% to 99% alumina, and 1% to 20% silica. Typically, the zinc electrode will further comprise an inorganic fiber additive in the range of 2% to 15% by weight of the zinc oxide electrode. Also, the zinc electrode will typically further include 2% up to 10% of bismuth oxide.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 2, 2004
    Assignee: Powergenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 6797433
    Abstract: A zinc electrode composition for use in low toxicity, high energy density cells having an alkaline electrolyte. The zinc electrode comprises zinc oxide, a binder, and from between 0.1 up to 10% of a fluoride of an element chosen from the group consisting of beryllium, magnesium, calcium, strontium, barium, titanium, aluminum, and combinations thereof. The invention also provides an electrochemical cell having an electrode as noted above. The inventive cell further comprises an electrolyte which contains a mixture of sodium, potassium, and lithium hydroxides, together with boric acid. The excess alkali hydroxide is present in the range of 2.7 to 5M, and the concentration of boric acid is between 0.6 and 1.3 moles per liter.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: September 28, 2004
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Publication number: 20040185329
    Abstract: A heavy metal-free rechargeable Zinc electrode for use in storage cells having alkaline electrolyte has been developed. The electrode includes a current collector and an active mass based on metallic zinc and zinc oxide powders, calcium hydroxide, indium hydroxide, indium sulfate, bismuth-oxide and a binder. The electrodes have been successfully used in Ni—Zn and Ag—Zn cells. The electrodes lead to environmentally benign alkaline cells. The electrodes have additional advantages over the prior art electrodes in terms of initial capacity and cyclability.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 23, 2004
    Inventors: Ramesh C. Kainthla, David J. Manko, Charles Sesock
  • Publication number: 20040180263
    Abstract: A method of manufacturing a non-aqueous electrolyte secondary battery is provided wherein the positive electrode is made from a lithium-metal composite oxide represented by the general formula Lix(Ni1-y, Coy)1-zMzO2 (0.98≦x≦1.10, 0.05≦y≦0.4, 0.01≦z≦0.2, in which M represents at least one element selected from the group consisting of Al, Mg, Mn, Ti, Fe, Cu, Zn and Ga), and having an average particle diameter of 5 &mgr;m to 10 &mgr;m a C-amount of 0.14 wt % or less measured by way of the high-frequency heating-IR absorption method, and a Karl Fischer moisture content of 0.2 wt % or less when heated to 180° C. and the method comprising the steps of applying a paste of active material for positive electrode to electrode plate to make an electrode, then drying the electrode, and pressing and then installing the electrode in a battery, in a work atmosphere having an absolute moisture content of 10 g/m3 or less.
    Type: Application
    Filed: December 19, 2003
    Publication date: September 16, 2004
    Inventors: Katsuya Kase, Shigeki Kubo, Hirofumi Iisaka, Ko Nozaki, Satoru Suzuki, Manabu Yamada
  • Patent number: 6790559
    Abstract: A nickel zinc alkaline cell has a zinc oxide negative electrode supported on a conductive substrate, an alkaline electrolyte, and a positive electrode having nickel hydroxide paste supported on a conductive substrate. The positive electrode further comprises 0.01% to 1% by weight of a fluoride salt, which is a salt of a metal chosen from the group consisting of: potassium, sodium, lithium, rubidium, caesium, a group II metal, a group III metal, a d-block transition metal, an f-block lanthanide, and mixtures thereof. Typically, the fluoride salt is potassium fluoride.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: September 14, 2004
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 6787265
    Abstract: A nickel-zinc galvanic cell is provided, having a pasted zinc oxide negative electrode, a pasted nickel oxide positive electrode, and an alkaline electrolyte. Chemical additives are placed in each of the negative and positive electrodes. The positive nickel hydroxide electrode contains a mixture of co-precipitated cobalt oxide in the range of 1% to 10%, and freely added, finely divided cobalt metal in the range of 1% to 5%, by weight. The negative zinc oxide electrode contains oxides other than the oxide of zinc, which have redox potentials which are negative of 0.73 volts. Also, the metal oxide additives to the negative zinc oxide electrode are such as to inhibit release of soluble cobalt from the nickel oxide negative electrode prior to a formation charge being applied to the electrochemical cell. The nickel-zinc cell contains 1% to 15% of the defined metal oxides, having a solubility less than 10−4M in the alkaline electrolyte.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: September 7, 2004
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 6759170
    Abstract: A lithium ion electrochemical cell having high charge/discharge capacity, long cycle life and exhibiting a reduced first cycle irreversible capacity, is described. The stated benefits are realized by the addition of at least one carbonate additive to an electrolyte comprising an alkali metal salt dissolved in a solvent mixture including ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. The preferred additive is either a linear or cyclic carbonate containing covalent O—X and O—Y bonds on opposite sides of a carbonyl group wherein at least one of the O—X and the O—Y bonds has a dissociation energy less than about 80 kcal/mole.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: July 6, 2004
    Assignee: Wilson Greatbatch Technologies, Inc.
    Inventors: Hong Gan, Esther S. Takeuchi, Robert Rubino
  • Publication number: 20040115533
    Abstract: A zinc electrode for use in alkaline batteries comprises a mixture of 0.425 to 1.55 volume parts of zinc oxide with a volume part of a metallic oxide chosen from the group consisting of: calcium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a binder. The electrode is prepared by mixing zinc oxide with the chosen metallic oxide in an aqueous medium such as water or potassium hydroxide, stirring overnight, filtering and drying the mixture, optionally adding a further small amount of zinc oxide, optionally adding other metallic oxides, and adding hydroxy-ethyl cellulose, an oxide dispersant, and a binder. The aqueous paste os slurry thus formed is placed on a conductive substrate, drawn through a sizing gap, cut and dried, to form low cost pasted zinc oxide electrodes.
    Type: Application
    Filed: January 20, 2004
    Publication date: June 17, 2004
    Inventor: Jeffrey Phillips
  • Patent number: 6723469
    Abstract: An alkaline battery comprises a negative electrode having an active material comprised of mercuryless zinc powder, and an electrolyte. In one embodiment, the electrolyte contains one or more indium compounds selected from the group consisting of indium sulfate, indium sulfamate and indium chloride. In another embodiment, the negative electrode contains one or more indium compounds selected from the group consisting of indium sulfate, indium sulfamate and indium chloride. An improved alkaline battery is achieved which does not pose environmental problems, in which corrosion of the zinc powder by the electrolyte during storage of the battery is suppressed, and in which a good discharge performance of the battery is maintained.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: April 20, 2004
    Assignee: Siixmicro Parts Ltd.
    Inventors: Shunji Watanabe, Tsugio Sakai, Hideo Sakamoto
  • Publication number: 20040033420
    Abstract: A zinc electrode is provided for use in electrochemical cells having an alkaline electrolyte and high cycle life. The zinc electrode comprises a mixture of zinc oxide together with an inorganic fiber which contains silica and alumina. Preferably, the composition of the inorganic fiber is in the range of 80% to 99% alumina, and 1% to 20% silica. Typically, the zinc electrode will further comprise an inorganic fiber additive in the range of 2% to 15% by weight of the zinc oxide electrode. Also, the zinc electrode will typically further include 2% up to 10% of bismuth oxide.
    Type: Application
    Filed: May 6, 2003
    Publication date: February 19, 2004
    Inventor: Jeffrey Phillips
  • Patent number: 6649305
    Abstract: Secondary electrochemical generators of the zinc-electrode alkaline type whose anode has a great capacity for cycling. The electrochemical generators according to the invention comprise zinc anodes made in such a manner as to increase within the active material the number of sites for formation of zinc during recharging, by a better draining of the electrical charges, obtained by using a dispersed secondary collector in the form of a conductive powder in the active mass, to which may advantageously be associated a principal support-collector of the high porous three-dimensional structured type having a high developed surface. These generators thus have zinc electrodes of improve cyclability, the number of charges and discharges that the electrode can perform under different regimes being increased.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: November 18, 2003
    Assignee: S.C.P.S. Societe de Conseil et de Prospective Scientifique S.A.
    Inventors: Bernard Bugnet, Denis Doniat
  • Patent number: RE40727
    Abstract: A nickel zinc alkaline cell has a zinc oxide negative electrode supported on a conductive substrate, an alkaline electrolyte, and a positive electrode having nickel hydroxide paste supported on a conductive substrate. The negative zinc oxide electrode comprises 85% to 95% zinc oxide powder, 1% to 10% bismuth oxide, 1% to 2% of a binder, and 0.05% to 5% by weight of a fluoride salt chosen from the group consisting of: sodium, potassium, rubidium, caesium, lithium, and mixtures thereof. Typically, the fluoride salt is potassium fluoride, in the amount of 0.5% by weight of the zinc oxide.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: June 9, 2009
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips