Lithium And Halogen Containing Compound Patents (Class 429/323)
  • Patent number: 8318361
    Abstract: Disclosed is a composition for a gel polymer electrolyte, the composition comprising: (i) a cyclic compound as a first crosslinking agent, the cyclic compound containing a cyclic group at the center thereof and having at least three double bonds at the end thereof; (ii) a linear or branched compound as a second crosslinking agent, the linear or branched compound containing an oxyalkylene group at the center thereof and having at least two (meth)acryl groups at the end thereof; (iii) an electrolyte solvent; (iv) an electrolyte salt; and (v) a polymerization initiator. Also, disclosed are a gel polymer electrolyte formed by polymerizing the composition for a gel polymer electrolyte, and an electrochemical device comprising the gel polymer electrolyte.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: November 27, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Hoon Yu, Jeong-Ju Cho, Soo-Jin Kim, Soo-Hyun Ha
  • Publication number: 20120251871
    Abstract: An all-solid-state battery includes: a positive electrode having a positive electrode current collector and a positive electrode layer on the positive electrode current collector; a negative electrode having a negative electrode current collector and a negative electrode layer on the negative electrode current collector; and an electrolyte between the positive and negative electrodes. The electrolyte is made of a first solid-state electrolyte having lithium ionic conductivity. The positive electrode layer includes a base portion and an active material portion. The base portion is made of a second solid-state electrolyte having lithium ionic conductivity in a continuous phase. The active material portion is dispersed in the base portion, and includes a positive electrode active material. The first and second solid-state electrolytes are lithium ionic conductive material having a hydride solid-state electrolyte, respectively.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 4, 2012
    Applicants: Tohoku University, DENSO CORPORATION
    Inventors: Gen Suzuki, Kenichirou Kami, Hitoshi Takamura, Shinichi Orimo, Hideki Maekawa, Tamako Maekawa
  • Publication number: 20120244444
    Abstract: The present invention generally relates to batteries or other electrochemical devices, and systems and materials for use in these, including novel electrode materials and designs. In some embodiments, the present invention relates to small-scale batteries or microbatteries. For example, in one aspect of the invention, a battery may have a volume of no more than about 5 mm3, while having an energy density of at least about 400 W h/l. In some cases, the battery may include an electrode comprising a porous electroactive compound. In some embodiments, the pores of the porous electrode may be at least partially filled with a liquid such as a liquid electrolyte. The electrode may be formed from a unitary material. Other aspects of the invention are directed to techniques of making such electrodes or batteries, techniques of forming electrical connections to and packaging such batteries, techniques of using such electrodes or batteries, or the like.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 27, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Ryan C. Wartena, Timothy E. Chin, Can K. Erdonmez, Wei Lai
  • Patent number: 8247112
    Abstract: An object of the present invention is to provide an electrolyte solution for lithium-ion secondary batteries comprising a tetraalkylphosphonium salt which improves the cycle characteristics and safety of lithium-ion batteries, and to provide a lithium-ion secondary battery using the electrolyte solution. Disclosed is an electrolyte comprising a tetraalkylphosphonium salt represented by general formula (1) wherein R1 represents a linear, branched or alicyclic alkyl group having 2 to 6 carbon atoms and R2 represents a linear, branched or alicyclic alkyl group having 1 to 14 carbon atoms, provided that R1 and R2 are different from each other and the total number of carbon atoms in the phosphonium cation is 20 or less; and X represents an anion.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: August 21, 2012
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Katsuhiko Tsunashima, Masahiro Kikuchi
  • Patent number: 8247096
    Abstract: In a non-aqueous electrolyte secondary battery 1 including a positive electrode 11, a negative electrode 12, a separator 14, a positive electrode lead 15, a negative electrode lead 16, a gasket 17, and a housing case 18, the negative electrode 12 including a negative electrode active material layer 12b including an alloy-formable active material, a resin layer 13 is formed on the surface of the negative electrode active material layer 12b. The resin layer 13 includes a resin component with lithium ion conductivity and an additive for non-aqueous electrolyte. This configuration enables the battery performance to be maintained at a high level and the battery swelling to be suppressed, even when the number of charge/discharge cycles is increased, providing the non-aqueous electrolyte secondary battery 1 with a high level of safety.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Ugaji, Masahiro Kinoshita, Taisuke Yamamoto, Masaki Deguchi
  • Patent number: 8216724
    Abstract: A polymer electrolyte capable of obtaining superior discharge characteristics and a battery using it are provided. A cathode (21) and an anode (22) are wound with a separator (24) in between. After that, the wound body is contained inside a package member. Then, an electrolytic composition containing a solvent, polyvinyl acetal or the derivative thereof, and lithium hexafluorophosphate is added thereto. Polyvinyl acetal or the derivative thereof is polymerized by using lithium hexafluorophosphate as a catalyst. Thereby, a polymer electrolyte (23) is formed, and the discharge characteristics are improved.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: July 10, 2012
    Assignee: Sony Corporation
    Inventors: Yuji Uchida, Takahiro Endo, Tomoyuki Nakamura, Takeru Yamamoto, Takehiko Suwa, Yoshiaki Naruse
  • Patent number: 8211578
    Abstract: An improved electrolyte for a cell having an anode comprising magnesium or magnesium alloy. The cell's cathode may desirably include iron disulfide (FeS2) as cathode active material. The improved electrolyte comprises a magnesium salt, preferably magnesium perchlorate dissolved in an organic solvent which preferably includes acetonitrile or mixture of tetrahydrofuran and propylene carbonate. The electrolyte includes an additive to retard the buildup of deleterious passivation coating on the magnesium anode surface, thereby enhancing cell performance. Such additive may preferably include 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), lithium hexafluorophosphate (LiPF6), or aluminum chloride (AlCl3).
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 3, 2012
    Assignee: The Gillette Company
    Inventors: Zhiping Jiang, Rimma Sirotina, Nikolay Iltchev
  • Patent number: 8153306
    Abstract: Disclosed are an organic electrolyte for a lithium-ion battery and a lithium-ion battery comprising the same, wherein the electrolyte includes a base electrolyte containing a lithium salt dissolved in an organic solvent, and diphenyloctyl phosphate added thereto in an amount of 0.1 to 20 wt %. As compared to a conventional organic electrolyte using only a carbonate ester-based solvent, such as ethylene carbonate, ethyl methyl carbonate, etc., the lithium-ion battery employing the organic electrolyte can improve thermal stability of an electrolyte solution, high-rate performance, and charge/discharge cyclability of a battery, while maintaining battery performance of the base electrolyte.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: April 10, 2012
    Assignee: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Jung Gu Kim, Eun Gi Shim, Tae Heum Nam
  • Patent number: 8148006
    Abstract: A battery capable of improving cycle characteristics is provided. A separator arranged between a cathode and an anode is impregnated with an electrolytic solution. The electrolytic solution includes: a solvent; and an electrolytic salt, in which the solvent includes a compound having a difluoroalkene structure. The content of the compound having a difluoroalkene structure in the solvent is within a range from 1 wt % to 5 wt % both inclusive.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Takashi Murakami, Tadahiko Kubota
  • Patent number: 8148017
    Abstract: An electrochemical energy storage device includes a negative electrode which contains a carbon material and has a negative electrode potential of 1.4 V or less relative to a lithium reference when being charged, and a non-aqueous electrolyte solution prepared by dissolving a lithium salt, an ammonium salt, and at least one kind of fluorinated benzene selected among hexafluorobenzene, pentafluorobenzene, 1,2,3,4-tetrafluorobenzene, 1,2,3,5-tetrafluorobenzene, 1,2,4,5-tetrafluorobenzene and 1,2,3-trifluorobenzene, in a non-aqueous solvent.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: April 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Tooru Matsui, Masaki Deguchi, Hiroshi Yoshizawa
  • Publication number: 20120052397
    Abstract: Electrolyte materials for use in electrochemical cells, electrochemical cells comprising the same, and methods of making such materials and cells, are generally described. In some embodiments, the materials, processes, and uses described herein relate to electrochemical cells comprising sulfur and lithium such as, for example, lithium sulfur batteries. The electrolyte can comprise a polymeric material and, in some cases, an absorbed auxiliary material. For example, the electrolyte material can be capable of forming a gel, and the auxiliary material can comprise an electrolyte solvent. In some instances, the electrolyte material can comprise at least one organic (co)polymer selected from polyethersulfones, polyvinylalcohols (PVOH) and branched polyimides (HPI). The non-fluid material in the electrolyte, when configured for use, can, alone or in combination with the optional absorbed auxiliary material, have a yield strength greater than that of lithium metal, in some embodiments.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 1, 2012
    Applicants: BASF SE, Sion Power Corporation
    Inventors: Yuriy V. Mikhaylik, Igor Kovalev, John D. Affinito, Helmut Moehwald, Rudiger Schmidt, Anna Cristadoro, Ingrid Haupt, Raimund Pietruschka
  • Patent number: 8119291
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode; a negative electrode; a separator interposed between the positive electrode and the negative electrode; a non-aqueous electrolyte; and a porous insulating film adhered to a surface of at least one selected from the group consisting of the positive electrode and the negative electrode, the porous insulating film including an inorganic oxide filler and a film binder, wherein the ratio R of actual volume to apparent volume of the separator is not less than 0.4 and not greater than 0.7, and wherein the ratio R and a porosity P of the porous insulating film satisfy the relational formula: ?0.10?R?P?0.30.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: February 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Kaoru Inoue, Kiyomi Kato, Kohei Suzuki, Shigeo Ikuta, Yusuke Fukumoto, Tetsuya Hayashi
  • Publication number: 20120009483
    Abstract: A negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same, the negative active material including a metal-based active material; and a solid electrolyte having an ion conductivity of about 1.0×10?4 S/cm or greater.
    Type: Application
    Filed: January 7, 2011
    Publication date: January 12, 2012
    Inventors: Hee-Young Chu, Sung-Hwan Moon, Jae-Hyuk Kim, Jong-Seo Choi
  • Publication number: 20110318624
    Abstract: A cathode material includes a primary active cathode material and an amount of NiS2. Primary batteries (e.g., thermal batteries) can be provided that contain such a cathode material.
    Type: Application
    Filed: June 16, 2011
    Publication date: December 29, 2011
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Geoffrey SWIFT, Charles LAMB, Jim FERRARO
  • Patent number: 8075865
    Abstract: The invention relates to lithium argyrodite of the general formula (I): Li+(12-n-x)Bn+X2?6-xY?x (I), where Bn+ is selected from the group consisting of P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X2? is selected from the group consisting of S, Se, and Te; Y? is selected from the group consisting of Cl, Br, I, F, CN, OCN, SCN, and N3; 0?x?2, and a method for the production thereof, and the use thereof as a lithium-ion electrolyte in primary and secondary electrochemical energy storage.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: December 13, 2011
    Assignee: Universitat Seigen
    Inventors: Hans-Jörg Deiseroth, Shiao-Tong Kong, Marc Schlosser, Christof Reiner
  • Patent number: 8076029
    Abstract: A primary cell having an anode comprising lithium and a cathode comprising iron disulfide (FeS2) and carbon particles. The electrolyte comprises a lithium salt dissolved in a solvent mixture which contains 1,3-dioxolane and isosorbide dimethyl ether. The solvent mixture may comprise 1,3-dioxolane, 1,2-dimethoxyethane and additive isosorbide dimethyl ether. The isosorbide dimethyl ether comprises typically between about 2 and 15 percent by weight of the solvent mixture and improves cell service life and performance. A cathode slurry is prepared comprising iron disulfide powder, carbon, binder, and a liquid solvent. The mixture is coated onto a conductive substrate and solvent evaporated leaving a dry cathode coating on the substrate. The anode and cathode can be spirally wound with separator therebetween and inserted into the cell casing with electrolyte then added.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: December 13, 2011
    Assignee: The Gillette Company
    Inventors: Michael Sliger, Nikolai N. Issaev, Eric Navok, Kenneth E. Yelm
  • Patent number: 8053109
    Abstract: A non-aqueous electrolyte secondary battery has a high initial capacity and excels in cycle characteristics and storage characteristics even when charged until the potential of the positive electrode active material exceeds as high as 4.3V versus lithium. The non-aqueous electrolyte of the secondary battery contains both 1,3-dioxane and a sulfonic acid ester compound.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: November 8, 2011
    Assignees: Sanyo Electric Co., Ltd., Ube Industries, Ltd.
    Inventors: Masato Iwanaga, Noriko Yamashita, Koji Abe, Kazuhiro Miyoshi
  • Patent number: 8026000
    Abstract: A nonaqueous electrolyte secondary battery of the invention has a positive electrode having a positive electrode active material, a negative electrode, and a nonaqueous electrolyte having electrolyte salt in a nonaqueous solvent. The electric potential of the positive electrode active material is 4.4 to 4.6 V relative to lithium, and the nonaqueous electrolyte contains a compound expressed by structural formula (I) below. The quantity of compound added is preferably 0.1% to 2% by mass. Also, the positive electrode active material preferably comprises a mixture of a lithium-cobalt composite oxide which is LiCoO2 containing at least both zirconium and magnesium and a lithium-manganese-nickel composite oxide that has a layer structure and contains at least both manganese and nickel. Thanks to such structure, a nonaqueous electrolyte secondary battery can be provided that is charged to charging termination potential of 4.4 to 4.6 V relative to lithium and that has enhanced overcharging safety.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: September 27, 2011
    Assignees: Sanyo Electric Co., Ltd., UBE Industries, Ltd.
    Inventors: Masato Iwanaga, Yukihiro Oki, Koji Abe, Kazuhiro Miyoshi
  • Patent number: 8003259
    Abstract: A non-aqueous electrolyte secondary battery including: a positive electrode; a negative electrode; a separator interposed between the positive electrode and the negative electrode; a non-aqueous electrolyte; and a porous insulating film adhered to a surface of at least one selected from the group consisting of the positive electrode and the negative electrode, the porous insulating film including an inorganic oxide filler and a film binder, wherein the ratio R of actual volume to apparent volume of the separator is not less than 0.4 and not greater than 0.7, and wherein the ratio R and a porosity P of the porous insulating film satisfy the relational formula: ?0.10?R?P?0.30.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: August 23, 2011
    Assignee: Panasonic Corporation
    Inventors: Kaoru Inoue, Kiyomi Kato, Kohei Suzuki, Shigeo Ikuta, Yusuke Fukumoto, Tetsuya Hayashi
  • Publication number: 20110171538
    Abstract: Glass-fiber composites are described that include a substrate containing glass fibers and particles in contact with the glass fiber substrate. The particles may include an alkali-metal containing compound. In addition, batteries are described with an anode, a cathode, and an electrolyte. The cathode may include alkali-metal containing nanoparticles in contact with glass fibers. Also describe are methods of making a glass-fiber composite. The methods may include the steps of forming a wet laid non-woven glass fiber substrate, and contacting alkali-metal containing particles on the substrate.
    Type: Application
    Filed: December 29, 2010
    Publication date: July 14, 2011
    Inventors: Souvik Nandi, Alan Michael Jaffee, Kristin Franz Goya Obernyer, Albert G. Dietz, III
  • Publication number: 20110143174
    Abstract: Provided is a lithium secondary battery including a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a polymer electrolyte composition having a polymer electrolyte, a non-aqueous organic solvent, and a lithium salt. The content of the polymer electrolyte is 9 to 20 wt %, based on the total weight of the polymer electrolyte composition.
    Type: Application
    Filed: October 22, 2010
    Publication date: June 16, 2011
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Joong-Heon KIM, Cheol-Ho Park, Jin-Uk Lee
  • Publication number: 20110117417
    Abstract: Exemplary flexible thin film solid state lithium ion batteries (10) and methods for making the same are disclosed. An exemplary flexible solid state thin film electrochemical device (10) may include a flexible substrate (12), first (14) and second electrodes (18), and an electrolyte (16) disposed between the first (14) and second electrodes (18). The electrolyte (16) is disposed on the flexible substrate (12). The first electrode (14) is disposed on the electrolyte (16), and the second electrode (18) having been buried between the electrolyte (16) and the substrate (12).
    Type: Application
    Filed: February 25, 2008
    Publication date: May 19, 2011
    Applicant: Alliance for Sustainable Energy, LLC
    Inventor: John Roland Pitts
  • Publication number: 20110117440
    Abstract: A solid electrolyte comprising: LiBH4; and an alkali metal compound represented by the following formula (1): MX??(1) (in the formula (1), M represents an alkali metal atom, and X represents one selected from the group consisting of halogen atoms, NR2 groups (each R represents a hydrogen atom or an alkyl group) and N2R groups (R represents a hydrogen atom or an alkyl group)).
    Type: Application
    Filed: May 12, 2009
    Publication date: May 19, 2011
    Applicant: TOHOKU UNIVERSITY
    Inventors: Hideki Maekawa, Hitoshi Takamura, Shinichi Orimo, Motoaki Matsuo, Yuko Nakamori, Mariko Ando, Yasuto Noda, Taiki Karahashi
  • Patent number: 7935445
    Abstract: A lithium ion secondary battery includes: (a) a positive electrode plate comprising an active material part and a current collector carrying the active material part, the active material part comprising a positive electrode active material capable of absorbing or desorbing a lithium ion during charge and discharge; (b) a negative electrode plate comprising an active material part and a current collector carrying the active material part, the active material part comprising a negative electrode active material capable of absorbing or desorbing a lithium ion during charge and discharge; (c) a separator interposed between the positive and negative electrode plates; (d) an electrolyte; and (e) a battery case accommodating the positive and negative electrode plates, the separator, and the electrolyte. The positive and negative electrode plates are wound with the separator interposed therebetween, thereby to form an electrode plate assembly.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: May 3, 2011
    Assignee: Panasonic Corporation
    Inventors: Tsuyoshi Kaito, Futoshi Tanigawa, Naoto Arai
  • Patent number: 7931987
    Abstract: A lithium-ion battery includes a positive electrode comprising a current collector and a first active material comprising LiCoO2 and a negative electrode comprising a current collector, a second active material, and a third active material. The second active material comprises a lithium titanate material and the third active material is V2O5. The third active material exhibits charging and discharging capacity below a corrosion potential of the current collector of the negative electrode and above a decomposition potential of the first active material.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Medtronic, Inc.
    Inventors: William G. Howard, Craig L. Schmidt, Erik R. Scott
  • Publication number: 20110086277
    Abstract: An electrochemical cell comprises as an anode, a lithium transition metal oxide or sulphide compound which has a [B2]X4n? spinel-type framework structure of an A[B2]X4 spinel wherein A and B are metal cations selected from Li, Ti, V, Mn, Fe and Co, X is oxygen or sulphur, and n? refers to the overall charge of the structural unit [B2]X4 of the framework structure. The transition metal cation in the fully discharged state has a mean oxidation state greater than +3 for Ti, +3 for V, +3.5 for Mn, +2 for Fe and +2 for Co. The cell includes as a cathode, a lithium metal oxide or sulphide compound. An electrically insulative lithium containing liquid or polymeric electronically conductive electrolyte is provided between the anode and the cathode.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Inventors: Michael M. Thackeray, Rosalind J. Gummow, Ernest E. Ferg
  • Publication number: 20110081580
    Abstract: A solid-state lithium secondary battery includes an electrode body including a positive electrode containing positive electrode active material particles and solid electrolyte particles, a negative electrode, and a solid electrolyte layer composed of solid electrolyte particles and disposed between the positive electrode and the negative electrode. In the solid-state lithium secondary battery, the solid electrolyte particles contained in the positive electrode and the solid electrolyte particles of the solid electrolyte layer are each composed of a lithium ion conductive material represented by chemical formula Li+(12?n?x)Bn+X2?(6?x)Y?x (Bn+ is at least one selected from P, As, Ge, Ga, Sb, Si, Sn, Al, In, Ti, V, Nb, and Ta; X2? is at least one selected from S, Se, and Te; Y? is at least one selected from F, Cl, Br, I, CN, OCN, SCN, and N3; and 0?x?2) and having an argyrodite-type crystal structure, and the positive electrode and the solid electrolyte layer are obtained by firing, at 100 to 400° C.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Florian Stadler, Christopher Fietzek
  • Patent number: 7910015
    Abstract: A polymer electrolyte for dye sensitized solar cell is provided. The electrolyte contains a porous hybrid polymer (the components were listed in formula (1) and formula (2)) and the electrolyte solution (the components were shown in formula (3)). The weight ratio of PEOPPO to PVDF-HFP is from 1˜80% The weight ratio of EO to PO in PEOPPO is from 30 to 80% EC/PC/LiI/I2/TBP??Formula (3) EC is ethylene carbonate PC is propylene carbonate TBP is 4-tert-butylpyridine The weight ratio of EC to PC is 0.1˜5; the ratio of EC to LiI is 0.1˜2; the ratio of EC to I2 is 0.01˜0.2; the ratio of EC to TBP is 0.1˜1; wherein the range of n and m for PEOPPO is n=20˜150, and m=10˜80.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 22, 2011
    Assignee: Institute of Nuclear Energy Research
    Inventors: Chun-Guey Wu, Ming-Yi Lu, Chwei-Huann Chiou, Yun-Fang Lu
  • Patent number: 7883800
    Abstract: The disclosure herein relates to a lithium ion conducting electrolyte. This electrolytic material has improved ionic conductivity. The material disclosed herein is an amorphous compound of the formula LixSMwOyNz wherein x is between approximately 0.5 and 3, y is between 1 and 6, z is between 0.1 and 1, w is less than 0.3 and M is an element selected from B, Ge, Si, P, As, Cl, Br, I, and combinations thereof. The material can be prepared in the form of a thin film. The electrolyte material can be used in microbatteries and electronic systems.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: February 8, 2011
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Philippe Vinatier, Alain Levasseur, Brigitte Pecquenard, Kyong-Hee Joo
  • Publication number: 20110027662
    Abstract: A lithium ion secondary battery includes: a cathode that stores/releases lithium ion at a potential not lower than an oxidation-reduction equilibrium potential between halogen ion and halogen; an anode that stores/releases lithium ion, preferably containing carbon; and a non-aqueous electrolytic solution composed of a non-aqueous solvent having dissolved therein an electrolyte. The non-aqueous electrolytic solution contains lithium halide or a halogen molecule. Instead of the non-aqueous electrolytic solution, a polymer solid electrolyte containing lithium halide or halogen molecule may be used.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 3, 2011
    Inventors: Etsuko NISHIMURA, Katsunori Nishimura, Akihide Tanaka
  • Publication number: 20100261067
    Abstract: Solid state, thin film, electrochemical devices (10) and methods of making the same are disclosed. An exemplary device 10 includes at least one electrode (14) and an electrolyte (16) deposited on the electrode (14). The electrolyte (16) includes at least two homogenous layers of discrete physical properties. The two homogenous layers comprise a first dense layer (15) and a second porous layer (16).
    Type: Application
    Filed: February 25, 2008
    Publication date: October 14, 2010
    Inventors: J. Roland Pitts, Se-Hee Lee, C. Edwin Tracy, Wenming Li
  • Publication number: 20100255383
    Abstract: A flexible polymer solid electrolyte material useful in battery technology is described. The flexible solid electrolyte comprises a first block that has the ability to solvate alkali metal salts. The flexible solid electrolyte comprises a second block that has the ability to incorporate lithium ions within microphase separated spherical domains, wherein the lithium ions are from a secondary lithium source. The flexible solid electrolyte further comprises a second lithium salt.
    Type: Application
    Filed: March 1, 2010
    Publication date: October 7, 2010
    Applicant: University of Maryland, College Park
    Inventors: Peter Kofinas, Ayan Ghosh
  • Publication number: 20100136436
    Abstract: The disclosure herein relates to a lithium ion conducting electrolyte. This electrolytic material has improved ionic conductivity. The material disclosed herein is an amorphous compound of the formula LixSMwOyNz wherein x is between approximately 0.5 and 3, y is between 1 and 6, z is between 0.1 and 1, w is less than 0.3 and M is an element selected from B, Ge, Si, P, As, Cl, Br, I, and combinations thereof. The material can be prepared in the form of a thin film. The electrolyte material can be used in microbatteries and elctronic systems.
    Type: Application
    Filed: January 26, 2006
    Publication date: June 3, 2010
    Applicant: Centre National de la Recherche Scientifique
    Inventors: Philippe Vinatier, Alain Levasseur, Brigitte Pecquenard, Kyong-Hee Joo
  • Patent number: 7718319
    Abstract: The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2?y?zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700° C. for 2 to 8 hours and a ? of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: May 18, 2010
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arumugam Manthiram, Wonchang Choi
  • Publication number: 20090202918
    Abstract: A polymer electrolyte capable of obtaining superior discharge characteristics and a battery using it are provided. A cathode (21) and an anode (22) are wound with a separator (24) in between. After that, the wound body is contained inside a package member. Then, an electrolytic composition containing a solvent, polyvinyl acetal or the derivative thereof, and lithium hexafluorophosphate is added thereto. Polyvinyl acetal or the derivative thereof is polymerized by using lithium hexafluorophosphate as a catalyst. Thereby, a polymer electrolyte (23) is formed, and the discharge characteristics are improved.
    Type: Application
    Filed: March 10, 2006
    Publication date: August 13, 2009
    Applicant: SONY CORPORATION
    Inventors: Yuji Uchida, Takahiro Endo, Tomoyuki Nakamura, Takeru Yamamoto, Takehiko Suwa, Yoshiaki Naruse
  • Publication number: 20090197181
    Abstract: [Problem] A non-aqueous electrolyte battery is provided that shows good cycle performance and good storage performance under high temperature conditions and exhibits high reliability even with a battery configuration featuring high capacity. A method of manufacturing the battery is also provided.
    Type: Application
    Filed: March 16, 2007
    Publication date: August 6, 2009
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Nobuhiro Sakitani, Takeshi Ogasawara, Hiroshi Minami, Naoki Imachi, Atsushi Kaiduka, Yasunori Baba, Yoshinori Kida, Shin Fujitani
  • Patent number: 7504180
    Abstract: There is obtained a material of a positive electrode for a secondary lithium-ion cell having high cycle durability and high safety in high-voltage and high-capacity applications, which is a particulate positive electrode active material for a secondary lithium-ion cell represented by a general formula, LiaCObAcBdOeFf (A is Al or Mg, B is a group-IV transition element, 0.90?a?1.10, 0.97?b?1.00, 0.0001?c?0.03, 0.0001?d?0.03, 1.98?e?2.02, 0?f?0.02, and 0.0001?c+d?0.03), where element A, element B and fluorine are evenly present in the vicinity of the particle surfaces.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: March 17, 2009
    Assignee: Seimi Chemical Co., Ltd.
    Inventors: Koji Tatsumi, Manabu Suhara, Naoshi Saito, Kazushige Horichi, Yukio Jitsugiri
  • Publication number: 20090035664
    Abstract: The present invention generally relates to batteries or other electrochemical devices, and systems and materials for use in these, including novel electrode materials and designs. In some embodiments, the present invention relates to small-scale batteries or microbatteries. For example, in one aspect of the invention, a battery may have a volume of no more than about 5 mm3, while having an energy density of at least about 400 W h/l. In some cases, the battery may include a electrode comprising a porous electroactive compound. In some embodiments, the pores of the porous electrode may be at least partially filled with a liquid such as a liquid electrolyte. The electrode may be able to withstand repeated charging and discharging. In some cases, the electrode may have a plurality of protrusions and/or a wall (which may surround the protrusions, if present); however, in other cases, there may be no protrusions or walls. The electrode may be formed from a unitary material.
    Type: Application
    Filed: May 23, 2008
    Publication date: February 5, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Ryan C. Wartena, Timothy E. Chin, Can K. Erdonmez, Wei Lai
  • Patent number: 7482101
    Abstract: A battery is provided. The battery provides improved battery characteristics such as cycle characteristics. A battery includes a cathode; an anode; and an electrolytic solution, wherein the anode contains a carbon material, the electrolytic solution contains propylene carbonate and 4-fluoroethylene carbonate, and the content of 4-fluoroethylene carbonate is from about 0.0027 g to about 0.056 g per about 1 g of the carbon material.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: January 27, 2009
    Assignee: Sony Corporation
    Inventors: Karin Tsuda, Gentaro Kano
  • Publication number: 20080268348
    Abstract: An object of the invention is to provide a lithium secondary battery using a fused salt at ambient temperature where a high capacity is able to be maintained even when it is stored at a high temperature environment or even when it is subjected to charge and discharge repeatedly and also to provide an electrode for a nonaqueous electrolytic lithium secondary battery. There is disclosed a lithium secondary battery using at least a fused salt at ambient temperature having ionic conductivity in which at least one of the positive and negative electrode contains a powder which solely comprises an inorganic solid electrolyte having lithium ionic conductivity. There is also disclosed an electrode for a lithium secondary battery using, at least, a ionic liquid having ionic conductivity which contains a powder solely comprising inorganic solid electrolyte having lithium ionic conductivity.
    Type: Application
    Filed: April 22, 2008
    Publication date: October 30, 2008
    Applicant: OHARA INC.
    Inventor: Takashi Katoh
  • Patent number: 7419744
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The negative electrode contains an active material providing a working potential which is nobler by at least 0.5V than a lithium metal potential. Also, the nonaqueous electrolyte contains an ionic liquid and allyl phosphate represented by chemical formula given below: where R denotes hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and n denotes an integer of 1 to 3.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: September 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Kishi, Hidesato Saruwatari, Takashi Kuboki
  • Patent number: 7416813
    Abstract: A lithium secondary battery is provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte prepared by dissolving a solute in a non-aqueous solvent wherein a positive electrode active material of said positive electrode is composed of lithium-manganese composite oxide having a spinel structure and lithium-transition metal composite oxide having a layer structure containing at least nickel and lithium salt having oxalato complex as anion is admixed to said non-aqueous electrolyte.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: August 26, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Toyoki Fujihara, Kazuhisa Takeda, Hideki Kitao, Takaaki Ikemachi, Toshiyuki Nouma, Naoya Nakanishi
  • Patent number: 7335448
    Abstract: A lithium ion secondary battery includes: (a) a positive electrode plate comprising an active material part and a current collector carrying the active material part, the active material part comprising a positive electrode active material capable of absorbing or desorbing a lithium ion during charge and discharge; (b) a negative electrode plate comprising an active material part and a current collector carrying the active material part, the active material part comprising a negative electrode active material capable of absorbing or desorbing a lithium ion during charge and discharge; (c) a separator interposed between the positive and negative electrode plates; (d) an electrolyte; and (e) a battery case accommodating the positive and negative electrode plates, the separator, and the electrolyte. The positive and negative electrode plates are wound with the separator interposed therebetween, thereby to form an electrode plate assembly.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: February 26, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Tsuyoshi Kaito, Futoshi Tanigawa, Naoto Arai
  • Publication number: 20070172738
    Abstract: The disclosure herein relates to a lithium ion conducting electrolyte. This electrolytic material has improved ionic conductivity. The material disclosed herein is an amorphous compound of the formula LixSMwOyNz wherein x is between approximately 0.5 and 3, y is between 1 and 6, z is between 0.1 and 1, w is less than 0.3 and M is an element selected from B, Ge, Si, P, As, Cl, Br, I, and combinations thereof. The material can be prepared in the form of a thin film. The electrolyte material can be used in microbatteries and elctronic systems.
    Type: Application
    Filed: January 26, 2006
    Publication date: July 26, 2007
    Applicant: Centre National de la Recherche Scientifique
    Inventors: Philippe Vinatier, Alain Levasseur, Brigitte Pecquenard, Kyong-Hee Joo
  • Patent number: 7235331
    Abstract: An electrolyte with high ion conductivity, a process for producing the same and a battery using the same, and a compound for the electrolyte. The electrolyte is set between a negative electrode and a positive electrode. The electrolyte includes a first polymer compound, a second polymer compound and light metal salt. The first polymer compound has a three-dimensional network structure formed by bridging bridgeable compounds with the bridge groups, which contributes to the high mechanical intensity of the electrolyte. The second polymer compound has no bridge groups and dissolves light metal salt. Each of the first and the second polymer compounds has an ether bond. The first and the second polymer compounds form a semi-interpenetrating polymer network, and achieve higher ion conductivity than that of each polymer compound.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: June 26, 2007
    Assignee: Sony Corporation
    Inventors: Kazuhiro Noda, Takeshi Horie, Koji Sekai, Shinichiro Yamada
  • Patent number: 7211352
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery that includes a composite polymer matrix structure having a single ion conductor-containing polymer matrix to enhance ionic conductivity and a method of manufacturing the same. The composite polymer electrolyte includes a first polymer matrix made of a first porous polymer with a first pore size; a second polymer matrix made of a single ion conductor, an inorganic material, and a second porous polymer with a second pore size smaller than the first pore size. The second polymer matrix is coated on a surface of the first polymer matrix. The composite polymer matrix structure can increase mechanical properties. The single ion conductor-containing porous polymer matrix of a submicro-scale can enhance ionic conductivity and the charge/discharge cycle stability.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 1, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 7070706
    Abstract: This invention pertains to the composition and method for fabricating nano-tube composite polymer electrolyte. The composite polymer electrolyte is made by blending suitable amount of highly dispersed, nano-tube, such as titanium dioxide (TiO2), with highly amorphous polymer electrolyte, such as polyethylene oxide. The hollow nano-tube structure facilitates salt dissociation, serves temporarily storage for lithium ions, creates new conducting mechanism and improves the conductivity thereof. The subsequent thermal treatment and high electric field arrange the nano-tubes in order for increase of the dielectric constant thereof, which increased ion mobility at room temperature. The mechanical properties are also improved due to the physical cross-linking of the nano-tubes, suitable for industrial processing.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: July 4, 2006
    Assignee: National Central University
    Inventors: Po-Jen Chu, Chin-Yeh Chiang
  • Patent number: 6893774
    Abstract: Fluoroalkylphosphate salts of Formula I, described herein, are suitable for use, alone or in mixtures with, e.g., other salts, in electrolytes, primary batteries, secondary batteries, capacitors, supercapacitors or galvanic cells.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: May 17, 2005
    Assignee: Merck Patent GmbH
    Inventors: Michael Schmidt, Andreas Kuhner, Nikolai Ignatyev, Peter Sartori
  • Patent number: 6878492
    Abstract: The present invention provides a solid polymer electrolyte; a polymerizable composition having low viscosity and excellent processability for obtaining the solid polymer electrolyte; and a polymerizable compound having low viscosity, and good polymerizability and stability for use in the polymerizable composition. The present invention also provides primary and secondary batteries capable of working with high capacity and current; an electric double-layer capacitor ensuring high output voltage, large takeout current, and good processability; and an electrochromic device favored with high response speed. Each thereof use the solid polymer electrolyte of the present invention and are ensured with long life, excellent safety free of liquid leakage, high reliability and production at a low cost.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: April 12, 2005
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Masataka Takeuchi, Shuichi Naijo, Ayako Nishioka
  • Patent number: RE40302
    Abstract: Provided are a polymeric electrolyte or a nonaqueous electrolyte that can improve a transport rate of charge carrier ions by adding a compound having boron atoms in the structure, preferably one or more selected from the group consisting of compounds represented by the following general formulas (1) to (4), and an electric device such as a cell or the like using the same. wherein R11, R12, R13, R14, R15, R16, R21, R22, R23, R24, R25, R26, R27, R28, R31, R32, R33, R34, R35, R36, R37, R38, R39, R310, R41, R42, R43, R44, R45, R46, R47, R48, R49, R410, R411 and R412 each represent a hydrogen atom, a halogen atom or a monovalent group, or represent groups bound to each other to form a ring, and Ra, Rb, Rc and Rd each represent a group having a site capable of being bound to boron atoms which are the same or different.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: May 6, 2008
    Assignee: Dai-Ichi Kogyo Seiyaku Co. Ltd.
    Inventors: Masahito Nishiura, Michiyuki Kono, Masayoshi Watanabe