Oxygen Is The Only Ring Hetero Atom In The Hetero Ring (e.g., Dioxolane, Gamma Butyrolactone, Etc.) Patents (Class 429/337)
  • Patent number: 11532808
    Abstract: Lithium ion batteries, methods of making the same, and equipment for making the same are provided. In one implementation, a method of fabricating a pre-lithiated electrode is provided. The method comprises disposing a lithium metal target comprising a layer of lithium metal adjacent to a surface of a prefabricated electrode. The method further comprises heating at least one of the lithium metal target and the prefabricated electrode to a temperature less than or equal to 180 degrees Celsius. The method further comprises compressing the lithium metal target and the prefabricated electrode together while applying ultrasound to the lithium metal target to transfer a quantity of lithium from the lithium metal target to the prefabricated electrode.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 20, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Dmitri A. Brevnov
  • Patent number: 11527757
    Abstract: A positive electrode used in a secondary cell that is an example of the present embodiment is provided with a positive electrode collector, an intermediate layer formed on the positive electrode collector, and a positive electrode mixture layer formed on the intermediate layer. The positive electrode mixture layer has a thermally expandable material and a positive electrode active material. The thermally expandable material content of the positive electrode mixture layer is at least 0.1% by mass and less than 5% by mass. The intermediate layer has an insulating inorganic material and a conductive agent. The insulating inorganic material content of the intermediate layer is 80-99% by mass.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 13, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takahito Nakayama, Tomoki Shiozaki, Hideharu Takezawa, Daisuke Furusawa, Yuji Oura, Takahiro Takahashi
  • Patent number: 11508532
    Abstract: Embodiments described herein relate to compositions, devices, and methods for storage of energy (e.g., electrical energy). In some cases, devices including polyacetylene-containing polymers are provided.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: November 22, 2022
    Assignee: PolyJoule, Inc.
    Inventors: Ian W. Hunter, Timothy Manning Swager, Zhengguo Zhu
  • Patent number: 11322769
    Abstract: In a flow battery according to one aspect of the present disclosure, a first liquid does not include an undesired compound. The flow battery satisfies requirement (i), (ii), (iii) or (iv). (i) An anode active material 14 includes graphite, and the first liquid has an equilibrium potential of not more than 0.15 V vs. Li/Li+. (ii) An anode active material includes aluminum, and the first liquid has an equilibrium potential of not more than 0.18 V vs. Li/Li+. (iii) An anode active material includes tin, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+. (iv) An anode active material includes silicon, and the first liquid has an equilibrium potential of not more than 0.25 V vs. Li/Li+.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: May 3, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shuji Ito, Masahisa Fujimoto, Honami Sako, Sho Shibata
  • Patent number: 11145910
    Abstract: Rechargeable, non-aqueous lithium batteries which contain, as active anode material, either lithium metal or a lithium alloy, an active cathode material with a redox potential in the range of between 1.5 and 3.4 V vs Li/Li+ and lithium rhodanide (LiSCN) as electrolyte component. One or more related methods for providing overcharge protection are also described herein.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: October 12, 2021
    Assignee: Albemarle Germany GmbH
    Inventors: Ulrich Wietelmann, Ute Emmel, Irina Wolf, Margret Wohlfahrt-Mehrens, Serife Kaymaksiz Tost, Florian Wilhelm, Mario Wachtler
  • Patent number: 11043336
    Abstract: A process for manufacturing an electrode utilizing electron beam (EB) or actinic radiation to cure the electrode binder is provided. A process is also disclosed for mixing specific actinic or EB radiation curable polymer precursors with electrode solid particles to form an aqueous mixture, application of the mixture to an electrode current collector, followed by the application of actinic or EB radiation to the current collector for curing the polymer, thereby binding the electrode binder to the current collector. Lithium ion batteries, electric double layer capacitors, and components produced therefrom are also provided.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 22, 2021
    Assignee: Miltec Corporation
    Inventors: Gary Voelker, John Arnold, Joseph Fasolo
  • Patent number: 10944125
    Abstract: A production method for a lithium-ion secondary battery includes configuring an electrode group provided with a positive electrode and a negative electrode, storing the electrode group, electrolytic solution, and a third electrode in a housing, charging the negative electrode by performing charging between the third electrode and the negative electrode inside the housing, and discharging the charged negative electrode by performing discharging between the third electrode and the negative electrode, thereby producing the lithium-ion secondary battery.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 9, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Katsuhiko Nagaya, Shinobu Okayama, Kyoko Kikuchi
  • Patent number: 10847279
    Abstract: An object of the present invention is to provide a novel sulfur-based positive-electrode active material which can largely improve cyclability of a lithium-ion secondary battery, a positive electrode comprising the positive-electrode active material and a lithium-ion secondary battery comprising the positive electrode. The sulfur-based positive-electrode active material is one comprising: a carbon skeleton derived from a polymer composed of a monomer unit having at least one hetero atom-containing moiety, and sulfur incorporated into the carbon skeleton as the carbon skeleton is formed from the polymer by heat treatment.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: November 24, 2020
    Assignees: SUMITOMO RUBBER INDUSTRIES, LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tatsuya Kubo, Toshikatsu Kojima, Tetsuo Sakai, Akihiro Yamano, Masahiro Yanagida
  • Patent number: 10763545
    Abstract: An electrolyte for a secondary battery, the electrolyte including an ionic liquid polymer including a repeating unit represented by Formula 1: wherein, in Formula 1, CY, R1, R2, R3, X1?, n, and m are the same as described in the specification.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: September 1, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Hongsoo Choi, Tomonobu Mizumo, Yonggun Lee, Wonseok Chang, Toshinori Sugimoto, Myungjin Lee
  • Patent number: 10727534
    Abstract: An object of the present invention is to provide a highly practical electrolytic solution which has a high oxidative decomposition potential, enables the dissolution and precipitation of magnesium to stably repeatedly proceed, and is easy to prepare. The present invention relates to an electrolytic solution for a magnesium battery comprising: a compound represented by the general formula (I), a Lewis acid or a compound represented by the general formula (A), and a solvent; and to the compound represented by the general formula (I).
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: July 28, 2020
    Assignee: FUJIFILM Wako Pure Chemical Corporation
    Inventors: Kazuhiko Sato, Goro Mori, Hiromi Watahiki, Takahiro Kiyosu, Kuniaki Okamoto
  • Patent number: 10505194
    Abstract: An object of the present invention is to provide a novel positive electrode which is produced using a rubber being an inexpensive material and is capable of enhancing a charge and discharge capacity and cyclability of a lithium-ion secondary battery, and the lithium-ion secondary battery composed of the positive electrode. In the lithium-ion secondary battery, the positive electrode comprises a current collector and an electrode layer formed on a surface of the current collector, the electrode layer comprises an active material, an electrically-conductive additive and a thermosetting resin binder subjected to thermosetting, and the active material comprises a sulfur-based positive-electrode active material prepared by heat-treating a starting material comprising a rubber and sulfur under a non-oxidizing atmosphere.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: December 10, 2019
    Assignees: SUMITOMO RUBBER INDUSTRIES, LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tatsuya Kubo, Akihiro Yamano, Naoto Yamashita, Toshikatsu Kojima, Masahiro Yanagida
  • Patent number: 10316006
    Abstract: An ionic liquid compound includes an azepanium-functionalized cation. An electrochemical cell electrolyte for an electrical energy storage device includes the ionic liquid compound, aprotic organic solvent, alkali metal salt and an additive.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 11, 2019
    Assignee: NOHMS Technologies, Inc.
    Inventors: Surya Moganty, Luigi Abbate, Gabriel Torres, Kevin Brown, John Sinicropi
  • Patent number: 10128490
    Abstract: Example embodiments relate to an anode layer of a lithium secondary battery. The anode layer includes a three-dimensional carbon structure and a plurality of silicon particles. The three-dimensional carbon structure includes a plurality of cavities without a binder, and the plurality of silicon particles are disposed in the plurality of cavities.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: November 13, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dongwook Lee, Hyeonjin Shin, Seongjun Park
  • Patent number: 10044031
    Abstract: A battery is described. The battery is composed of a graphene oxide-sulfur (GO-S) nanocomposite cathode, a separator, an anode, and an electrolyte.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 7, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yuegang Zhang, Elton J. Cairns, Liwen Ji, Mumin Rao
  • Patent number: 10044067
    Abstract: A secondary battery includes a cathode, an anode, and a nonaqueous electrolytic solution. The anode contains a carbon material and silicon oxide, and a weight ratio (%) of the silicon oxide with respect to a total of the carbon material and the silicon oxide is within a range of 0.01% to 20% both inclusive. The nonaqueous electrolytic solution contains an unsaturated cyclic carbonate ester.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: August 7, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masayuki Iwama, Shinji Hatake, Masayuki Ihara
  • Patent number: 10010649
    Abstract: A method of culturing human or mammalian mesenchymal stem cells (MSC) or osteoblastic cells to form corresponding cell aggregates evenly distributed in the culturing medium having a reduced content of cells with fibroblast morphology comprises contacting MSC or OC with a water-soluble cellulose derivative over a period of from 1 day to one or two weeks. Also disclosed are a corresponding aggregates, a culture medium and a pharmaceutical composition, and uses of the aggregate, the culturing medium and the composition.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 3, 2018
    Assignee: Ascendia AB
    Inventor: Christer Busch
  • Patent number: 9882208
    Abstract: A particulate active material for a power storage device positive electrode having a higher energy density is provided, which includes particles of an electrically conductive polymer and a conductive agent, wherein the electrically conductive polymer particles each have a surface coated with the conductive agent.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: January 30, 2018
    Assignee: NITTO DENKO CORPORATION
    Inventors: Yohei Ando, Yoshihiro Uetani
  • Patent number: 9882245
    Abstract: Alkoxide magnesium halide compounds having the formula: RO—Mg—X??(1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: January 30, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Sheng Dai, Xiao-Guang Sun, Chen Liao, Bingkun Guo
  • Patent number: 9865900
    Abstract: An energy storage device comprising: (A) an anode comprising graphite; and (B) an electrolyte composition comprising: (i) at least one carbonate solvent; (ii) an additive selected from CsPF6, RbPF6, Sr(PF6)2, Ba(PF6)2, or a mixture thereof; and (iii) a lithium salt.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: January 9, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Hongfa Xiang, Jiguang Zhang, Ruiguo Cao
  • Patent number: 9698447
    Abstract: This invention relates to electrolytic solutions and secondary batteries containing same. The electrolytic solutions contain lithium bis (fluorosulfonyl) imide and asymmetric borates, asymmetric phosphates and mixtures thereof.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: July 4, 2017
    Assignee: BASF Corporation
    Inventor: Wentao Li
  • Patent number: 9692084
    Abstract: An electrolyte for a magnesium cell contains a solute, which is phenoxyl-Mg—Al-halogen complex, and an ether solvent. With respect to the entire electrolyte, the solute concentration is 0.2 to 1 mol/L. The electrolyte is capable of staying stable in the air. Also provided is a magnesium cell containing the electrolyte.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 27, 2017
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Jun Yang, Feifei Wang, Yongsheng Guo, Yanna Nuli
  • Patent number: 9673452
    Abstract: The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (˜tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g?1, and stable cycling for more than 50 deep cycles at 0.1 C.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 6, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Yuegang Zhang, Elton J. Cairns, Liwen Ji, Mumin Rao
  • Patent number: 9570777
    Abstract: A lithium secondary battery of the present invention includes: a positive electrode; a negative electrode; a nonaqueous electrolytic solution; and a separator. The positive active material contains a lithium-containing composite oxide containing nickel. A molar ratio of a total nickel amount with respect to a total lithium amount contained in the entire positive active material is 0.05 to 1.0. The nonaqueous electrolytic solution contains 0.5 to 5.0 mass % of a phosphonoacetate-based compound represented by the following General Formula (1). In the Formula, R1, R2, and R3 independently represent an alkyl group, an alkenyl group, or an alkynyl group having 1 to 12 carbon atoms, which may be substituted by a halogen atom, and “n” represents an integer of 0 to 6.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 14, 2017
    Assignees: HITACHI MAXELL, LTD., UBE INDUSTRIES, LTD.
    Inventors: Haruki Kamizori, Yusuke Nakamura, Itaru Gosho, Masayuki Yamada, Koji Abe, Kei Shimamoto
  • Patent number: 9318772
    Abstract: A lithium-ion accumulator includes an anode, a cathode, a separator, and an electrolyte which is in connection with the anode and the cathode, which electrolyte includes at least one lithium salt as electrolyte salt and a solvent solubilizing the at least one lithium salt. The at least one lithium salt reacts with water to form an hydrogenous acid, and the electrolyte includes at least one additive, which reacts with the hydrogenous acid to form a compound acting as electrolyte salt.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 19, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Bernd Schumann, Martin Holger Koenigsmann
  • Patent number: 9257699
    Abstract: A composite material includes a porous organic polymer and an electrochemically active material, wherein the porous organic polymer contains a plurality of pores having a diameter of from about 0.1 nm to about 100 nm, and the electrochemically active material is disposed within the pores.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 9, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Zhengcheng Zhang, Wei Weng, Shengwen Yuan, Khalil Amine
  • Patent number: 9184436
    Abstract: Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 10, 2015
    Assignee: Battelle Memorial Institute
    Inventors: Wu Xu, Jiguang Zhang, Gordon L. Graff, Xilin Chen, Fei Ding
  • Patent number: 9184466
    Abstract: An electrolyte for a rechargeable lithium battery includes a first lithium salt; a second lithium salt including a compound represented by Chemical Formula 1, Chemical Formula 3-1 or 3-2, or combinations thereof; a non-aqueous organic solvent; and an additive including a compound represented by Chemical Formula 9.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 10, 2015
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventor: Seung-Mo Kim
  • Patent number: 9059463
    Abstract: Disclosed is a positive electrode for a rechargeable lithium battery and a rechargeable lithium battery including the same. The positive electrode includes a current collector; and a positive active material layer disposed on the current collector and including a lithium vanadium oxide-based positive active material represented by the following Chemical Formula 1. LixV2-yMyO5??[Chemical Formula 1] In Chemical Formula 1, M is one or more selected from the group consisting of aluminum (Al), magnesium (Mg), zirconium (Zr), titanium (Ti), strontium (Sr), copper (Cu), cobalt (Co), nickel (Ni), manganese (Mn), and a combination thereof, 1<x<4, and 0?y?0.5.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 16, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sumihito Ishida, Jung-Woo An, Kyeu-Yoon Sheem
  • Publication number: 20150140450
    Abstract: An electrolyte solution including a non-aqueous organic solvent and a magnesium salt represented by Formula 1: wherein in Formula 1, groups CY1, CY2, A1 to A10, and variable n are defined in the specification.
    Type: Application
    Filed: April 17, 2014
    Publication date: May 21, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Basab ROY, Dong-young KIM, Youn-hee LIM, Seok-soo LEE
  • Publication number: 20150118579
    Abstract: The present invention provides an electrolytic solution for a nonaqueous electrolyte battery and a nonaqueous electrolyte battery having excellent cycle characteristics and high-temperature storage characteristics without causing hydrolysis of a fluorine-containing lithium salt, such as LiPF6, contained as a solute and containing a less amount of free fluorine ions, as well as a method of producing the electrolytic solution for a nonaqueous electrolyte battery.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 30, 2015
    Inventors: Yuki Kondo, Keita Nakahara, Satoshi Muramoto, Takayoshi Morinaka
  • Publication number: 20150118578
    Abstract: Disclosed is a cathode for a lithium sulfur battery comprising a sulfur-containing active material, an electrolyte in which a lithium salt is dissolved in an ether-based solvent, and an additional liquid active material in the form of Li2Sx (0<x?9) dissolved in the electrolyte, and a lithium sulfur battery using the same. The lithium sulfur battery of the present invention has a loading amount of cathode sulfur that is increased to at least about 13.5 mg/cm2 and a structural energy density that is increased from about 265 Wh/kg to at least about 355 Wh/kg as compared with a conventional battery.
    Type: Application
    Filed: December 31, 2013
    Publication date: April 30, 2015
    Applicant: Hyundai Motor Company
    Inventors: Won Keun Kim, Yoon Ji Lee, Jun Ki Rhee
  • Publication number: 20150118580
    Abstract: What is disclosed is a non-aqueous electrolyte for non-aqueous electrolyte battery including a non-aqueous solvent and at least lithium hexafluorophosphate as a solute. This electrolyte is characterized by containing at least one siloxane compound represented by the general formula (1) or the general formula (2). This electrolyte has a storage stability which is improved than electrolytes prepared by adding conventional siloxane compounds.
    Type: Application
    Filed: June 10, 2013
    Publication date: April 30, 2015
    Inventors: Yuki Kondo, Makoto Kubo, Takayoshi Morinaka, Kenta Yamamoto
  • Patent number: 9012072
    Abstract: This invention generally relates to electrochemical cells utilizing magnesium anodes, new solutions and intercalation cathodes. The present invention is a new rechargeable magnesium battery based on magnesium metal as an anode material, a modified Chevrel phase as an intercalation cathode for magnesium ions and new electrolyte solution from which magnesium can be deposited reversibly, which have a very wide electrochemical window. The Chevrel phase compound is represented by the formula Mo6S8-YSeY in which y is higher than 0 and lower than 2 or by the formula MXMo6S8 in which M is selected from the group comprising of copper (Cu), nickel (Ni), silver (Ag) and/or any other transition metal; further wherein x is higher than 0 and lower than 2.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: April 21, 2015
    Assignee: Bar-Ilan University
    Inventors: Doron Aurbach, Elena Levi, Ariel Mitelman, Eli Lancry, Oren Mizrahi, Yosef Gofer, Orit Chasid, Gurukar Shivappa Suresh
  • Patent number: 9005824
    Abstract: There is provided a lithium secondary battery including a positive electrode, a negative electrode, a nonaqueous electrolyte liquid and a separator, that is subjected to a constant-current constant-voltage charge with a stop voltage of more than 4.25V before its use. The lithium secondary battery uses the nonaqueous electrolyte liquid having contained 0.1 to 5 mass % of a phosphonoacetate compound represented by the following general formula (1), and having contained 0.1 to 5 mass % of 1,3-dioxane. In General Formula (1), each of R1, R2 and R3 is independently hydrocarbon groups having a carbon number of 1 to 12 with or without substituent of a halogen atom, and n is 0 to 6 integers.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: April 14, 2015
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Yuta Kawamoto, Haruki Kamizori, Yusuke Nakamura, Masayuki Yamada, Itaru Gosho
  • Patent number: 9005823
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent, a lithium salt, and an additive. The additive includes a gamma butyrolactone compound substituted with at least one F atom at the ?-position.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: April 14, 2015
    Assignees: Samsung SDI Co., Ltd., Soulbrain Co., Ltd.
    Inventors: Duck-Chul Hwang, Eun-Gi Shim, Jong-Hyun Lee, Jong-Su Kim, Young-Min Kim
  • Publication number: 20150084604
    Abstract: An improved lithium-sulfur battery containing a surface-functionalized carbonaceous material. The presence of the surface-functionalized carbonaceous material generates weak chemical bonds between the functional groups of the surface-functionalized carbonaceous material and the functional groups of the polysulfides, which prevents the polysulfide migration to the battery anode, thereby providing a battery with relatively high energy density and good partial discharge efficiency.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER, Ernest NDZEBET, Umamaheswari JANAKIRAMAN
  • Publication number: 20150084603
    Abstract: An improved electrolyte including a strontium additive suitable for lithium-sulfur batteries, a battery including the electrolyte, and a battery including a separator containing a strontium additive are disclosed. The presence of the strontium additive reduces sulfur-containing deposits on the battery anode, thereby providing a battery with relatively high energy density and good partial discharge performance.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: EAGLEPICHER TECHNOLOGIES, LLC
    Inventors: Ramanathan THILLAIYAN, Wujun FU, Mario DESTEPHEN, Greg MILLER
  • Publication number: 20150086879
    Abstract: An anode in which an anode active material layer is arranged on an anode current collector. The anode active material layer includes anode active material particles made of an anode active material including at least one of silicon and tin as an element. An oxide-containing film including an oxide of at least one kind selected from the group consisting of silicon, germanium and tin is formed in a region in contact with an electrolytic solution of the surface of each anode active material particle by a liquid-phase method such as a liquid-phase deposition method. The region in contact with the electrolytic solution of the surface of each anode active material particle is covered with the oxide-containing film, to thereby improve the chemical stability of the anode and the charge-discharge efficiency. The thickness of the oxide-containing film is preferably within a range from 0.1 nm to 500 nm both inclusive.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Hiroyuki Yamaguchi, Hiroshi Horiuchi, Kenichi Kawase, Tadahiko Kubota, Hideki Nakai, Takakazu Hirose
  • Patent number: 8986896
    Abstract: The present invention provides an electrolyte solution including: a solvent composed primarily of a BF3-cyclic ether complex; and a supporting electrolyte. For example, preferred is an electrolyte solution in which the cyclic ether is one or two or more selected from optionally substituted tetrahydrofuran and optionally substituted tetrahydropyran.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: March 24, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Shizuoka University
    Inventors: Tatsuo Fujinami, Tatsuya Koga
  • Publication number: 20150079483
    Abstract: The present disclosure relates to several families of commercially available oxirane compounds that can be used as electrolyte co-solvents, solutes, or additives in non-aqueous electrolyte and their test results in various electrochemical devices. The presence of these compounds can enable rechargeable chemistries at high voltages. These compounds were chosen for their beneficial effect on the interphasial chemistries that occur at high potentials on the classes of 5.0V cathodes used in experimental Li-ion systems.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150079484
    Abstract: The present disclosure relates to additives for electrolytes and preparation of aluminum-based, silicon-based, and bismuth-based additive compounds that can be used as additives or solutes in electrolytes and test results in various electrochemical devices. The inclusion of these aluminum, silicon, and bismuth compounds in electrolyte systems can enable rechargeable chemistries at high voltages that are otherwise unsuitable with current electrolyte technologies. These compounds are so chosen because of their beneficial effect on the interphasial chemistries formed at high potentials, such as 5.0 V class cathodes for Li-ion chemistries. The application of these compounds goes beyond Li-ion battery technology and covers any electrochemical device that employs electrolytes for the benefit of high energy density resultant from high operating voltages.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150050563
    Abstract: A new electrolytic solution system for lithium secondary batteries. Provided is a lithium secondary battery electrolytic solution containing a nonaqueous solvent and a lithium salt. The nonaqueous solvent is mixed at an amount of not more than 3 mol with respect to 1 mol of the lithium salt.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 19, 2015
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Yuki Yamada, Atsuo Yamada, Makoto Yaegashi, Haosheu Zhou, Fujun Li
  • Publication number: 20150050560
    Abstract: The present invention relates to silicone epoxy compositions, methods for making same and uses therefore. In one embodiment, the silicone epoxy ether compositions of the present invention are silane epoxy polyethers that contain at least one epoxy functionality. In another embodiment, the silicone epoxy ether compositions of the present invention are siloxane epoxy polyethers that contain at least one epoxy functionality. In still another embodiment, the present invention relates to silicone epoxy polyether compositions that are suitable for use as an electrolyte solvent in a lithium-based battery, an electrochemical super-capacitors or any other electrochemical device.
    Type: Application
    Filed: January 10, 2013
    Publication date: February 19, 2015
    Inventors: Neeraj Gupta, Karthikeyan Sivasubramanian, Monjit Phukan
  • Publication number: 20150050561
    Abstract: A lithium ion cell includes a cathode including a cathode active material having an operating voltage of 4.6 volts or greater; an anode including an anode material and a lithium additive including a lithium metal foil, lithium alloy, or an organolithium material; a separator; and an electrolyte.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: UChicago Argonne, LLC
    Inventors: Zhengcheng Zhang, Libo Hu, Khalil Amine, Christopher S. Johnson
  • Publication number: 20150044573
    Abstract: The invention relates to lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate, the use of lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate as electrolyte salt in lithium-based energy stores and also ionic liquids comprising 1-trifluoro-methoxy-1,2,2,2-tetrafluoro-ethanesulphonate as anion.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventors: Gerd-Volker Röschenthaler, Martin Winter, Stefano Passerini, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner Schreiner, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Rene Schmitz, Tanja Schedlbauer, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20150044577
    Abstract: A magnesium ion-containing electrolyte used for a magnesium cell includes magnesium, halogen, one of boron, aluminum, and phosphorous, and an organic group including OCXHY. The magnesium ion-containing electrolyte has low reactivity with oxygen. Even when oxygen exists in the magnesium ion-containing electrolyte, a deterioration of the magnesium-ion containing electrolyte is restricted, and magnesium ions stably move.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 12, 2015
    Inventors: Norikazu ADACHI, Kenichirou KAMI, Sergiy M. MALOVANYY, Leonid M. USHKALOV
  • Patent number: 8951676
    Abstract: An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: Pellion Technologies, Inc.
    Inventors: Robert Ellis Doe, George Hamilton Lane, Robert E. Jilek, Jaehee Hwang
  • Publication number: 20150037691
    Abstract: An electrolyte may include compounds of general Formula IVA or IVB. where, R8, R9, R10, and R11 are each independently selected from H, F, Cl, Br, CN, NO2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z? is a linkage between X and Y, and at least one of R8, R9, R10, and R11 is other than H.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Wei Weng, Zhengcheng Zhang, Khalil Amine
  • Publication number: 20150024267
    Abstract: The present invention relates to an electrolyte having improved high-rate charge and discharge property, and a capacitor comprising the same, and more particularly to an electrolyte having improved high-rate charge and discharge property comprising an aromatic compound, which comprises at least one compound of the following Chemical Formula 1 to Chemical Formula 11 that can induce resonance effect of electron movement, and which is a substituted organic compound in which a functional group is present at a location that can structurally prevent local polarization effect, and the boiling point of which is 80° C. or higher, wherein R in the Chemical Formula 1 to Chemical Formula 11 is at least one functional group selected from the alkyl group consisting of methyl, ethyl, propyl and butyl, and a capacitor comprising the same.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventor: Cheol Soo JUNG
  • Publication number: 20150024121
    Abstract: A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ?the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu