Butanol Patents (Class 435/160)
  • Publication number: 20140057327
    Abstract: The present invention relates to the production of biofuels by utilizing efficient biomass digestion and fermentation by a new thermophilic microorganism generated after fusion of two different bacteria Clostridium thermocellum and C. acetobutylicum and properly mutating the fused bacteria to produce biofuels and other economically important chemicals in a single vessel from lignocellulosic derived renewable biomass. All the necessary biochemical digestions and fermentation are carried out by this single thermophilic microorganism in one single vessel eliminating the need for multiple step digestion and fermentation processes, requiring multiple chambers. It also significantly reduces the rate limiting steps where increasing accumulation of alcohol, butanol and other substances become toxic to the very bacteria that produce these biofuels. The single vessel is incubated at high temperatures (45° C. or above) to eliminate the need for periodic stoppage and restarting of the process.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Inventors: Omar Bagasra, Kamal Chowdhury, Verlie A. Tisdale, George E. Miller, III, Rebecca Bullard-Dillard
  • Publication number: 20140051897
    Abstract: The present invention in its various embodiments is directed to methods for preparing a renewable jet fuel blendstock, and blendstocks prepared by such methods, comprising fermenting a biomass-derived feedstock to form one or more C2—C6 alcohols such as isobutanol, catalytically dehydrate and oligomerize the alcohols to form higher molecular weight olefins (e.g., C8—C16 olefins), hydrogenating at least a portion of the higher molecular weight olefins to form a renewable jet fuel blendstock comprising C12 and C16 alkanes which meet or exceed the requirements of ASTM D7566-10a for hydroprocessed synthesized paraffinic kerosene (SPK).
    Type: Application
    Filed: February 11, 2013
    Publication date: February 20, 2014
    Inventors: Matthew W. PETERS, Joshua D. Taylor
  • Publication number: 20140051137
    Abstract: A group of bacterial dihydroxy-acid dehydratases having a [2Fe-2S] cluster was discovered. Bacterial [2Fe-2S] DHADs were expressed as heterologous proteins in bacteria and yeast cells, providing DHAD activity for conversion of 2,3-dihydroxyisovalerate to ?-ketoisovalerate or 2,3-dihydroxymethylvalerate to ?-ketomethylvalerate. Isobutanol and other compounds may be synthesized in pathways that include bacterial [2Fe-2S] DHAD activity.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 20, 2014
    Applicant: Butamax(TM) Advanced Biofuels LLC
    Inventor: Butamax(TM) Advanced Biofuels LLC
  • Publication number: 20140051130
    Abstract: The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 20, 2014
    Inventors: Brett McBrayer, Tarana Shaghasi, Elena Vlasenko
  • Publication number: 20140051133
    Abstract: Provided herein are polypeptides having ketol-aid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.
    Type: Application
    Filed: May 10, 2013
    Publication date: February 20, 2014
    Applicant: BUTAMAX ADVANCED BIOFUELS, LLC
    Inventors: Sridhar Govindarajan, Yougen Li, Der-Ing Liao, Daniel P. O'Keefe, Jeremy Stephen Minshull, Steven Cary Rothman, Alexander Vincent Tobias
  • Publication number: 20140051139
    Abstract: Processes are disclosed for preparing microorganism concentrates from fermentation broth containing a free suspension of the microorganisms which is used for the anaerobic conversion of syngas to oxygenated organic compound. The processes involve the use of processing steps and the presence of certain additives to enhance the ability of the microorganism concentrate to be stored for extended periods and reactivated.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 20, 2014
    Applicant: Coskata, Inc.
    Inventor: Peter Martin Lokken
  • Patent number: 8652823
    Abstract: Bacteria that are not natural butanol producers were found to have increased tolerance to butanol when the membrane content of unsaturated trans fatty acids was increased. Feeding cells with unsaturated trans fatty acids increased their concentration in the membrane, which may also be accomplished by expressing a fatty acid cistrans isomerase.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: February 18, 2014
    Assignee: Butamax(TM) Advanced Biofuels LLC
    Inventors: Dennis Flint, Tina K. Van Dyk
  • Publication number: 20140045234
    Abstract: A method to recover and harvest nutrients from a liquid stream by incorporating them into microorganisms grown in a rotating photobioreactor. The method further includes optionally integrating the rotating photobioreactor with a composting or biogenic drying process.
    Type: Application
    Filed: September 3, 2013
    Publication date: February 13, 2014
    Inventor: Dennis A. Burke
  • Publication number: 20140047571
    Abstract: The present invention relates to polypeptides having phytase activity. These polypeptides have an amino acid sequence which has at least 70% identity to either of three phytases derived from the bacterium Buttiauxella, and which comprises at least one of the following amino acids at the position indicated: 119N, 120L, and/or 121E. These phytases have an improved specific activity. Additional specific amino acid substitutions are also disclosed which characterize and distinguish additional phytases of the invention having improved properties such as temperature and/or pH stability, pH activity profile, temperature activity profile, substrate profile, improved performance in animal feed in vitro or in vivo. The invention also relates to isolated polynucleotides encoding the polypeptides, nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 13, 2014
    Applicant: Novozymes A/S
    Inventors: Carsten Sjoeholm, Soeren Flensted Lassen, Lars Kobberoee Skov, Leonardo De Maria
  • Publication number: 20140038848
    Abstract: The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.
    Type: Application
    Filed: July 3, 2013
    Publication date: February 6, 2014
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Thomas Lawrence Ruegg, Michael P. Thelen
  • Publication number: 20140038252
    Abstract: The present invention relates to a process for the production of ethanol and butanol from biomass, and in particular to a process for the production of ethanol and butanol using two separate fermentation step subjecting the biomass feedstock to anaerobic fermentation at a pH below 6.0 and at a temperature in the range 20 to 700° C. and so as to convert the biomass to a product predominantly comprising acetic acid and butyric acid with at least a 2:1 ratio by weight of acetic acid to butyric acid, c) treating the product of stream of step (b) to separate a solution comprising the acetic acid and butyric acid by: (i) separating a solution comprising the acetic acid and butyric acid from any residual solids and (ii) separating bacteria and/or pasteurizing or sterilizing the solution from the first fermentation step, and d) in a second fermentation step fermenting the solution comprising the acetic acid and butyric acid from the step (c) to form ethanol and butanol.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Applicant: INEOS BIO SA
    Inventors: Peter Simpson Bell, Stephen John Benstead, Neil Turnbull
  • Publication number: 20140038251
    Abstract: Fructose, e.g., fructose derived from a cellulosic or lignocellulosic material, is use, e.g., fermented to produce a product, e.g., a solvent.
    Type: Application
    Filed: September 3, 2013
    Publication date: February 6, 2014
    Applicant: XYLECO, INC.
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN, Michael W. FINN
  • Patent number: 8642299
    Abstract: The present invention describes a method for producing butanol by fermentation of carbohydrates using mixed populations of acidogenic-phase cells and solventogenic-phase cells of Clostridium in a solitary vessel. The present system as described does not require intermittent adjustment of pH or venting of headspace gases. The method provides a process for removal of the butanol product which does not irreversibly harm the cells and conditions are described where such cells may resume butanol synthesis in the same solitary vessel. The invention also describes compositions and biologically pure cultures which comprise the Clostridium cells as disclosed.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: February 4, 2014
    Inventor: Eugene Butler, III
  • Publication number: 20140030782
    Abstract: Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 30, 2014
    Applicant: Butamax(TM) Advanced Biofuels LLC
    Inventor: Butamax(TM) Advanced Biofuels LLC
  • Publication number: 20140030730
    Abstract: The present invention relates to a method of identifying a heterologous polypeptide having enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA in (the cytosol of) a yeast cell comprising: a) providing a mutated yeast cell comprising a deletion of at least one gene of the (PDH) by-pass, selected from the genes encoding the enzymes pyruvate decarboxylase (PDC), acetaldehyde dehydrogenase (ALD), and acetyl-CoA synthetase (ACS); b) transforming said mutated yeast cell with an expression vector comprising a heterologous nucleotide sequence encoding a candidate polypeptide having potential enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA; c) testing said recombinant mutated yeast cell for its ability to grow on minimal medium containing glucose as sole carbon source, and d) identifying said candidate polypeptide as a heterologous polypeptide having enzymatic activity for converting pyruvate, acetaldehyde or acetate into acetyl-CoA in (the cytosol of
    Type: Application
    Filed: October 3, 2013
    Publication date: January 30, 2014
    Applicant: DSM IP ASSETS B.V.
    Inventors: Ulrike Maria MUELLER, Liang WU, Lourina Madeleine RAAMSDONK, Aaron Adriaan WINKLER
  • Publication number: 20140030783
    Abstract: Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 30, 2014
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventor: BUTAMAX(TM) ADVANCED BIOFUELS LLC
  • Publication number: 20140030777
    Abstract: The present invention relates to an apparatus and a method for fermenting, separating, and refining a product, which is produced by cultivating a microorganism. The apparatus and the method for fermenting, separating, and refining, of the present invention, can separate and refine the product that is produced by microbial fermentation in a simple, continuous manner and with high efficiency.
    Type: Application
    Filed: April 13, 2012
    Publication date: January 30, 2014
    Applicant: GS CALTEX CORPORATION
    Inventors: Sang-Hyun Lee, Moon-Ho Eom, Julia Lee, Sang-Jun Jeon, Jung-Hee Cho, Jin Dal Rae Chol
  • Publication number: 20140030776
    Abstract: A group of bacterial dihydroxy-acid dehydratases having a [2Fe-2S] cluster was discovered. Bacterial [2Fe-2S] DHADs were expressed as heterologous proteins in bacteria and yeast cells, providing DHAD activity for conversion of 2,3-dihydroxyisovalerate to ?-ketoisovalerate or 2,3-dihydroxymethylvalerate to ?-ketomethylvalerate. Isobutanol and other compounds may be synthesized in pathways that include bacterial [2Fe-2S] DHAD activity.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 30, 2014
    Applicant: Butamax(TM) Advanced Biofuels LLC
    Inventor: Butamax(TM) Advanced Biofuels LLC
  • Publication number: 20140030763
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Application
    Filed: June 20, 2013
    Publication date: January 30, 2014
    Inventor: Marshall Medoff
  • Patent number: 8637281
    Abstract: Lactic acid bacterial (LAB) cells were modified such that they have a specific activity of dihydroxy-acid dehydratase enzyme activity that is increased to about 0.1 ?mol min?1 mg?1. LAB cells with even higher activities of 0.2 to 0.6 ?mol min?1 mg?1 of DHAD activity were obtained. These modified cells may be used to produce isobutanol when additional isobutanol biosynthetic pathway enzymes are expressed.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 28, 2014
    Assignee: Butamax(TM) Advanced Biofuels LLC
    Inventors: Brian James Paul, Wonchul Suh
  • Publication number: 20140024094
    Abstract: Yeast cells with reduced activity of certain enzymes involved in branched chain amino acid biosynthesis in yeast mitochondria are described. Target enzymes include threonine deaminase, isopropylmalate synthase, and optionally branched chain amino acid transaminase.
    Type: Application
    Filed: May 8, 2013
    Publication date: January 23, 2014
    Applicant: Butamax Advanced Biofuels LLC
    Inventor: Larry Cameron ANTHONY
  • Publication number: 20140024064
    Abstract: The present invention relates to processes and systems for the production of fermentative alcohols such as ethanol and butanol. The present invention also provides methods for separating feed stream components for improved biomass processing and productivity.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 23, 2014
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventors: Keith H. Burlew, James Timothy Cronin, Benjamin Fuchs, John W. Hallam, David J. Lowe, Brian Michael Roesch, Mathias E. Stolarski, Joseph J. Zaher
  • Publication number: 20140024086
    Abstract: The subject invention pertains to the discovery that the NADH-dependent propanediol oxidoreductase (FucO) can reduce furfural. This allows for a new approach to improve furfural tolerance in bacterial and/or yeast cells used to produce desired products. Thus, novel biocatalysts (bacterial, fungal or yeast cells) exhibiting increased tolerance to furfural and 5-hydroxymethylfurfural (5-HMF) are provided as are methods of making and using such biocatalysts for the production of a desired product.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 23, 2014
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Elliot N. Miller, Xueli Zhang, Lorraine P. Yomano, Xuan Wang, Keelnatham T. Shanmugam, Lonnie O'Neal Ingram
  • Publication number: 20140017737
    Abstract: The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 16, 2014
    Inventor: Mark Wogulis
  • Publication number: 20140017748
    Abstract: The present invention relates to recombinant microorganisms comprising biosynthetic pathways and methods of using said recombinant microorganisms to produce various beneficial metabolites. In various aspects of the invention, the recombinant microorganisms may further comprise one or more modifications resulting in the reduction or elimination of 3 keto-acid (e.g., acetolactate and 2-aceto-2-hydroxybutyrate) and/or aldehyde-derived by-products. In various embodiments described herein, the recombinant microorganisms may be microorganisms of the Saccharomyces clade, Crabtree-negative yeast microorganisms, Crabtree-positive yeast microorganisms, post-WGD (whole genome duplication) yeast microorganisms, pre-WGD (whole genome duplication) yeast microorganisms, and non-fermenting yeast microorganisms.
    Type: Application
    Filed: March 27, 2012
    Publication date: January 16, 2014
    Applicants: GEVO, INC., The California Institute of Technology
    Inventors: Sabine BASTIAN, Frances Arnold, Peter Meinhold
  • Patent number: 8628643
    Abstract: A fermentation liquid feed including water and a product alcohol and optionally CO2 is at least partially vaporized such that a vapor stream is produced. The vapor stream is contacted with an absorption liquid under suitable conditions wherein an amount of the product alcohol is absorbed. The portion of the vapor stream that is absorbed can include an amount of each of the water, the product alcohol and optionally the CO2. The temperature at the onset of the absorption of the vapor stream into the absorption liquid can be greater than the temperature at the onset of condensation of the vapor stream in the absence of the absorption liquid. The product alcohol can be separated from the absorption liquid whereby the absorption liquid is regenerated. The absorption liquid can include a water soluble organic molecule such as an amine.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: January 14, 2014
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Michael Charles Grady, William D. Parten, Robert W. Sylvester, Joseph J. Zaher
  • Publication number: 20140011246
    Abstract: A system and method for harvesting and processing algae, the system and method including harvesting algae by mechanical or chemical system and processing the harvested algae to produce at least one of biodiesel, biosolvents, bioplastics, biogas, or fertilizer.
    Type: Application
    Filed: June 11, 2013
    Publication date: January 9, 2014
    Applicant: Utah State University
    Inventors: Ronald Sims, Charles Miller, Joshua T. Ellis, Ashik Sathish, Renil Anthony, Asif Rahman
  • Publication number: 20140011231
    Abstract: An improved process for alcohol production includes microbial fermentation using a genetically modified microorganism to produce substantial quantities of aldehydes that are stripped from the fermentation medium and condensed. So produced aldehydes are converted in an ex vivo process to corresponding alcohols.
    Type: Application
    Filed: March 14, 2012
    Publication date: January 9, 2014
    Applicant: Easel Biotechnologies, LLC
    Inventors: Wendy M. Higashide, Kwang Myung Cho, Shahrooz Rabizadeh
  • Publication number: 20140004582
    Abstract: The present invention relates to producing chemicals and biofuels from wood material, e.g. mixed forest biomass. Specifically, the invention concerns a process for conditioning spent liquor produced by SO2-ethanol-water (SEW) fractionation of wood chips for fermentation to butanol, ethanol and acetone/isopropanol (so called ABE process) by Clostridia bacteria.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Adriaan Van Heiningen, Evangelos Sklavounos
  • Publication number: 20140004563
    Abstract: A system and method for the treatment of biomass comprising mixing a biomass with an ionic liquid (IL) to swell the biomass and electromagnetic (EM) heating, preferably radiofrequency (RF) heating, said biomass. Additionally, a method of acidolysis of biomass comprising mixing biomass in an ionic liquid (IL) to swell the biomass; adding an acid, to lower the pH of the biomass below pH 7; applying radio frequency (RF) heating to the biomass to heat to a target temperature range; applying ultrasonic heating, electromagnetic (EM) heating, convective heating, conductive heating, or combinations thereof, to the biomass to maintain the biomass at a target temperature range; washing the treated biomass; and recovering sugars and released lignin.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 2, 2014
    Applicant: SUGANIT SYSTEMS, INC.
    Inventors: Praveen PARIPATI, Anantharam DADI
  • Publication number: 20140004570
    Abstract: Provided herein are methods of increasing the efficiency of biomass saccharification. In particular, the methods include ways of avoiding feedback inhibition during the production of useful products.
    Type: Application
    Filed: September 3, 2013
    Publication date: January 2, 2014
    Applicant: XYLECO, INC.
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN, Michael W. FINN
  • Publication number: 20140004584
    Abstract: Methods and systems for producing a biofuel using genetically modified iron-oxidizing bacteria (IOB) are disclosed. In some embodiments, the methods include the following: providing an IOB that have been genetically modified to include a particular metabolic pathway to enable them to generate a particular biofuel or chemical; feeding a first source of ferrous iron to the IOB; feeding water, carbon dioxide, and oxygen to the IOB; and producing at least the biofuel or chemical, ferric iron, and an IOB biomass. In some embodiments, the methods and systems include the following: a bioreactor including IOB that have been genetically modified to include a particular metabolic pathway to enable them to generate a particular biofuel; a first source of ferrous iron; sources of water, carbon dioxide, and oxygen; and a electrochemical reactor that is configured to electrochemically reduce ferric iron produced in the bioreactor to a second source of ferrous iron.
    Type: Application
    Filed: February 27, 2012
    Publication date: January 2, 2014
    Inventors: Scott Banta, Alan West
  • Publication number: 20140004526
    Abstract: The invention relates to suitable screening strategies for evaluating various candidate promoters for differential gene expression during the propagation and production phases of a fermentation process. The invention also relates to recombinant host cells that comprise identified promoter nucleic acid sequences and methods for producing fermentation products employing the same.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 2, 2014
    Applicant: Butamax™ Advanced Biofuels LLC
    Inventor: Butamax™ Advanced Biofuels LLC
  • Patent number: 8617861
    Abstract: A method for producing butanol through microbial fermentation, in which the butanol product is removed during the fermentation by extraction into a water-immiscible organic extractant in the presence of at least one electrolyte at a concentration at least sufficient to increase the butanol partition coefficient relative to that in the presence of the salt concentration of the basal fermentation medium, is provided. The electrolyte may comprise a salt which dissociates in the fermentation medium, or in the aqueous phase of a biphasic fermentation medium, to form free ions. Also provided is a method and composition for recovering butanol from a fermentation medium.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: December 31, 2013
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Michael Charles Grady, Ranjan Patnaik
  • Publication number: 20130344553
    Abstract: Designer Calvin-cycle-channeled and hydrogenotrophic biofuel-production pathways, the associated designer genes and designer transgenic organisms for autotrophic production of butanol and related higher alcohols from carbon dioxide, hydrogen, and/or water are provided. The butanol and related higher alcohols include 1-butanol, 2-methyl-1-butanol, isobutanol, 3-methyl-1-butanol, 1-hexanol, 1-octanol, 1-pentanol, 1-heptanol, 3-methyl-1-pentanol, 4-methyl-1-hexanol, 5-methyl-1-heptanol, 4-methyl-1-pentanol, 5-methyl-1-hexanol, and 6-methyl-1-heptanol. The designer autotrophic organisms such as designer transgenic oxyphotobacteria and algae comprise designer Calvin-cycle-channeled and hydrogenotrophic pathway gene(s) and biosafety-guarding technology for enhanced autotrophic production of butanol and related higher alcohols from carbon dioxide and water.
    Type: Application
    Filed: December 20, 2011
    Publication date: December 26, 2013
    Inventor: James Weifu Lee
  • Publication number: 20130344551
    Abstract: Methods for the evolution of NADPH specific ketol-add reductoisomerase enzymes to acquire NADH specificity are provided. Specific mutant ketol-acid reductoisomerase enzymes isolated from Pseudomonas that have undergone co-factor switching to utilize NADH are described.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 26, 2013
    Applicant: BUTAMAX(TM) ADVANCED BIOFUELS LLC
    Inventor: BUTAMAX(TM) ADVANCED BIOFUELS LLC
  • Patent number: 8614085
    Abstract: Increasing tolerance to butanol in yeast has been accomplished by decreasing activity of Pdr5p encoded by an endogenous PDR5 gene. A deletion mutation of the PDR5 gene led to improved growth yield in the presence of butanol. Yeast cells with reduced Pdr5p activity, or other multidrug resistance ATP-binding cassette transporter protein activity encoded by CDR1 or BFR1, and a butanol biosynthetic pathway may be used for improved butanol production.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: December 24, 2013
    Assignee: Butamax(TM) Advanced Biofuels LLC
    Inventor: Tina K. Van Dyk
  • Patent number: 8614077
    Abstract: This invention is directed to methods for recovery of C3-C6 alcohols from dilute aqueous solutions, such as fermentation broths. Such methods provide improved volumetric productivity for the fermentation and allows recovery of the alcohol. Such methods also allow for reduced energy use in the production and drying of spent fermentation broth due to increased effective concentration of the alcohol product by the simultaneous fermentation and recovery process which increases the quantity of alcohol produced and recovered per quantity of fermentation broth dried. Thus, the invention allows for production and recovery of C3-C6 alcohols at low capital and reduced operating costs.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: December 24, 2013
    Assignee: Gevo, Inc.
    Inventors: William A. Evanko, Aharon M. Eyal, David A. Glassner, Fudu Miao, Aristos A. Aristidou, Kent Evans, Patrick R. Gruber, Andrew C. Hawkins, Peter Meinhold, Reid M. Renny Feldman, Uvini Gunawardena, Jun Urano
  • Publication number: 20130337518
    Abstract: The microorganism-containing biocatalysts disclosed have a large population of the microorganisms irreversibly retained in the interior of the biocatalysts. The biocatalysts possess a surprisingly stable population of microorganisms and have an essential absence of debris generation from metabolic activity of the microorganisms. The biocatalysts are composed of highly hydrophilic polymer and have an internal, open, porous structure that promotes community phenotypic changes.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Fatemeh RAZAVI-SHIRAZI, Mohammad Ali DORRI, Farhad DORRI-NOWKOORANI, Ameen RAZAVI
  • Publication number: 20130337517
    Abstract: Overlay processes are disclosed for making ethanol that not only increase ethanol conversion but do so in a cost effective manner with a reduction in energy requirements per unit of ethanol production. The processes can provide, if desired, higher organic compound as a co-product with ethanol.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Fatemeh RAZAVI-SHIRAZI, Ameen RAZAVI, Norman Louis BALMER
  • Patent number: 8609380
    Abstract: A process that generates sulfide in production of liquid products from syngas and a system for syngas fermentation including a sulfide generation process to convert feed gas to liquid product, the process including: partially oxidizing high-temperature gas, input gas, and molten sulfur to generate sulfide gas, the high-temperature gas containing oxygen, the input gas containing carbonaceous fuel and the sulfide gas containing hydrogen sulfide, CO, CO2, and H2; mixing the sulfide gas with the feed gas to generate mixed gas having a predetermined hydrogen sulfide concentration; providing at least a portion of the mixed gas to a production fermentor containing microorganisms; and converting the mixed gas to the liquid product by contact with the microorganisms.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: December 17, 2013
    Assignee: Coskata, Inc.
    Inventors: Jianxin Du, Rathin Datta
  • Publication number: 20130330791
    Abstract: The present disclosure relates to an improved process of producing a fermentation product, in particular ethanol. The present disclosure relates also to the use of enzymes for improving the quality of by-products in the fermentative production process and to compositions comprising enzymes capable of degrading components in the fermented mash in the fermentation process.
    Type: Application
    Filed: December 21, 2011
    Publication date: December 12, 2013
    Applicant: DIREVO INDUSTRIAL BIOTECHNOLOGY GMBH
    Inventors: Klaudija Milos, Steffen Köhler, Christian Elend, Léonie Degener
  • Publication number: 20130323809
    Abstract: This invention relates to compositions, systems, and methods for producing biofuels, such as butanol, and related compounds. More specifically, provided are methods of making recombinant microorganisms having non-naturally occurring metabolic pathways for the production of biofuels, and methods of producing biofuels using such organisms. Also provided are metabolically engineered microorganisms capable of producing butanol from a substrate.
    Type: Application
    Filed: September 30, 2011
    Publication date: December 5, 2013
    Applicant: THE OHIO STATE UNIVERSITY
    Inventors: Shang-Tian Yang, Mingrui Yu
  • Patent number: 8597917
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed for use in the production of useful products, such as fuels. For example, systems can use biomass materials, such as cellulosic and/or lignocellulosic materials, to enhance the production of a product, e.g., the production of ethanol and/or butanol by fermentation.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: December 3, 2013
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Harrison Medoff
  • Patent number: 8597934
    Abstract: Ethanol and other liquid products are produced from biomass using gasification of the biomass to produce a syngas containing CO2, CO, H2 and sulfur or sulfur compounds that passes the syngas to a fermentation step for the conversion of the CO and CO2 and H2 to ethanol. Sulfur and sulfur compounds in the syngas are used to satisfy sulfur demanded by bacteria in the fermentation step. A sulfur control additive is added to the gasification to control syngas sulfur and sulfur compounds at a desired concentration to meet bacteria sulfur demand.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: December 3, 2013
    Assignee: Coskata, Inc.
    Inventor: Richard E. Tobey
  • Publication number: 20130316414
    Abstract: A high flux of metabolites from pyruvate to 2,3-butanediol in Lactobacillus plantarum was achieved through genetic engineering. Substantial elimination of lactate dehydrogenase activity in the presence of heterologously expressed butanediol dehydrogenase activity led to 2,3 butanediol production that was at least 49% of the total of major pyruvate-derived products.
    Type: Application
    Filed: April 29, 2013
    Publication date: November 28, 2013
    Applicant: Butamax Advanced Biofuels LLC
    Inventor: Butamax Advanced Biofuels LLC
  • Publication number: 20130316412
    Abstract: The invention provides an improved method for the production, separation and recovery of one or more fermentation products from a fermentation broth. Further, the invention provides a method for increasing efficiency of a fermentation reaction.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 28, 2013
    Applicant: LanzaTech New Zealand Limited
    Inventors: Michael Anthony Schultz, Alice Marie Havill, Anil R. Oroskar
  • Publication number: 20130316407
    Abstract: The invention relates to a process of producing a fermentation product in the presence of pyridoxamine.
    Type: Application
    Filed: February 6, 2012
    Publication date: November 28, 2013
    Applicant: NOVOZYMES A/S
    Inventor: Joyce Craig
  • Publication number: 20130316364
    Abstract: One or more genes in a biosynthesis pathway for a vitamin or other essential nutrient which is needed for the survival of a microorganism can be used as an effective selective marker to identify cells transformed with an exogenous nucleic acid. The microorganism does not naturally contain or express the one or more gene. This permits genetic manipulations to be performed. It permits lower cost fermentations to be performed. It permits production of the essential nutrient for subsequent commodity use.
    Type: Application
    Filed: May 22, 2013
    Publication date: November 28, 2013
    Applicant: LanzaTech New Zealand Limited
    Inventor: LanzaTech New Zealand Limited
  • Publication number: 20130316413
    Abstract: The invention relates to recombinant microorganisms that have been engineered to produce various chemicals using genes that have been repurposed to create a reverse beta oxidation pathway. Generally speaking, the beta oxidation cycle is expressed and driven in reverse by modifying various regulation points for as many cycles as needed, and then the CoA thioester intermediates are converted to useful products by the action of termination enzymes.
    Type: Application
    Filed: February 7, 2012
    Publication date: November 28, 2013
    Applicant: William Marsh Rice University
    Inventors: Ramon Gonzalez, James Clomburg, Clementina Dellomonaco, Elliot N. Miller