Carrier-bound Or Immobilized Enzyme Or Microbial Cell; Carrier-bound Or Immobilized Cell; Preparation Thereof Patents (Class 435/174)
  • Publication number: 20150073389
    Abstract: Human hepatocyte cell cultures and their use in bioreactors and bioartificial liver (BAL) systems are provided. The cells have constitutive liver-specific metabolic activity resembling that of freshly isolated human hepatocytes. The hepatocyte cells and BAL systems can be used to treat patients suffering from acute liver failure, end-stage liver disease, or acute-on-chronic liver disease.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: Academisch Ziekenhuis Bij De Universiteit Van Amsterdam
    Inventors: Robert Antoine Francois Marie CHAMULEAU, Ruurdtje HOEKSTRA, Gerardus Adrianus Antonius NIBOURG
  • Publication number: 20150072383
    Abstract: The present disclosure provides engineered transaminase polypeptides for the production of amines, polynucleotides encoding the engineered transaminases, host cells capable of expressing the engineered transaminases, and methods of using the engineered transaminases to prepare compounds useful in the production of active pharmaceutical agents. The present disclosure provides engineered polypeptides having transaminase activity, polynucleotides encoding the polypeptides, methods of the making the polypeptides, and methods of using the polypeptides for the biocatalytic conversion of ketone substrates to amine products. The present enzymes have been engineered to have one or more residue differences as compared to the amino acid sequence of the naturally occurring transaminase of Vibrio fluvialis. In particular, the transaminases of the present disclosure have been engineered for efficient formation of chiral tryptamine derivatives from its corresponding prochiral ketone substrates.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 12, 2015
    Inventors: Jovana Nazor, Derek Smith, Michael Crowe, Shiwei Song, Steven J. Collier
  • Publication number: 20150073381
    Abstract: The invention provides multi-chamber encapsulated cell therapy cartridge devices that are capable of delivering biologically active molecules as well as methods of using these devices.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventors: Konrad A. Kauper, John Fraser Mills, Megan Billings, Michael R. Rivera, Alline Monteiro Alcantara Lelis
  • Patent number: 8975074
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: March 10, 2015
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8975052
    Abstract: Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 10, 2015
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8969027
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Publication number: 20150050711
    Abstract: There is provided a device, and related method and uses, for drawing a polymer fiber, the device comprising: a. at least two polymer compartments, wherein each polymer compartment is capable of retaining a polymer solution, and wherein adjacent compartments comprise different polymer solutions; and b. a slider comprising at least one prong, wherein the prong is capable of contacting the different polymer solutions, and wherein the slider is arranged in a retractable manner from the at least two polymer compartments. There is further provided a system and a related method for manufacturing a polymer fiber.
    Type: Application
    Filed: March 18, 2013
    Publication date: February 19, 2015
    Inventors: Andrew Chwee Aun Wan, Meng Fatt Leong, Tze Chiun Lim, Jackie Y. Ying, Jerry Kah Chin Toh
  • Patent number: 8956823
    Abstract: An anti-antibody reagent for use in a competitive or sandwich simplex or multiplex assay, said reagent comprising one or more labeled anti-antibodies for the primary antibodies to be determined in the assay, the reagent further comprising a corresponding unlabeled anti-antibody in an excess or near excess concentration with respect to their binding partners.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: February 17, 2015
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: William F. Link, Renato B. Del Rosario, Randy Sweet, David L. King
  • Publication number: 20150044723
    Abstract: The present invention relates to cofactor regeneration systems, components and uses thereof and methods for generating and regenerating cofactors. The cofactor regeneration system comprises a first electron transfer component selected from a polypeptide comprising a NADH:acceptor oxido-reductase or NADPH:acceptor oxido-reductase, a second electron transfer component selected from a hydrogenase moiety and/or non-biological nanoparticles and an electronically conducting surface. The first and second electron transfer components are immobilised on the electrically conducting surface, and the first and second electron transfer components do not occur together in nature as an enzyme complex.
    Type: Application
    Filed: October 3, 2012
    Publication date: February 12, 2015
    Inventors: Kylie Vincent, Lars Lauterbach, Oliver Lenz
  • Patent number: 8951761
    Abstract: The disclosed matter relates to immobilized enzymes and methods of use thereof.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: February 10, 2015
    Assignee: DSM Nutritional Products AG
    Inventors: Jaroslav A. Kralovec, Weijie Wang
  • Patent number: 8951793
    Abstract: Disclosed are methods of isolating and using a population of FOXP3+ regulatory T cells in a variety of preventative and therapeutic approaches to autoimmune diseases, graft-versus-host disease and transplant rejection.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 10, 2015
    Assignee: The United States of America, as represented by The Secretary, Department of Health and Human Services
    Inventors: Dat Tran, Ethan M. Shevach
  • Publication number: 20150037865
    Abstract: Kits and assemblies for causing, enhancing, and/or expediting consumption of an article by at least one biodegradative living organism are disclosed. The kits and assemblies include at least one additional living organism that enhances and/or expedites consumption of the article by the at least one biodegradative living organism. Methods of producing and using same are also provided.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventor: Donald E. Weder
  • Patent number: 8945895
    Abstract: Provided herein are methods for purifying recombinant A Disintegrin-like and Metallopeptidase with Thrombospondin Type 1 Motif 13 (ADAMTS13) protein from a sample. The method comprises enriching for ADAMTS13 protein by chromatographically contacting the sample with hydroxyapatite under conditions that allow ADAMTS13 protein to appear in the eluate or supernatant from the hydroxylapatite. The methods may further comprise tandem chromatography with a mixed mode cation exchange/hydrophobic interaction resin that binds ADAMTS13 protein. Additional optional steps involve ultrafiltration/diafiltration, anion exchange chromatography, cation exchange chromatography, and viral inactivation. Also provided herein are methods for inactivating virus contaminants in protein samples, where the protein is immobilized on a support. Also provided herein are compositions of ADAMTS13 prepared according to said methods.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 3, 2015
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Meinhard Hasslacher, Christian Fiedler, Christa Mayer, Artur Mitterer
  • Patent number: 8945941
    Abstract: Aspects of the present invention relate to a method for the preparation of samples for MALDI MS imaging. Certain embodiments relate to a method of matrix deposition for samples, wherein tissue sections are prepared via a synergistic combination of fixation with matrix. In certain embodiments, tissue is fixed with cold solvent, according to well-established histology protocols, and in the presence of matrix, allowing for high resolution spatial mapping of protein, lipid, sugar, and/or nucleic acid distribution. In certain embodiments, the present invention relates to fixation with matrix of whole organisms. In certain embodiments, animals are perfused with fixation and matrix mixtures, which allows for direct mass spectrometry analysis.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 3, 2015
    Assignees: Brandeis University, The Brigham and Women's Hospital, Inc.
    Inventors: Jeffrey N. Agar, Nathalie Y. R. Agar
  • Patent number: 8945485
    Abstract: A microfluidic valve system is disclosed that includes a matrix, a hydrophilic acceptor region a hydrophilic transfer region, and a hydrophobic gap between the acceptor region and the transfer region.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: February 3, 2015
    Assignee: Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Hong Chen, Constantine Anagnostopoulos, Mohammed Faghri, Jeremy Cogswell
  • Patent number: 8936926
    Abstract: Active surface coupled polymerases, surfaces that include such polymerases, and methods of making and using surface-attached polymerases are provided.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 20, 2015
    Assignee: Pacific Biosciences of California
    Inventors: David Hanzel, Jonas Korlach, Paul Peluso, Geoffrey Otto, Thang Pham, David Rank, Stephen Turner
  • Publication number: 20150017676
    Abstract: A capsule containing at least one mammalian cell, includes a liquid core, and at least one external envelope totally encapsulating the liquid core at its periphery, the external envelope including at least one gelled polyelectrolyte and/or a stiffened biopolymer and being able to retain the liquid core when the capsule is immersed in a gas. The present invention further relates to the method for preparing such a capsule, to a method for screening cosmetic active ingredients as well as a culture method using such capsules.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Applicant: CAPSUM
    Inventors: Jerome Bibette, Nicolas Atrux-Tallau, Hugo Domejean, Annette Funfak, Nicolas Bremond, Pierre Nassoy, Kevin Allessandri
  • Patent number: 8906687
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: December 9, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8900865
    Abstract: Bone cages are disclosed including devices for biocompatible implantation. The structures of bone are useful for providing living cells and tissues as well as biologically active molecules to subjects.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: December 2, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Ed Harlow, Roderick A. Hyde, Edward K. Y. Jung, Robert Langer, Eric C. Leuthardt, Lowell L. Wood, Jr.
  • Patent number: 8900843
    Abstract: The invention relates to a kit and method for the capture of tumor cells in a body fluid sample. The kit and method of the invention can capture living tumor cells but not non-living tumor cells or cell fragments so that the tumor species can be further identified by further culture of the captured tumor cells. Also, the kit and method of the invention can readily identify whether a sample contains tumor cells and collect these tumor cells for further identification so that the presence of cancer and development of the metastasis and early relapse can be found.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 2, 2014
    Assignee: Taipei Medical University
    Inventors: Fang-Chi Hsu, Richard Li-Chern Pan
  • Patent number: 8900842
    Abstract: The invention relates to a method of storing and/or transporting in vitro two-dimensional cell cultures. The inventive method comprises the following steps consisting in: a) coating a cell culture that is immobilized on an asymmetric support with a gelatine solution in culture medium at a concentration of between 1 and 5%; b) solidifying the gelatine added to the support at a temperature of between 15 and 25° C.; and c) storing and/or transporting the cell culture at a temperature of between 15 and 25° C. for a period of up to 96 hours. The invention also relates to a kit which is used to store and/or transport the in vitro two-dimensional cell cultures according to the inventive method, said kit comprising: i) an asymmetric support, and (ii) a gelatine solution in culture medium at a concentration of between 1 and 5%.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: December 2, 2014
    Assignee: Advanced In Vitro Cell Technologies, S.L.
    Inventors: Myriam Fabre, Sonia Gonzalez Menoyo, Mariana Lopez Matas, Roser Pagan I Esquius
  • Patent number: 8895279
    Abstract: A method to recover and harvest nutrients from a liquid stream by incorporating them into microorganisms grown in a rotating photobioreactor. The method further includes optionally integrating the rotating photobioreactor with a composting or biogenic drying process.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 25, 2014
    Inventor: Dennis A. Burke
  • Patent number: 8895280
    Abstract: The present invention generally relates to improvements in enzyme immobilization, particularly for use in the field of carbon dioxide capture and sequestering. It has been discovered that the utilization of sol-gel processes to immobilize enzymes in polysilicate-polysilicone copolymer coatings and particles, and the deposition of these coatings on solid state supports or use of suspensions of these particles, provides significant benefits for use in industrial applications involving enzymatic catalysts.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Akermin, Inc.
    Inventors: Brett M. Rambo, Tracy L. Bucholz, Dawn C. Powell, Luke E. Weber, Alexander J. Linder, Caroline M. H. Duesing, Aleksey Zaks
  • Publication number: 20140342387
    Abstract: The present invention relates to enzymes capable of hydrolysing organophosphate (OP) molecules. In particular, the invention relates to variants of the OpdA enzyme from Agrobacterium that display improved activity when compared to the naturally occurring OpdA. The invention is also towards polypeptides that have organophosphate hydrolysing activity for the organophosphates chlorpyrifos methyl, diazinon and parathion ethyl.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 20, 2014
    Applicant: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Colin Scott, John Oakeshott, Robyn Russell, Nigel French, Steven Kotsonis, Kaiyan Liu
  • Publication number: 20140341982
    Abstract: The present invention relates to immuno-protected encapsulated cells producing an immunomodulator, for example GM-CSF (granulocyte-macrophage colony stimulating factor). The cells of the invention are particularly well adapted for providing an active adjuvant or immunomodulator, for example in the context of immunisation in humans and animals. These cells can be used for vaccination where they provide the immunomodulator in an active form, in a continuous, non-immunogenic manner in the immediate vicinity of the vaccine antigen(s). The invention also relates to a vaccine composition comprising immuno-protected encapsulated cells producing an immunomodulator and an antigenic component. The invention also relates to a kit comprising a cell as described and an antigenic component. The strategy of the invention is perfectly suited for both cancer immunotherapy and vaccination against infectious agents.
    Type: Application
    Filed: March 18, 2014
    Publication date: November 20, 2014
    Inventor: Nicolas Mach
  • Publication number: 20140336125
    Abstract: A method for improving bioactivity and/or biodegradation time of a collagen surgical implant and collagen surgical implants having such improved properties. A gas-cluster ion-beam (GCIB) is formed in a reduced-pressure chamber, a collagen surgical implant is introduced into the reduced-pressure chamber, and at least a first portion of the surface of said collagen surgical implant is irradiated with a GCIB-derived beam.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 13, 2014
    Inventors: Joseph Khoury, Laurence B. Tarrant, Sean R. Kirkpatrick, Richard C. Svrluga, Kshama J. Doshi
  • Patent number: 8883441
    Abstract: A method for detecting and counting the microorganisms in a sample is described. The method comprises: a) selectively enriching the microorganism sought in the sample, b) inducing or activating at least one enzymatic activity of the microorganism, c) immunomagnetically concentrating the microorganism, d) fluorescently labeling the microorganism, and e) detecting and analyzing the fluorescence making possible the numeration or counting of the microorganisms sought by flow cytometry, filtration cytometry or fluorescence microscopy.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: November 11, 2014
    Assignee: Metis Biotechnologies
    Inventors: Bruno Vedrine, Aline Lachaise, Vincent Carre
  • Patent number: 8883435
    Abstract: Described herein are irreversible kinase inhibitor compounds, methods for synthesizing such irreversible inhibitors, and methods for using such irreversible inhibitors in the treatment of diseases. Further described herein are methods, assays and systems for determining an appropriate irreversible inhibitor of a protein, including a kinase.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: November 11, 2014
    Assignee: Pharmacyclics, Inc.
    Inventors: Lee Honigberg, Erik Verner, Joseph J. Buggy, David Loury, Wei Chen
  • Publication number: 20140329289
    Abstract: The invention relates to nucleic acid aptamers binding specifically to factor H, to a method for obtaining same, and to the uses thereof, in particular for the purposes of purifying factor H.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 6, 2014
    Applicant: Laboratoire Francais du Fractionnement et des Biotechnologies
    Inventors: Gerald Perret, Agnes Cibiel
  • Publication number: 20140329722
    Abstract: Disclosed herein are methods of immobilizing a particle which comprise focusing the flow of a sample fluid containing the particle into a virtual channel which flows towards an unoccupied hydrodynamic trap in a microfluidic channel such that the particle flows into the hydrodynamic trap and becomes immobilized therein. Also disclosed are microfluidic devices which comprise at least one microchannel having at least one hydrodynamic trap, at least one focusing fluid inlet, said focusing fluid inlet is upstream of the hydrodynamic trap such that a focusing fluid introduced therein results in a virtual channel of a sample fluid when present which preferentially flows toward the hydrodynamic trap.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: SANDIA CORPORATION
    Inventors: Thomas D. Perroud, Kamlesh D. Patel
  • Patent number: 8877478
    Abstract: This invention relates to phytases, polynucleotides encoding them, uses of the polynucleotides and polypeptides of the invention, as well as the production and isolation of such polynucleotides and polypeptides. In particular, the invention provides polypeptides having phytase activity under high temperature conditions, and phytases that retain activity after exposure to high temperatures. The phytases of the invention can be thermotolerant and/or thermostable at low temperatures, in addition to higher temperatures. The phytases of the invention can be used in foodstuffs to improve the feeding value of phytate rich ingredients. The phytases of the invention can be formulated as foods or feeds or supplements for either to, e.g., aid in the digestion of phytate. The foods or feeds of the invention can be in the form of pellets, liquids, powders and the like.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: November 4, 2014
    Assignee: Verenium Corporation
    Inventors: Brian Steer, Alberto Alvarado, Mark Dycaico, Fatima El-Farrah, Gerhard Frey, Katie A. Kline, Arne Solbak, Tomas Todaro, Axel Trefzer
  • Publication number: 20140323356
    Abstract: A thermostable glycosidase enzymes derived from various Thermococcus, Staphylothermus and Pyrococcus organisms is disclosed. The enzymes are produced from native or recombinant host cells and can be utilized in the food processing industry, pharmaceutical industry and in the textile industry, detergent industry and in the baking industry.
    Type: Application
    Filed: May 5, 2014
    Publication date: October 30, 2014
    Applicant: BP Corporation North America Inc.
    Inventors: Edward J. Bylina, Ronald V. Swanson, Eric J. Mathur, David E. Lam
  • Patent number: 8871266
    Abstract: Probiotic microorganisms are micro encapsulated by dispersing the probiotic microorganism in an aqueous suspension of a film forming protein and a carbohydrate; in an oil in water emulsion of a film forming protein and a carbohydrate and a fat; or in an oil which is subsequently dispersed in a film forming protein and a carbohydrate. The emulsion or suspension may be dried to form a powder. The probiotic may be dispersed in oil and then emulsified with the aqueous suspension and then dried to produce an encapsulated oil be dried to produce a powder. Oil suspended probiotics may be preferred where the probiotic is water sensitive. The preferred protein is casein or whey protein and the carbohydrate may be a resistant starch or a saccharide with a reducing sugar group. Where the probiotic is oxygen sensitive the protein carbohydrate is heated to create Maillard reaction products in the encapsulating film.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 28, 2014
    Assignee: Commonwealth Scientific & Industrial Research Organisation
    Inventors: Ross Crittenden, Luz Sanguansri, Mary Ann Augustin
  • Patent number: 8871482
    Abstract: Functionalized substrate materials, for example inorganic particles and/or synthetic polymeric particles, are used to enhance bioprocesses such as saccharification and fermentation.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: October 28, 2014
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Harrison Medoff
  • Publication number: 20140315244
    Abstract: A fungal strain Beauveria species bearing accession number MTCC 5184 is disclosed. The process for the preparation of an enzyme mix including at least one enzyme selected from, but not limited to protease, carbohydrase, and lipase from the disclosed Beauveria species and uses of the enzyme mix in various areas also disclosed.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 23, 2014
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Seeta Laxman RYALI, Shiv Shankar, Snehal Vijay More, Harish Bansilal Khandelwal, Chandra Babu Kannan Narasimhan, Saravanan Palanivel, Padmanabhan Balaram
  • Patent number: 8859151
    Abstract: Disclosed is an improved biofuel cell having a cathode comprising a dual function membrane, which contains an oxygen oxidoreductase enzyme immobilized within a buffered compartment of the membrane and an electron transport mediator which transfers electrons from an electron conducting electrode to the redox reaction catalyzed by the oxygen oxidoreductase enzyme. The improved biofuel cell also has an anode that contains an oxidoreductase enzyme that uses an organic fuel, such as alcohol, as a substrate. An electric current can flow between the anode and the cathode.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: October 14, 2014
    Assignee: St. Louis University
    Inventors: Shelley D. Minteer, Sabina Topcagic, Becky Treu
  • Patent number: 8859249
    Abstract: A method for producing an iron (III) ion from the acidic solution containing an iodide ion and an iron (II) ion efficiently and stably is provided. The method including performing the following steps (a)-(b), repeatedly and continuously: (a) a step wherein the iron (II) ion in the acidic solution containing the iodide ion and the iron (II) ion is oxidized into iron (III) ion in a reactor using a microbes immobilizing carrier to which iron oxidizing microbes attached; (b) a step wherein sedimentation of the solution obtained in the step (a) is performed in a sedimentation tank to obtain the solution containing the iron (III) ion and concurrently the sediment of the microbes immobilizing carrier to which the iron oxidizing microbes have attached is recovered and then reintroduced into the reactor in the step (a).
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 14, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kenichi Kuwano, Akira Miura
  • Patent number: 8852923
    Abstract: Described herein is a bioreactor system and modules capable of developing physiologically relevant fluid-induced shear stresses and regionally specific flow patterns to scaffold specimens and which can couple these stresses to cyclic flexure and/or stretch states. Methods of use of the bioreactor system and module also are provided.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 7, 2014
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Steven M. Boronyak, George C. Engelmayr, Jr., Sharan Ramaswamy, Michael S. Sacks, David E. Schmidt, Mohammed S. El-Kurdi
  • Patent number: 8852881
    Abstract: A device for characterizing the biological properties of cells can include a plurality of dual-compartment assay chambers wherein the compartments of each chamber are separated by a cell layer across which ions can flow. The biological properties of the cell layer in the presence or absence of experimental compounds can be determined by measuring an electrical gradient across the layer. A individual dual-compartment chamber of this type may be referred to as an “Ussing chamber.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: October 7, 2014
    Assignee: Vertex Pharmaceuticals, Inc.
    Inventors: Paul A. Negulescu, Alec T. Harootunian, Philip E. Salzmann, Javier H. Flores, James E. Sinclair, Minh Vuong, Ashvani K. Singh, Fred F. VanGoor
  • Patent number: 8852917
    Abstract: The present invention relates to a new bacteriocin, to microbial strains which can produce it and to uses of the bacteriocin and the strains. The bacteriocin is effective against Clostridium difficile and Listeria monocytogenes amongst other organisms.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: October 7, 2014
    Assignees: University College Cork, TEAGASC, The Agriculture and Food Development Authority
    Inventors: Colin Hill, Mary Rea, Paul Ross
  • Patent number: 8852932
    Abstract: A method of making engineered tissue from a plurality of cell aggregates is disclosed. A cell suspension is centrifuged. The resulting pellet is extruded through an orifice, and the extruded pellet is cut into pieces to produce cell aggregates. A plurality of the cell aggregates are printed in a pattern, and allowed to fuse to form a desired three-dimensional engineered tissue structure. Modeling methods predict the structural evolution of fusing cell aggregates for combinations of cell type to enable selection of organ printing process parameters for use in producing an engineered tissue having a desired three-dimensional structure.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: October 7, 2014
    Assignees: The Curators of the University of Missouri, Medical University of South Carolina, MUSC Foundation for Research Development
    Inventors: Gabor Forgacs, Karoly Jakab, Adrian Neagu, Vladimir Mironov
  • Publication number: 20140296111
    Abstract: A protein-immobilizing solid phase is a protein-immobilizing solid phase comprising an mRNA-nucleic acid linker-protein complex, obtained by linking the mRNA and the protein encoded by that mRNA through the nucleic acid linker, immobilized on the solid phase, wherein the nucleic acid linker has a photocleavage site and a solid phase binding site.
    Type: Application
    Filed: April 30, 2014
    Publication date: October 2, 2014
    Applicants: Nikon Corporation, The University of Tokyo
    Inventors: Shingo Ueno, Naoto Nemoto, Takanori Ichiki, Hirofumi Shiono, Hisao Osawa
  • Publication number: 20140298499
    Abstract: The invention relates to enzymes having xylanase, mannanase and/or glucanase activity, e.g., catalyzing hydrolysis of internal ?-1,4-xylosidic linkages or endo-?-1,4-glucanase linkages; and/or degrading a linear polysaccharide beta-1,4-xylan into xylose. Thus, the invention provides methods and processes for breaking down hemicellulose, which is a major component of the cell wall of plants, including methods and processes for hydrolyzing hemicelluloses in any plant or wood or wood product, wood waste, paper pulp, paper product or paper waste or byproduct. In addition, methods of designing new xylanases, mannanases and/or glucanases and methods of use thereof are also provided. The xylanases, mannanases and/or glucanases have increased activity and stability at increased pH and temperature.
    Type: Application
    Filed: December 16, 2013
    Publication date: October 2, 2014
    Applicant: BP Corporation North America Inc.
    Inventors: Kevin A. Gray, Reinhard Dirmeier
  • Publication number: 20140273142
    Abstract: Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: Paul D. HOEPRICH
  • Patent number: 8835143
    Abstract: The invention relates to a method for the preparation of hybrid cross-linked enzyme-silica aggregates including the steps of taking up enzyme molecules in a solvent, precipitating the enzyme molecules using a precipitation agent, and adding an alkoxysilane and crosslinking the mixture of alkoxysilane and precipitated enzyme aggregates, using a crosslinking agent comprising an aldehyde, to obtain hybrid crosslinked enzyme-silica aggregates.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: September 16, 2014
    Assignee: Clea Technologies BV
    Inventors: Willem Robert Klaas Schoevaart, Lukas Michael Van Langen, Ronald Tako Marinus van Den Dool, Johannes Wilhelmus Leonardus Boumans
  • Patent number: 8822190
    Abstract: The present invention relates to eco-friendly compositions and methods for providing plant growth enhancing formulations comprising mixtures of microbial isolates. In particular, numerous bacterial and fungal strains were isolated from a variety of soil types, from rhizospheres and from root nodules of leguminous plants, in designed combinations, for providing plant growth and plant productivity enhancing formulations. These specifically designed polymicrobial formulations would further provide protection against plant pathogens lowering the need for nitrogen containing fertilizers, solubilize minerals, protect plants against pathogens, and make available to the plant valuable nutrients, such as phosphate, thus reducing and eliminating the need for using chemical fertilizers and chemical pesticides.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: September 2, 2014
    Assignee: Board of Trustees of Michigan State University
    Inventors: C. Adinarayana Reddy, Lalithakumari Janarthanam
  • Patent number: 8822170
    Abstract: Luciferase enzymes with greatly increased thermostability, e.g., at least half lives of 2 hours at 50° C., cDNAs encoding the novel luciferases, and hosts transformed to express the luciferases, are disclosed. Methods of producing the luciferases include recursive mutagenesis. The luciferases are used in conventional methods, some employing kits.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 2, 2014
    Assignee: Promega Corporation
    Inventors: Keith V. Wood, Monika G. Wood, Mary P. Hall
  • Patent number: 8815584
    Abstract: The invention provides a method of co-culturing mammalian muscle cells and mammalian motoneurons. The method comprises preparing one or more carriers coated with a covalently bonded monolayer of trimethoxysilylpropyl diethylenetriamine (DETA); suspending isolated fetal mammalian skeletal muscle cells in serum-free medium according to medium composition 1; suspending isolated fetal mammalian spinal motoneurons in serum-free medium according to medium composition 1; plating the suspended muscle cells onto the one or more carriers at a predetermined density and allowing the muscle cells to attach; plating the suspended motoneurons at a predetermined density onto the one or more carriers and allowing the motoneurons to attach; covering the one or more carriers with a mixture of medium composition 1 and medium composition 2; and incubating the carriers covered in the media mixture.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 26, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: James J. Hickman, Mainak Das
  • Patent number: 8815556
    Abstract: In accordance with certain embodiments of the present disclosure, a kit is described. The kit includes primed living cells joined to and at least partially within a three-dimensional hydrogel structure and an isolated polypeptide having the carboxy-terminal amino acid sequence of an alpha Connexin, or a conservative variant thereof, wherein the polypeptide does not include the full length alpha Connexin protein.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: August 26, 2014
    Inventors: Robert G. Gourdie, Jay D. Potts
  • Patent number: 8807879
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 19, 2014
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino Dicarlo, Jon F. Edd, Daniel Irimia