Including Multiple, Stacked Layers Patents (Class 435/287.8)
  • Patent number: 7463358
    Abstract: An article, process, and method for surface plasmon resonance plates are described. A substrate is covered with a thin metal film onto which a second thin metal film is deposited. The surface of the second thin metal film is converted to the metal oxide which is used to covalently bond organosilanes to the surface. Reactive organosilanes containing terminal bonding groups are arranged in a plurality of spots that are surrounded by inert organosilanes. Biomolecule attachment to the binding group is detected or measured from surface plasmon signals from the first thin metal film.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: December 9, 2008
    Assignee: Lumera Corporation
    Inventors: Nick Wolf, Danliang Jin, Anna M. Barklund, Raluca Dinu
  • Patent number: 7456025
    Abstract: The present invention relates to a sintered porous polymeric material useful as membrane in an analyte detection device, such as a lateral flow device, flow through device, or a dipstick device. The invention encompasses an analyte detection device that comprises such a sintered porous polymeric material and method of analyte detection using such a device. Specific sintered porous polymeric materials encompassed by the invention are surface activated and further coated with one or more layers of a variety of materials.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2008
    Assignee: Porex Corporation
    Inventors: Guoqiang Mao, Richard J. Coppola, George Warren Greene, George Yao
  • Patent number: 7439056
    Abstract: Devices and methods for performing assays on materials, particularly biological materials, are provided. The devices and methods make use of self-sealing members, which can be applied to a flat surface to form wells to facilitate immobilization of materials on the flat surface, then removed to yield a flat surface that facilitates the performance of processes on and/or detection of the immobilized material.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: October 21, 2008
    Assignee: Surface Logix Inc.
    Inventors: David Duffy, Gregory Kirk, Stewart Campbell, Olivier Schueller, Melina Agosto, Enoch Kim
  • Patent number: 7438856
    Abstract: Embodiments of the invention are directed to microfluidic devices. In one embodiment, a microanalysis chip comprises a body having at least one transfer-separation channel with a channel bottom that has a bottom opening. The transfer-separation channel terminates in a discharge aperture.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: October 21, 2008
    Assignee: Zyomyx, Inc.
    Inventors: Paul Jedrzejewski, Steffen Nock, Peter Wagner, Pierre Indermuhle, Frank G. Zaugg
  • Patent number: 7427511
    Abstract: An immunochromatographic test device of the present invention comprises: a sample receiving member for receiving a sample; a label holding member for holding a labeling substance to bind to an analyte contained in the sample; and a chromatographic membrane having a detection zone at which an immobilization substance to bind to the analyte is immobilized, wherein the sample receiving member disposed to cover the label holding member and in contact with the chromatographic membrane, and the chromatographic membrane is spaced apart from the label holding member.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: September 23, 2008
    Assignee: Sysmex Corporation
    Inventors: Masako Aki, Shinya Nagai, Noriyuki Saito, Takeshi Imoarai
  • Patent number: 7419823
    Abstract: A device for monitoring leukocyte migration is provided. The invention also provides a method of using the device to monitor leukocyte migration in the presence of physiological shear flow and therefore simulate physiological conditions of a blood vessel in vivo. The invention further provides a method of using the device to high-throughput screen a plurality of test agents. The present invention further provides a flexible assay system and numerous assays that can be used to test biological interactions and systems. Laminar flow gradients are employed that mimic gradient situations present in vivo.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: September 2, 2008
    Assignee: Surface Logix, Inc.
    Inventors: Gregory L. Kirk, Emanuele Ostuni, Enoch Kim, Olivier Schueller, Paul Sweetnam
  • Publication number: 20080145835
    Abstract: Disclosed is a lateral flow capillary device and uses thereof comprising a unipath bibulous capillary flow matrix and at least two reservoirs each in fluid communication with the capillary flow matrix wherein a reservoir contacts the capillary flow matrix through a passage having a rim pressing the matrix. The pressure that the rim applies on the matrix prevents leakage of liquids out of the capillary flow matrix at the reservoir/matrix interface, allowing accurate sequential draining of liquid from the reservoirs.
    Type: Application
    Filed: January 31, 2006
    Publication date: June 19, 2008
    Applicant: RealBio Technologies LTd
    Inventors: Sara Alajem, Avraham Reinhartz
  • Patent number: 7374951
    Abstract: A system and an apparatus for use in detecting a target microorganism or agent is disclosed which involves a solid support carrying a binding partner specific for the particular microorganism or agent and the solid support being characterised in that it defines means for protecting the binding partner from being dislodged or scraped off the solid support by physical means. The provision of protection against the binding partner being dislodged from or scraped off the solid support improves the reliability of tests such as immunoassays being conducted with the solid support and also enables such tests to be automated. Modules and machines for use with the solid support, and the automated conduct of tests ate also disclosed.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: May 20, 2008
    Assignee: TECRAInternational Pty Ltd.
    Inventors: Megan Ash, David William Edwards, Aaron Peter Gibbeson, Dianne Barbara Kerr, Lisa Frances Moncur, Philip Albert Myers
  • Patent number: 7374906
    Abstract: The present invention discloses a device for monitoring chemotaxis or chemoinvasion. The present invention further provides a flexible assay system and numerous assays that can be used to test biological interactions and systems. Laminar flow gradients are employed that mimic gradient situations present in vivo.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: May 20, 2008
    Assignee: Surface Logix, Inc.
    Inventors: Gregory L. Kirk, Emanuele Ostuni, Enoch Kim, Olivier Schueller, Paul Sweetnam
  • Patent number: 7374928
    Abstract: The invention relates to a bioreactor for cultivating microorganisms, as well as a method for its production. The invention is characterized in that the bioreactor (1) comprises two identically constructed base elements (2,3) that are constructed in trough shape and consist of a bottom part (4) and four side parts (5) arranged on a bottom part (4) and having an inside depth T1. The base element (2,3) consists of a light permeable material. The identically constructed base elements (2,3) are arranged on each other so as to exactly cover each other. A flow guide device is arranged inside the identically constructed base elements (2,3).
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: May 20, 2008
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V
    Inventor: Walter Trösch
  • Patent number: 7371563
    Abstract: Devices and methods for performing assays on materials, particularly biological materials, are provided. The devices and methods make use of self-sealing members, which can be applied to a flat surface to form wells to facilitate immobilization of materials on the flat surface, then removed to yield a flat surface that facilitates the performance of processes on and/or detection of the immobilized material.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: May 13, 2008
    Assignee: Surface Logix, Inc.
    Inventors: David Duffy, Gregory L. Kirk, Stewart Campbell, Olivier Schueller, Melina Amber Agosto, Enoch Kim
  • Patent number: 7358099
    Abstract: Superparamagnetic (“SPM”) subunits of 1–30 nm average mean diameter (e.g. ferro fluid) subparticles are treated with a magnetically noninterfering substance capable of coating and covering them (e.g, BSA) and they spontaneously form agglomerates of about 100 nm to about 450 nm or higher average mean diameter and are then used to form complexes with target biological ligands such as viruses, contained in large volumes of liquid. The complexes are subjected to the gradient intensity of a strong magnetic field, and excess liquid is removed, where upon an immunochromatographic assay is conducted to determine the identity and/or amount of target ligand present, in which operation SPM particles that bonded to the ligand function as tags for ligand detection.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 15, 2008
    Assignee: Binax, Inc.
    Inventors: Roger N. Piasio, Nathan Turner
  • Patent number: 7352889
    Abstract: A device and method for the automated storage and retrieval of trays holding subject matter. A computer system is programmed to control a storage gantry to move the trays between a storage rack and an automated machine. In a preferred embodiment, the subject matter in the trays is a plurality of micro-well plates in which microscopic crystals may be growing and the automated machine is configured to inspect and classify microscopic crystals. The automated machine has an indexing device for sequentially placing microscopic crystals in camera-view of a camera and a control computer is programmed to control the indexing device and to cause the camera to take images of the microscopic crystals and then transfer the images to a classifying processor where the images are classified. In a preferred embodiment, the microscopic crystals are protein crystals that have been grown in the wells of micro-well plates.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: April 1, 2008
    Inventors: Brian L. Ganz, John Andrew Moulds, Christopher T. Brovold, David W. Jewell, Mandel W. Mickley, John A. Adams, Benjamin M. Liedblad, James A. Benjamin
  • Patent number: 7326563
    Abstract: A device for monitoring leukocyte migration is provided. The device generally includes a plurality of chambers, each chamber including a channel in which leukocyte migration mediators or endothelial cells are disposed therein. The device is fabricated in the footprint of a standard microtiter plate. The invention also provides a method of using the device to monitor leukocyte migration in the presence of physiological shear flow and therefore simulate physiological conditions of a blood vessel in vivo. The invention further provides a method of using the device to high-throughput screen a plurality of test agents.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: February 5, 2008
    Assignee: Surface Logix, Inc.
    Inventors: Enoch Kim, Johanna R. Cruceta
  • Patent number: 7312028
    Abstract: A simple easy to manufacture analytical device capable of performing membrane based immunoassays on batch of samples within 3 to 10 minutes wherein the method permits focused application of samples, costly labeled immunoassay and signal amplification reagents, said device includes an antibody-immobilized micro porous membrane, breadth corner layer of which is directly attached to a semi-rigid liquid-impervious body with water insoluble adhesive; absorbent body is provided separately and is not attached to analytical device during manufacture, absorbent body is wetted and is placed proximal to the lower surface of the membrane thereby forming networks of capillary channels with the absorbent body; flow of samples or reagents is always kept downwards and focused without application of any force to the absorbent body and the use of disposable adsorbent body permits stepwise addition of signal amplification reagents for ultra sensitive detection of diagnostically important molecules by visual examination of the m
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: December 25, 2007
    Assignees: Council of Scientific & Industrial Research, Department of Biotechnology, A Department of Government of India
    Inventors: Tarun K. Dhar, Arindam Pal
  • Patent number: 7297530
    Abstract: A device for use in monitoring a swab method, the device includes a first substrate substantially adjacent a second substrate, the first substrate and the second substrate having disposed therebetween a test material.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: November 20, 2007
    Assignee: Biotrace Limited
    Inventors: Catherine Mary Ramsay, William John Simpson
  • Patent number: 7241418
    Abstract: The invention concerns a method for the detection of an analyte in a sample using analyte-specific conjugates which have at least one heterologous group for an analyte-independent binding to a control zone. The present invention additionally provides new conjugates and reagent kits.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: July 10, 2007
    Assignee: Roche Diagnostics Corporation
    Inventors: Jurgen Schaffler, Barbara Upheimer
  • Patent number: 7238537
    Abstract: An analytical test device incorporating a dry porous carrier to which a liquid sample, eg. urine, suspected of containing an analyte such as HCG or LH can be applied indirectly, the device also incorporating a labelled specific binding reagent which is freely mobile in the porous carrier when in the moist state, and an unlabelled specific binding reagent which is permanently immobilized in a detection zone on the carrier material, the labelled and unlabelled specific binding reagents being capable of participating in either a sandwich reaction or a competition reaction in the presence of the analyte, in which prior to the application to the device of a liquid sample suspected of containing the analyte, the labelled specific binding reagent is retained in the dry state in a macroporous body, eg.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: July 3, 2007
    Assignee: Inverness Medical Switzerland GmbH
    Inventors: Paul James Davis, Michael Evans Prior, Keith May
  • Patent number: 7226733
    Abstract: A biological sensor which includes: a porous semiconductor structure comprising a central layer interposed between upper and lower layers, each of the upper and lower layers including strata of alternating porosity; and one or more probes coupled to the porous semiconductor structure, the one or more probes binding to a target molecule, whereby a detectable change occurs in a refractive index of the biological sensor upon binding of the one or more probes to the target molecule. Methods of making the biological sensor and methods of using the same are disclosed, as is a detection device which includes such a biological sensor.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: June 5, 2007
    Assignee: University of Rochester
    Inventors: Selena Chan, Philippe M. Fauchet, Scott R. Horner, Benjamin L. Miller
  • Patent number: 7205159
    Abstract: A method and apparatus for use in a flow through assay process is disclosed. The method is characterised by a “pre-incubation step” in which the sample which is to be analysed, (typically for the presence of a particular protein), and a detection analyte (typically an antibody bound to colloidal gold or a fluorescent tag) which is known to bind to the particular protein may bind together for a desired period of time. This pre incubation step occurs before the mixture of sample and detection analyte come into contact with a capture analyte bound to a membrane. The provision of the pre-incubation step has the effect of both improving the sensitivity of the assay and reducing the volume of sample required for an assay. An apparatus for carrying out the method is disclosed defining a pre-incubation chamber for receiving the sample and detection analyte having a base defined by a membrane and a second membrane to which a capture analyte is bound.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: April 17, 2007
    Assignee: Proteome Systems Intellectual Property Pty Ltd.
    Inventors: Robert Alan Cole, Andrew John Sloane, William Samuel Hunter
  • Patent number: 7198901
    Abstract: A reflective substrate is used to amplify the photon signal captured from overlying analyte domains containing photon emitters. The reflective substrate provides substantial desired signal amplification of the photon emissions from each domain via interference effects induced in the incident excitation and/or emission energies. A dielectric is interposed between the domains and the reflective surface, which has a thickness such that substantial destructive interference occurs with respect to emission photons or excitation photons or both at the attachment surface. When analyte domains have a three-dimensional structure such that a significant fraction of their volume extends at least ¼ wavelength above the attachment surface provided by the dielectric, substantial constructive signal amplification can take place of signals generated within the analyte domains.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: April 3, 2007
    Assignee: Biocept, Inc.
    Inventor: Daniel J. Rachlin
  • Patent number: 7189522
    Abstract: The systems of the invention include test cells with a first sorbent material defining a first flow path for a solution, a second sorbent material defining a second flow path distinct from the first flow path for a sample, and a test line or test site with immobilized antigens or antibodies or other ligand binding molecules such as aptamers, nucleic acids, etc. located at the junction of the first and second sorbent materials. The first and second sorbent strips touch each other at the test site location.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: March 13, 2007
    Assignee: Chembio Diagnostic Systems, Inc.
    Inventor: Javanbakhsh Esfandiari
  • Patent number: 7183073
    Abstract: A device and method are provided for isolating and culturing microorganisms from a bulk fluid sample. The device comprises a container having therein a polymeric immobilization layer having interstitial spaces between polymer chains such as a gel matrix. The interstitial spaces are of an average size less than an average size of microorganisms to be separated from the sample and cultured. A bulk fluid sample is applied to the immobilization layer where fluid is absorbed by the layer and microorganisms remain on the surface of the layer. After culturing, microorganism colonies are readily accessible on the surface of the layer for harvest and testing. The immobilization layer may contain one or more of nutrients for microorganisms growth, lytic agents, lytic enzymes, antibiotics, antibiotic neutralizers, indicators, detergents and selective agents. An adjacent support layer may be above and/or below the immobilization layer.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: February 27, 2007
    Assignee: bioMerieux, Inc.
    Inventors: Jones M. Hyman, Paul M. Matsumura, Scott R. Jeffrey, Martin J. Maresch, Thurman C. Thorpe
  • Patent number: 7179657
    Abstract: A test device and method for determining the presence or absence of one or more analytes in a fluid sample, the test device including a support or member bearing a mark thereon, and a matrix or member containing a capture zone. In operation, an observation area in the test device becomes transparent, thereby allowing the user to view a mark that is present on a support that is disposed beneath the observation area. Typically, the mark on the underlying support is configured as a minus (?) sign. In the absence of analyte in the sample, the test device presents a negative result as a minus (?) signal. In the presence of analyte in the sample, however, the mark operates in concert with a perpendicular test line on the observation area to present a positive result as a plus (+) signal that is visible to the user.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: February 20, 2007
    Assignee: Quidel Corporation
    Inventors: Jeremy Jerome, Mark Daquipa, Bruce Jacono, Hans Boehringer, Paul Lambotte, Paul J. Lawrence
  • Patent number: 7160687
    Abstract: The present invention describes methods and cassettes for cell-based toxin detection and organ localization. The cassettes includes an array containing cells and a matrix of openings or depressions, wherein each region of the substrate enclosed by the opening or depression in the matrix forms a domain individually addressable by microfluidic channels in the device.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: January 9, 2007
    Assignee: Cellomics, Inc.
    Inventors: Ravi Kapur, Kenneth Giuliano
  • Patent number: 7153682
    Abstract: Provided are peptidomimetic protein-binding arrays, their manufacture, use, and application. The protein-binding array elements of the invention include a peptidomimetic segment linked to a solid support via a stable anchor. The invention contemplates peptidomimetic array element library synthesis, distribution, and spotting of array elements onto solid planar substrates, labeling of complex protein mixtures, and the analysis of differential protein binding to the array. The invention also enables the enrichment or purification, and subsequent sequencing or structural analysis of proteins that are identified as differential by the array screen. Kits including proteomic microarrays in accordance with the present invention are also provided.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: December 26, 2006
    Assignee: Chiron Corporation
    Inventors: Deborah Charych, Eric Beausoleil, Ronald N. Zuckermann
  • Patent number: 7148058
    Abstract: Provided are protein microarrays, their manufacture, use, and application. Protein microarrays in accordance with the present invention are useful in a variety preoteomic analyses. Various protein arrays in accordance with the present invention may immobilize large arrays of proteins that may be useful for studying protein-protein interactions to improve understanding of disease processes, facilitating drug discovery, or for identifying potential antigens for vaccine development. The protein array elements of the invention are native or modified proteins (e.g., antibodies or fusion proteins). The protein array elements may be attached directly to a organic functionalized mirrored substrate by a binding reaction between functional groups on the substrate (e.g., amine) and protein (e.g., activated carboxylic acid). Techniques for chemical blocking of the arrays are also provided.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: December 12, 2006
    Assignee: Chiron Corporation
    Inventors: Deborah Charych, Ronald N. Zuckermann
  • Patent number: 7144709
    Abstract: A reagent is suitable for measuring the concentration of an analyte in a hemoglobin-containing biological fluid, such as whole blood. The reagent comprises a flavin-dependent enzyme that has specificity for the analyte, a flavin cofactor if, and only if, a flavin is not bound to the enzyme, a tetrazolium dye precursor, an electron transfer agent, and a nitrite salt. The reagent causes dye formation that is a measure of the analyte concentration. The nitrite salt suppresses interfering dye formation caused non-enzymatically by the hemoglobin. Preferably, the reagent is used in a dry strip for measuring glucose in whole blood.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: December 5, 2006
    Assignee: LifeScan, Inc.
    Inventors: Tianmei Ouyang, Yeung Siu Yu
  • Patent number: 7144700
    Abstract: Methods, employing a polycyclic hydrocarbon or a polycyclic heteroaromatic compound as sensitizers, are provided to increase the efficiency of removing, by irradiation, photolabile protecting groups that mask reactive sites on synthesis intermediaries. Preferred groups of photolabile protecting moieties include: ((?-methyl-2-nitropiperonyl)-oxy)carbonyl (MeNPOC), ((Phenacyl)-oxy)carbonyl (PAOC), O-(9-phenylxanthen-9-yl) (PIXYL), and ((2-methylene-9,10-anthraquinone)-oxy)carbonyl (MAQOC). In conjunction with using the sensitizers and protecting groups described above, a method of forming, from component molecules, a plurality of compounds on a support, each compound occupying a separate predefined region of the support is provided. These resulting solid-phase arrays are useful, for example, to assay for the presence of biochemical products in biological samples.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: December 5, 2006
    Assignee: Affymetrix, Inc.
    Inventors: Glenn McGall, Daniel E. Falvey, Jacqueline A. Fidanza, Brian M. Feldman
  • Patent number: 7129038
    Abstract: A method for selectively combining multiple membranes for assembly into test strips (such as visual blood glucose test strips with side-by-side membranes). The method includes first measuring a plurality of color parameters (e.g., L*, a* and b*color parameters) associated with membrane samples from at least two membrane lots. Next, response characteristics (e.g., blood glucose response levels) are simulated for a speculative test strip that includes, for purposes of the simulation, combined multiple membranes tentatively selected from the at least two membrane lots. The simulated response characteristics are based on the measured plurality of color parameters of the tentative selection of combined multiple membranes. Optionally, the simulated response characteristics can also be based on simulated color parameters of the tentative selection of combined multiple membranes.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: October 31, 2006
    Assignee: Lifescan, Inc.
    Inventors: Ramanan Gopalan, Jon Michael Messamer, Manoj Sharma
  • Patent number: 7122323
    Abstract: An apparatus and method for synthesizing a combinatorial library comprising a plurality of chemical compounds such that the chemical composition of each compound is easily tracked. The library compounds are synthesized on solid-phase supports, which are spatially arranged in frames during synthesis according to a predetermined protocol, such that each solid-phase support passes through a series of unique spatial 2D or 3D addresses by which the chemical composition of each compound may be determined at any point during synthesis. Solid-phase supports include hollow tubular-shaped lanterns and gears.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: October 17, 2006
    Assignee: Aventis Pharmaceuticals Inc.
    Inventors: Marcel Patek, Safar Pavel, Martin Smrcina, Eric Wegrzyniak, Peter Strop, Gary A Flynn, Stephen A Baum
  • Patent number: 7108993
    Abstract: A method and device for carrying out immunoassays in which non analyte specific binding of heterophilic antibodies to a labeled antibody in a capture region produces an incorrect measure of the amount of an analyte attached to the antibody. Immunoglobulin from the same animal source as the labeled antibody is added to the sample fluid to prevent non-specific binding of the heterophilic antibodies in the capture region. One part of specific binding pair is added to said antibody or its label capable of binding to a second part of the binding pair immobilized in a control region downstream of said capture region for trapping the portion of the labeled anti-body which is not bound to the analyte. Preferably said binding pair is biotin/avidin or fluoroscein/anti-fluoroscein.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: September 19, 2006
    Assignee: Bayer Healthcare LLC
    Inventors: Ronald Sommer, Lloyd Schulman, Daya C. Wijesuriya
  • Patent number: 7087389
    Abstract: A simple easy to manufacture analytical device capable of performing membrane based immunoassays on batch of samples within 3 to 10 minutes wherein the method permits focused application of samples, costly labeled immunoassay and signal amplification reagents, said device includes an antibody-immobilized micro porous membrane, breadth corner layer of which is directly attached to a semi-rigid liquid-impervious body with water insoluble adhesive; absorbent body is provided separately and is not attached to analytical device during manufacture, absorbent body is wetted and is placed proximal to the lower surface of the membrane thereby forming networks of capillary channels with the absorbent body; flow of samples or reagents is always kept downwards and focused without application of any force to the absorbent body and the use of disposable adsorbent body permits stepwise addition of signal amplification reagents for ultra sensitive detection of diagnostically important molecules by visual examination of the m
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: August 8, 2006
    Assignees: Council of Scientific & Industrial Research, Department of Biotechnology, A Department of Govenment of India
    Inventors: Tarun K. Dhar, Arindam Pal
  • Patent number: 7060505
    Abstract: An assay device and method are provided which allow the determination of the presence or absence of at least one analyte in a test sample, while providing specific identification of the test subject. The assay device includes a reaction medium having at least one reaction zone and at least one control zone, which is capable of providing a pattern suitable for identifying the test subject. The pattern suitable for identifying the test subject is preferably a fingerprint. In a preferred embodiment of the invention, the reaction zone and the control zone include at least one member of a ligand/receptor pair.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: June 13, 2006
    Assignee: La Mina, Inc.
    Inventor: Raouf Guirguis
  • Patent number: 7049130
    Abstract: An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and/or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: May 23, 2006
    Assignee: Home Diagnostics, Inc.
    Inventors: Patrick Carroll, Jon Schneider, Douglas E. Bell
  • Patent number: 7018849
    Abstract: Superparamagnetic (“SPM”) subunits of 1–30 nm average mean diameter (e.g. ferro fluid) subparticles are treated with a magnetically noninterfering substance capable of coating and covering them (e.g, BSA) and they spontaneously form agglomerates of about 100 nm to about 450 nm or higher average mean diameter and are then used to form complexes with target biological ligands such as viruses, contained in large volumes of liquid. The complexes are subjected to the gradient intensity of a strong magnetic field, and excess liquid is removed, where upon an immunochromatographic assay is conducted to determine the identity and/or amount of target ligand present, in which operation SPM particles that bonded to the ligand function as tags for ligand detection.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: March 28, 2006
    Inventors: Roger N. Piasio, Nathan Turner
  • Patent number: 7011954
    Abstract: A reagent is suitable for measuring the concentration of an analyte in a hemoglobin-containing biological fluid, such as whole blood. The reagent comprises a flavin-dependent enzyme that has specificity for the analyte, a flavin cofactor if, and only if, a flavin is not bound to the enzyme, a tetrazolium dye precursor, an electron transfer agent, and a nitrite salt. The reagent causes dye formation that is a measure of the analyte concentration. The nitrite salt suppresses interfering dye formation caused non-enzymatically by the hemoglobin. Preferably, the reagent is used in a dry strip for measuring glucose in whole blood.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: March 14, 2006
    Assignee: Lifescan, Inc.
    Inventors: Tianmei Ouyang, Yeung Siu Yu
  • Patent number: 7008799
    Abstract: The invention concerns an analytical test element for the determination of an analyte in a liquid containing an inert carrier, a detection element and a channel capable of capillary liquid transport which has a sample application opening at one end and a vent opening at the other end of the channel capable of capillary liquid transport, wherein the channel capable of capillary liquid transport is formed at least partially by the carrier and the detection element and extends in the direction of capillary transport from the sample application opening at least to the edge of the detection test element that is nearest to the vent opening and wherein a notch is located in one of the surfaces forming the channel capable of capillary liquid transport at the edge of the test element forming the sample application opening so that one side of the edge of the test element forming the sample application opening is at least partially discontinuous and the surface opposite to the notch is exposed.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: March 7, 2006
    Assignee: Roche Diagnostics GmbH
    Inventors: Volker Zimmer, Wolfgang Schwöbel, Ronald Mönch, Wilhelm Leichner
  • Patent number: 7005294
    Abstract: The invention suggests a method of producing an array for the detection of components from a biological sample, wherein the detection molecules are immobilized on one or more supports, said support(s) is/are embedded and subjected to curing, the support is separated into sections, and the sections are applied on another support.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: February 28, 2006
    Assignee: Attomol Moleulare Diagnostika GmbH
    Inventor: Werner Lehmann
  • Patent number: 6991940
    Abstract: An improved multi-layered diagnostic sanitary test strip for receiving a heterogenous fluid, such as whole blood, to test for presence and/or amount of a suspected analyte in the fluid by facilitating a color change in the strip corresponding to the amount of the analyte in the fluid, wherein the test strip includes fluid volume control dams to prevent spillage of the fluid from the strip and a chemical reagent solution that facilitates end-point testing.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: January 31, 2006
    Assignee: Home Diagnostics, Inc.
    Inventors: Patrick Carroll, Jon Schneider, Douglas E. Bell
  • Patent number: 6933112
    Abstract: An optical assay device for the detection of an analyte of interest in a sample comprising a support containing channels, an optically functional layer positioned on the support such that the optically functional layer and the support allow for laminar flow of the sample through layers of the device, an attachment layer positioned on the optically functional layer, and an analyte specific receptive layer positioned on the attachment layer.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 23, 2005
    Assignee: Thermo Biostar Inc.
    Inventors: Joel A. Drewes, Gregory R. Bogart, Jeffrey B. Etter, Jeffrey W. Steaffens, Rachel M. Ostroff, Mark Crosby
  • Patent number: 6929943
    Abstract: A device for analyzing immunoassays with a liquid assay medium includes a vessel for holding the assay medium. The vessel has a base comprised of a solid body having a first side wall and a top surface forming a boundary surface of the solid body. First reaction agents are dissolved in the assay medium in the vessel and are labeled with a luminophore or different luminophores and second reaction agents are bonded to the boundary surface within a boundary layer of the assay medium. A transmitter for emitting light rays is arranged so that the light rays are coupled into the base of the vessel via the first side wall and conducted at the total reflection angle to the boundary surface so that luminophore-labeled first reaction agents that are bonded to the second reaction agents are optically excited by at least some of the light rays and emit fluorescent and/or phosphorescent rays. A receiver is positioned for quantitatively detecting the fluorescent rays and/or phosphorescent rays.
    Type: Grant
    Filed: August 24, 2000
    Date of Patent: August 16, 2005
    Assignees: Leuze Electronic GmbH & Co., Stiftung fur Diagnostische Forschung
    Inventors: Gerald Quapil, Manfred Schawaller
  • Patent number: 6913849
    Abstract: A novel process and apparatus to combinatorially screen a large number of discrete compositions for electrocatalytic activity have been developed. The apparatus contains a cell body adjacent to a fluid permeable catalyst array support supporting multiple solids. A catalyst mask having holes that are in alignment with the multiple locations for supporting solids is placed over the catalyst array support, masking the solids. A cell cover is positioned adjacent to the catalyst array support, with the cell cover having a passage for monitoring the solids through the mask. A detector may be in alignment with the passage of the cell cover.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: July 5, 2005
    Assignee: UOP LLC
    Inventors: Thomas E. Mallouk, Eugene S. Smotkin, Benny C. Chan, Guoying Chen, Renxuan Liu
  • Patent number: 6900028
    Abstract: Disc assay devices and methods for the detection and enumeration of microorganisms are disclosed. The devices and methods include a plurality of discs attached to a substrate and a reflector on one surface of each of the discs to reflect electromagnetic energy of selected wavelengths after the energy has passed through the disc. The reflector may be useful to improve the accuracy of detection and/or enumeration of target microorganisms on the assay devices. A system for detecting and/or enumerating target microorganisms on disc assay devices is also provided.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 31, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Peter D. Wickert, Michael G. Williams, Christine A. Binsfeld
  • Patent number: 6890715
    Abstract: The present invention provides a class of sensors prepared from at least a first material having a positive temperature coefficient of resistance and a second non-conductive or insulating material compositionally different than the first material that show an increase sensitivity detection limit for polar and non-polar analytes. The sensors have applications in the detection of analytes in the environment, associated with diseases and microorganisms.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: May 10, 2005
    Assignee: The California Institute of Technology
    Inventors: Nathan S. Lewis, Robert H. Grubbs, Gregory Sotzing
  • Patent number: 6884628
    Abstract: Multifunctional, polyionic copolymers with molecular architectures and properties optimized for specific applications are synthesized on/or applied to substrate surfaces for analytical and sensing purposes. The coatings are particularly useful for suppression of non-specific interaction, adsorption or attachment of molecular or ionic components present in an analyte solution. Chemical, biochemical or biological groups that are able to recognize, interact with and bind specifically to target molecules in the material containing the analyte to be detected can be coupled to, integrated into, or absorbed to the multifunctional copolymers. These multifunctional copolymer coatings are compatible with a variety of different established methods to detect, sense and quantify the target molecule in an analyte.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: April 26, 2005
    Assignees: Eidgenossische Technische Hochschule Zurich, Universitat Zurich
    Inventors: Jeffrey A. Hubbell, Marcus Textor, Donald L. Elbert, Stephanie Finken, Rolf Hofer, Nicholas D. Spencer, Laurence Ruiz-Taylor
  • Patent number: 6881538
    Abstract: Materials for use in miniaturized arrays, the arrays, and methods of manufacturing. Materials for making arrays described include a substrate with a silicon-containing layer, optionally with linking agents and reactants.
    Type: Grant
    Filed: March 5, 2000
    Date of Patent: April 19, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Louis C. Haddad, Moses M. David, Kurt J. Halverson, Sanjay L. Patil, Jerald K. Rasmussen, James I. Hembre
  • Patent number: 6872522
    Abstract: Described is a method for discriminating complex biological samples using an array of discrete biological sensing elements immobilized onto a solid support in which constituents bound to the sensor array is directly determined by measuring the mass increase on the surface; data analysis of said method is performed using neutral network or statical based pattern recognition techniques. In a preferred embodiment the liquid sample is tested for the presence of soluble constituent(s) by contacting said sample with said sensor array under specific conditions, removing unbound sample constituent(s), determining the mass increase on the surface and comparising said mass increase data with a reference standard using pattern recognition software.
    Type: Grant
    Filed: December 24, 1998
    Date of Patent: March 29, 2005
    Inventors: Michael Mecklenburg, Bengt Danielsson, Fredrick Winqvist
  • Patent number: 6867052
    Abstract: The present invention relates to articles of manufacture inclusive of or in combination with a biological assay material, formed from a material capable of detecting and identifying the presence of one or more particular toxic substances, wherein said toxic substances may comprise a multiplicity of biological materials.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: March 15, 2005
    Assignee: Toxin Alert, Inc.
    Inventors: Terri Lander, William T. Bodenhamer
  • Patent number: 6825032
    Abstract: A high capacity assay platform capable of binding target molecules includes a substrate and a polymer matrix attached to the substrate. The polymer matrix comprises a plurality of polymer molecules where at least some of the polymer molecules are covalently attached directly to the substrate and at least some of which molecules are crosslinked to other polymer molecules. Some of the polymer molecules have at least one binding ligand covalently attached thereto, and the density of the polymer matrix on the substrate is at least 2 &mgr;g/cm2.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: November 30, 2004
    Assignee: Sigma-Aldrich Co.
    Inventors: John Dapron, William Karl Kappel, Handong Li