Including Perfusion Means Patents (Class 435/297.2)
  • Publication number: 20140370588
    Abstract: In one aspect, an apparatus for bioprocessing using a liquid comprises an at least partially flexible vessel for receiving the liquid, and a filter adapted for moving within the liquid. An agitator may also be provided for agitating the liquid, and may be connected to the mixer. The mixer may spin or may not spin about an axis of rotation.
    Type: Application
    Filed: December 7, 2012
    Publication date: December 18, 2014
    Inventors: Jose Antonio Castillo Gonzalez, Vishwas Pethe
  • Patent number: 8906674
    Abstract: A sample preparation apparatus comprising: a storage chamber that can store therein a liquid sample including an analysis target to be analyzed; a concentrated sample storage chamber that is provided to communicate with the storage chamber and that stores therein concentrated liquid having an analysis target having a higher concentration than that of the liquid sample; and an analysis target transportation section for transporting the analysis target included in the liquid sample stored in the storage chamber to the concentrated sample storage chamber. A cell analyzer is also disclosed.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Sysmex Corporation
    Inventors: Ryuichiro Ebi, Koki Tajima
  • Patent number: 8877489
    Abstract: Thin parylene C membranes having smooth front sides and ultrathin regions (e.g., 0.01 ?m to 5 ?m thick) interspersed with thicker regions are disclosed. The back sides of the membranes can be rough compared with the smooth front sides. The membranes can be used in vitro to grow monolayers of cells in a laboratory or in vivo as surgically implantable growth layers, such as to replace the Bruch's membrane in the eye. The thin regions of parylene are semipermeable to allow for proteins in serum to pass through, and the thick regions give mechanical support for handling by a surgeon. The smooth front side allows for monolayer cell growth, and the rough back side helps prevents cells from attaching there.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 4, 2014
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Bo Lu, Mark Humayun
  • Patent number: 8865460
    Abstract: Disclosed are multi-chambered cell co-culture systems. The systems can be utilized to encourage the growth and development of isolated cells in a dynamic three-dimensional in vitro environment. The cell chambers (10) of the system can be in biochemical communication with adjacent chambers containing cells of different types, but the different cell types are maintained physically separated from one another. In addition, the local environment of each cell chamber can be independently controlled. For example, fluid flow characteristics through a single cell chamber can be independently controlled and maintained for each separate chamber of the system.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 21, 2014
    Assignee: Clemson University Research Foundation
    Inventors: David E. Orr, Karen J. L. Burg
  • Publication number: 20140308688
    Abstract: A multiple flow-based microfluidic cell culture system that emulates mammalian physiology is provided. Tissue-mimicking cell cultures are connected by flow within a physiologically meaningful arrangement so that the pharmacokinetics of various agents to be tested in the system emulate in vivo conditions. The system includes at least two organ tissue modules, each organ tissue module including a first chamber containing an organ tissue cell, the first chamber including an inlet and an outlet for flow of an organ tissue cell-specific culture medium; a second chamber including an inlet and an outlet for flow of a blood material; and a semi-permeable membrane separating the first and second chambers. The flow of blood material through each organ tissue module is interconnected and the flow of tissue-cell specific culture medium is directed to a single organ tissue module.
    Type: Application
    Filed: December 7, 2012
    Publication date: October 16, 2014
    Inventors: Sonia Grego, Brian Rhys Stoner, Kristin Hedgepath Gilchrist, Timothy Raymond Fennell, Ann Pitruzzello
  • Patent number: 8852925
    Abstract: Apparatuses, systems, and methods are provided for growing and maintaining cells. A three-dimensional matrix, such as a hydrogel material, is seeded with cells and placed in a bioreactor having two compartments. The matrix is supported between the two compartments by first and second porous materials, which engage opposing surfaces of the matrix. A first media stream having certain properties is propagated through the first compartment, where it contacts one surface of the matrix via the first porous material. A second media stream having different properties is propagated through the second compartment such that it contacts the opposite surface of the matrix via the second porous material. Through migration of each stream at least partially into the matrix, various controlled gradients may be established within the matrix, encouraging growth of the cells. Such gradients include osmotic pressure, oscillating osmotic pressure, hydrostatic pressure, oxygen tension, and/or nutrient gradients.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 7, 2014
    Assignee: The Charlotte-Mecklenburg Hospital Authority
    Inventors: Craig Halberstadt, Richard Peindl
  • Publication number: 20140295531
    Abstract: The invention relates to the field of reduction of CO2 emission, more in particular to CO2 capture and conversion. The invention further relates to the culturing of algae. One object of the present invention is to provide an alternative method for capturing and conversion of CO2 from a gaseous stream.
    Type: Application
    Filed: August 10, 2012
    Publication date: October 2, 2014
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Earl Lawrence Vincent Goetheer, Peter Geerdink, Ikenna Sunday Ngene, Leo Jacques Pierre Van Den Broeke
  • Patent number: 8846383
    Abstract: Disclosed are a method and a device for the biotechnological production of valuable products, in which a medium is fed to a bioreactor and is subjected to a fermentation process, the valuable product is gathered as a filtered permeate and/or concentrated retentate via a cross-flow filtration system that is mounted downstream thereof, and residues are once again fed to the bioreactor until being gathered as a retentate. Other materials can be fed to the bioreactor in a controlled manner in addition to the medium while the concentrated retentate and permeate can be gathered in a controlled manner. The fermentation process and the filtration process are regulated in a synchronized manner in an integrated system via a digital control unit.
    Type: Grant
    Filed: June 21, 2003
    Date of Patent: September 30, 2014
    Assignee: Sartorius AG
    Inventors: Reiner Luttmann, Wilfried Kappel, Toralf Gliem, Mohammad Saeed Ajam, Lars Boettcher, Bernd-Ulrich Wilhelm, Wolfgang Rietschel
  • Publication number: 20140273199
    Abstract: A system and method for converting waste and secondary materials into synthesis gas (syngas) through the use of a molten metal bath gasifier for the initial breakdown of waste feeds and an A/C plasma reactor for complete dissociation of waste feeds into syngas, and an anaerobic digester. The system includes a heat recovery and steam power generation process for the production of electricity. The system produces a net output of electricity above plant load sufficient for the co-production of renewable Hydrogen and Oxygen. The process does not require the use of fossil fuels or fossil feedstocks during normal operations, and it eliminates combustion produced stack emissions or landfill residuals.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventors: Randall Cole, Seth Murphy, Ronald Bruer, Edmund Kaminski, Peter Sach
  • Patent number: 8828711
    Abstract: A flow chamber and method for detecting the presence of one more cell produced analytes under flow conditions. The flow chamber includes two compartments separated by a permeable membrane on which a plurality of cells may be positioned. The permeable membrane shields one or more analyte sensors positioned one compartment from the convective transport forces of a fluid flow within the other compartment to allow reliable and accurate detection of cell-produced analytes and determination of the concentration of cell-produced analytes.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: September 9, 2014
    Assignee: Drexel University
    Inventors: Dov Jaron, Kenneth A. Barbee, Allison M. Andrews
  • Patent number: 8822208
    Abstract: The bioreactor is for use in performing biological and/or biochemical reactions and includes a vessel, an agitator, a reaction assembly, and a harvesting outlet. The vessel of the bioreactor includes several ports including a mixing port, a reaction port, and a harvesting port. The agitator extends through the mixing port into the vessel while the harvesting outlet extends through the harvesting port and permits the withdrawal of reaction medium to another vessel. The reaction assembly extends through the reaction port into the vessel and has multiple components including a gas conduit adapted to introduce gas into a reaction medium in the vessel, a sampling device adapted to remove a portion of the reaction medium from the vessel without contamination of the remaining reaction medium, and an introduction conduit permitting the introduction of at least the reaction medium into the vessel.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: September 2, 2014
    Assignee: Becton, Dickinson and Company
    Inventor: Bunkim Chokshi
  • Publication number: 20140234955
    Abstract: There is provided a cell culture device including a cell chip receiving part coupled to a cell chip and having at least one passage through which a liquid-type medium is circulated, and a vortex generation part formed in the passage to generate a vortex in the liquid-type medium.
    Type: Application
    Filed: April 19, 2013
    Publication date: August 21, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Bo Sung KU, Sang Jin KIM
  • Patent number: 8778629
    Abstract: A sterility test method includes: selecting strain and culture medium, preparing bacterial cultures, transcribing fingerprint characteristics in thermograms as indices to verify the characteristics, drawing the thermodynamic parameters of the thermogram, determining the positive judgment index and performing sterility test for the samples. A fully-enclosed bacteria collecting ampoule incubator includes bacteria collecting ampoule system, sample and liquid feeding system and peristalsis liquid discharge system. The sample and liquid feeding system is connected with the bacteria collecting ampoule system by the liquid intake tube; and the bacteria collecting ampoule system is connected with the peristalsis liquid discharge system by the liquid drainage tube. The invention is characterized by short inspection time, high sensitivity, high automation and accurate test results on microbial contamination. It can also provide the overall process curve on the growth conditions.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: July 15, 2014
    Assignee: 302 Military Hospital of China
    Inventors: Dan Yan, Xiaohe Xiao, Ping Zhang, Yongshen Ren, Cheng Jin
  • Patent number: 8778670
    Abstract: A method and apparatus for embedding cells that utilizes a flow-through embedding technique. The apparatus includes a cell flow pathway defined by an inflow tube for delivering cell fragments from a cell sample to a sample port. The sample port is in fluid communication with a tissue cassette having attached thereto a filter. The cell flow pathway is in communication with a reagent flow pathway for delivering the reagents through the sample port to the cassette. The apparatus is configured such that the application of pressure directs the cell fragments from the cell sample through the cell flow pathway, and effects delivery of the reagents through the reagent flow pathway. The apparatus produces an embedded cell block having concentrated cells near the plane of the block to be sectioned in a quick and efficient manner.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 15, 2014
    Assignee: University of Massachusetts
    Inventor: Andrew H. Fischer
  • Patent number: 8765456
    Abstract: The invention relates to microscale cell separating apparatus which are able to separate cells on the basis of size of the cells, interaction of the cells with surfaces of the apparatus, or both. The apparatus comprises a stepped or sloped separation element (16) interposed between an inlet region (20) and an outlet region (22) of a void that can be tilled with fluid. The void can be enclosed within a cover (12) and fluid flow through the void engages cells with the separation element. Only cells which have (or can deform to have) a characteristic dimension smaller than or equal to the distance between a step and the cover or body can pass onto or past a step. Modifications of surfaces within the apparatus can also inhibit passage of cells onto or past a step.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: July 1, 2014
    Assignee: Parsortix, Inc.
    Inventor: Georgi Hvichia
  • Publication number: 20140170744
    Abstract: There is provided a cell culture device including a cell chip accommodation unit accommodating a cell chip therein, a drug storage unit storing a drug and having a closed structure, a first pipe connecting the drug storage unit and the cell chip accommodation unit and transferring the drug from the drug storage unit to the cell chip accommodation unit, a second pipe connecting the drug storage unit and the cell chip accommodation unit and transferring the drug from the cell chip accommodation unit to the drug storage unit, and a pump circulating the drug between the cell chip accommodation unit and the drug storage unit.
    Type: Application
    Filed: March 4, 2013
    Publication date: June 19, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Sang Jin KIM, Bo Sung KU
  • Publication number: 20140154795
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, JR., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Patent number: 8715393
    Abstract: Disclosed is a method for removing carbon dioxide from a gas stream, comprising placing the gas stream in contact with a resin, wetting the resin with water, collecting water vapor and carbon dioxide from the resin, and separating the carbon dioxide from the water vapor. The resin may be placed in a chamber or a plurality of chambers connected in series wherein the first chamber contains resin that was first contacted by the gas, and each successive chamber contains resin which has been wetted and carbon dioxide collected from for a greater period of time than the previous chamber, and so on, until the last chamber. Secondary sorbents may be employed to further separate the carbon dioxide from the water vapor.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 6, 2014
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ed Leon-Guerrero, Ursula Ginster, Tymothy Catterson, Karl Madison, Ryuhei Ishikawa, George W. Grimm, Mark Malcomson, Ping Liu
  • Publication number: 20140120610
    Abstract: In order to enable the inside of a constant-temperature device to be sterilized using sterilization gas and prevent contamination during incubation, even when provided with an atmosphere measuring means having a CO2 sensor and an oxygen concentration sensor, a sensor unit (100) is arranged inside or close to an incubation chamber, and the internal atmosphere is measured by sucking-in the atmosphere of the incubation chamber (2) by means of an air-flow generation means (20). Furthermore, high-precision filters (23, 24) are arranged in the flow channel through which the atmosphere within the incubation chamber (2) is taken-in/discharged, preventing bacteria and/or cells from flowing in, and also preventing the diffusion of sterilization gas to the inside of a sensor unit (100) during sterilization.
    Type: Application
    Filed: June 11, 2012
    Publication date: May 1, 2014
    Inventors: Seishi Yamashita, Tomonori Miwada
  • Publication number: 20140093952
    Abstract: A bioreactor hollow fiber perfusion system increases the capacity of standard fed batch bioreactors. The bioreactor hollow fiber perfusion system cycles bioreactor mass through a hollow fiber tangential flow filter which separates the metabolic wastes (as well as proteins) from the biomass material allowing the reactions in the bioreactor to continue when compared to a fed batch bioreactor. The bioreactor hollow fiber perfusion system preferably includes a low shear gamma stable disposable pumphead responsible for biomass re-cycling and can be easy installed or replaced without the risk of contamination.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 3, 2014
    Inventor: David Serway
  • Publication number: 20140065660
    Abstract: A biological barrier model is disclosed. In some embodiments the barrier may be configured to model the blood brain barrier. The model may include a membrane having one or more cell cultures disposed thereon. The cells cultures may be grown in the presence of shear stress induced by flow through the device in some embodiments. The size of the barrier, as well as the distance to electrodes and other sensors, may be in the microscale range. Further, in some embodiments the model may comprise an array of parallel channels and membranes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Inventors: Hanseup Kim, Ross Booth
  • Publication number: 20140045256
    Abstract: There is provided a cell chip including: a first substrate having biomaterials fixed thereto; a second substrate provided with one or more receiving space in which a culture medium is stored; and a circulation unit circulating the culture medium stored in the receiving space.
    Type: Application
    Filed: July 3, 2013
    Publication date: February 13, 2014
    Inventors: Dong Woo LEE, Bo Sung KU, Sang Jin KIM, Moo-Yeal LEE
  • Publication number: 20140038279
    Abstract: The embodiments of the invention described herein relate to systems and methods for culturing and/or maintaining intestinal cells, tissues and/or organoids in vitro. The cells, tissues and/or organoids cultured according to the methods and systems described herein can mimic or reproduce natural intestinal epithelial structures and behavior as well as support co-culture of intestinal microflora.
    Type: Application
    Filed: February 28, 2012
    Publication date: February 6, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Hyun Jung Kim
  • Patent number: 8597939
    Abstract: The invention generally provides a cell culture vessel having at least one first zone and at least one second zone, wherein the first zone is a transfer zone for a culture medium which essentially contains no cells and the second zone is a cell culture zone. The invention further includes methods utilizing the cell culture vessel.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 3, 2013
    Assignee: Artelis S.A.
    Inventor: Jose Antonio Castillo Fernandez
  • Publication number: 20130295551
    Abstract: A microfluidic device having a perfusion chamber, the perfusion chamber having a base, a bath opening in the base, a supply inlet and an exhaust outlet. The device further includes a gas permeable membrane attached beneath the perfusion chamber, the gas permeable membrane having a first opening in registration with the supply inlet and a second opening in registration with the exhaust outlet. A substrate is attached to the gas permeable membrane, the substrate having at least one microchannel arranged for flow communication with the supply inlet and the exhaust outlet. In addition, a slide is attached to the substrate. As such, gas introduced through the supply inlet is communicated to the microchannel via the first opening, and the gas permeable membrane is positioned to be exposed to the gas to communicate the gas to the bath opening.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 7, 2013
    Inventors: David Eddington, Gerardo Mauleon, Joe Fu-jiou Lo, Megan Lynn Rexius, Jalees Rehman
  • Patent number: 8541217
    Abstract: An apparatus and method that may be used for collecting target cells or tissue and preparing a cell block are disclosed.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: September 24, 2013
    Assignee: Rongshan Li
    Inventors: Rongshan Li, Wu Li
  • Patent number: 8540499
    Abstract: An extra-capillary fluid cycling unit for maintaining and cycling fluid volumes in a cell culture chamber includes a housing and a first flexible reservoir extra-capillary fluid reservoir disposed in the housing. The extra-capillary fluid reservoir is in fluid communication with a cell culture chamber. A second flexible reservoir is also located in the housing, the second flexible reservoir being in fluid communication with a pressure source. A sensor plate is movably disposed in the housing between the extra-capillary reservoir and the second reservoir, wherein the second reservoir is pressurized to move the sensor plate in relation to the extra-capillary reservoir to cause fluid cycling and maintain fluid volumes in the cell growth chamber.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: September 24, 2013
    Assignee: Biovest International, Inc.
    Inventors: Darrell Paul Page, Robert J. Wojciechowski, Martin Peder Crep
  • Publication number: 20130244309
    Abstract: The present disclosure includes algal floway (AGF) systems for continuous, specific, economical, and efficient harvesting of algae biomass.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 19, 2013
    Applicant: University of Georgia Research Foundation, Inc.
    Inventors: Manjinder Singh, Keshav C. Das
  • Patent number: 8535934
    Abstract: The invention, in various embodiments, provides systems, methods and solutions using an organ ex vivo.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: September 17, 2013
    Assignee: TransMedics, Inc.
    Inventors: Waleed Hassanein, Tamer Khayal, Robert Havener, Stanley Kyi, Ihab Abdel Fattah, Hesham Saleh, Jon Trachtenberg
  • Patent number: 8518691
    Abstract: A membrane supported bioreactor arrangement and method for anaerobic conversion of gas into liquid products including membrane modules having hollow fibers, each of the hollow fibers formed from an asymmetric membrane wall having a porous outer layer defining biopores for retaining a porous biolayer about the outer surface of the membrane wall and a less permeable hydration layer around the hollow fiber lumen; a membrane vessel for retaining the membrane modules in a process gas for formation of the biolayer on the outer surface of the hollow fiber wall by interaction of microorganisms with a process gas and for the production of a liquid product, wherein the membrane vessel retains the membrane modules in a common horizontal plane; provides a seal between contents of the membrane tank and ambient atmosphere; and includes a liquid supply conduit for communicating the process liquid with the hollow fiber lumens of the hollow fibers.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: August 27, 2013
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8507263
    Abstract: Articles and methods for growing tissues and organs using bioreactors, including rotating bioreactors, are provided. In some embodiments, a bioreactor is configured to provide a first and second chamber, such as an inner and an outer chamber, respectively. The chambers may be co-axially arranged with respect to each other. A wall of the bioreactor defining the two chambers may be formed at least in part from a scaffold derived from a length of a hollow or tubular tissue or organ. Such a bioreactor can be used to form biocompatible structures for tissue engineering and organ replacement, such as cellular tissues, organ-like structures, and/or complete organs, within the bioreactor.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 13, 2013
    Inventors: Maria Adelaide Asnaghi, Sara Mantero
  • Patent number: 8501462
    Abstract: An assembly comprises a multiwell test plate having a plurality of wells having an opening and a base surface, an insert plate having a plurality of inserts positioned to align with a corresponding one of the wells whereby the insert plate can be nested with the multiwell plate. Each of the inserts includes a supply port arranged for flow communication with a supply source, an exhaust port, a bottom portion having a plurality of channels extending between the supply port and the exhaust port, and a gas permeable membrane covering the bottom portion. Each of the inserts is sized to position the gas permeable membrane a desired distance from the base surface of the multiwell test plate when the multiwell test plate and the insert plate are coupled to one another.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 6, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: David Eddington, Ki-Hwan Nam, Shawn C. Oppegard
  • Publication number: 20130171679
    Abstract: A micro-incubator manifold for improved microfluidic configurations and systems and methods of manufacture and operation for a manifold and automated microfluidic systems.
    Type: Application
    Filed: December 3, 2012
    Publication date: July 4, 2013
    Applicant: EMD Millipore Corporation
    Inventors: Philip J. Lee, Terry Gaige, Wei Hsuan (Jessie) Ho
  • Publication number: 20130157353
    Abstract: A cell-culture-bag for use in the expansion of stem cells from a crude biopsy, comprising: outer walls; a chamber located within the walls; a first inlet, and first and second outlets, providing fluid communication with the chamber, for connection to a perfusion apparatus; and a filter arrangement constructed to allow passage of red blood cells and block passage of stem cells from the first outlet, and block passage of microcarriers from the second outlet.
    Type: Application
    Filed: May 11, 2011
    Publication date: June 20, 2013
    Applicant: XPAND BIOTECHNOLOGY B.V.
    Inventors: Elise Leonore Isolde Dijkhuizen Borgart, Madelon Sophia George Maria Bracke, Joost Dick De Bruijn
  • Patent number: 8465970
    Abstract: The invention provides, in various embodiments, systems, devices and methods relating to ex-vivo organ care. In certain embodiments, the invention relates to maintaining an organ ex-vivo at near-physiologic conditions.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 18, 2013
    Assignee: TransMedics, Inc.
    Inventors: Waleed Hassanein, Richard Bringham, Giovanni Cecere, Ahmed Elbetanony, Robert Fishman, Larry Goff, Tamer Khayal, Stanley Kyi, Scott Newell, Burt Ochs, Dennis Sousa, Ronald Taylor, Jonathan Rourke, Hossam Algamil, David Carpenter, Robert Havner, Dmitri Menn
  • Publication number: 20130143230
    Abstract: A microfluidic-based platform with cultured three-dimensional tissues simulates major human physiological systems for rapid evaluation of individual drugs prior to clinical testing or for personalized medical applications. The platform integrates the circulatory and lymphatic systems in a physiologically correct manner. The physiological systems may be simulated in the platform by microfluidic tissue culture devices which accommodate various tissues and provide integrated microvascular and lymphatic systems. Biomimetic nanofiber meshes or microfiber structures may be used to provide the cells with a physiologically relevant substrate. Each device may have an on-board detection system utilizing optical fiber bundles for microarray multiplexing of biomarkers, label-free SERS measurement of drugs, and microendoscopic confocal imaging of cells and tissues.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 6, 2013
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventor: The Trustees of the Stevens Institute of Technolog
  • Publication number: 20130109052
    Abstract: A sterility test method includes: selecting strain and culture medium, preparing bacterial cultures, transcribing fingerprint characteristics in thermograms as indices to verify the characteristics, drawing the thermodynamic parameters of the thermogram, determining the positive judgment index and performing sterility test for the samples. A fully-enclosed bacteria collecting ampoule incubator includes bacteria collecting ampoule system, sample and liquid feeding system and peristalsis liquid discharge system. The sample and liquid feeding system is connected with the bacteria collecting ampoule system by the liquid intake tube; and the bacteria collecting ampoule system is connected with the peristalsis liquid discharge system by the liquid drainage tube. The invention is characterized by short inspection time, high sensitivity, high automation and accurate test results on microbial contamination. It can also provide the overall process curve on the growth conditions.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 2, 2013
    Applicant: 302 MILITARY HOSPITAL OF CHINA
    Inventors: Dan Yan, Xiaohe Xiao, Ping Zhang, Yongshen Ren, Cheng Jin
  • Patent number: 8415145
    Abstract: A cell processing apparatus 29 of the present invention includes a storage container 57 that can contain liquid L including a biological sample; a filter 60 that prevents a first cell C1 in the biological sample from passing therethrough and that allows a second cell C2 having a smaller diameter than that of the first cell C1 to pass therethrough; and a filtration cylinder 58 for separating, in the storage container 57 and via the filter 60, the liquid L into a first liquid L1 mainly including the first cell C1 and a second liquid L2 mainly including the second cell C2. A measurement target cell discriminated by the filter from the other cells can be easily collected.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: April 9, 2013
    Assignee: Sysmex Corporation
    Inventors: Masakazu Fukuda, Hironori Kobayashi, Junyi Ding, Ryuichiro Ebi, Koki Tajima
  • Patent number: 8409847
    Abstract: Systems and methods are provided for controlling the diameter of a mammalian hybrid coronary bypass graft. The system includes a controller having at least one input for receiving information and feedback information and an output for outputting control signals, including at least one steady flow system control signal; and a pressure/flow loop subsystem coupled to the controller. The pressure/flow loop subsystem includes a specimen holder, an external flow loop system coupled to the specimen holder, a steady flow system, and an output for outputting the feedback information. The pressure/flow loop subsystem receives the control signals and is capable of adjusting a diameter of a specimen in accordance with the control signals, when the specimen holder contains the specimen.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 2, 2013
    Assignee: ICE Development Technologies, LLC
    Inventor: Michael Dancu
  • Patent number: 8399243
    Abstract: Developing heart valves are exposed to dynamic strains by applying a dynamic pressure difference over the leaflets. The flow is kept to a minimum, serving only as a perfusion system, supplying the developing tissue with fresh nutrients. Standard heart valves were engineered based on B trileaflet scaffolds seeded with cells isolated from the human saphenous vein. Tissue compaction is constrained by the stent, inducing increasing pre-strain in the tissue. The dynamic strains the tissues are exposed to via the dynamic pressure difference, are estimated using finite element methods based on the mechanical properties of the neo-tissue, in order to get inside into the strain distribution over the leaflet.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: March 19, 2013
    Assignees: Universitaet Zuerich, Technische Universiteit Eindhoven
    Inventors: Carlijin V. C. Bouten, Anita Mol, Marcel C. M. Rutten, Simon P. Hoerstrup, Frank P. T. Baaijens
  • Publication number: 20130059383
    Abstract: The present invention is directed to a method to expand adherent cells comprising addition of adherent cells to an expansion container comprising microcarriers and culture medium; removing medium from the expansion container through a 8-20 mm filter; allowing cells to attach to microcarriers and keeping the expansion container in motion with an angle of between 30 to 90° and ?30 to ?90°. The present invention is also directed to a device suitable in the method. The advantage of the present invention is that fewer steps are needed to expand adherent cells, including stem cells like MSC opening the way for the use of autologeous and allogenous stem cell therapy. In addition, contamination risk is limited since the present invention may be carried out in a closed, disposable system.
    Type: Application
    Filed: May 11, 2011
    Publication date: March 7, 2013
    Inventors: Elise Leonore Isolde Dijkhuizen Borgart, Madelon Sophia George Maria Bracke, Joost Dick De Bruijn
  • Patent number: 8343749
    Abstract: Embodiments of the present invention preferably relate to a method and apparatus for a two-stage membrane-based production of gas, preferably hydrogen gas or the like, from solid biological materials, preferably organic waste materials or the like, comprising anaerobic hydrolysis and fermentation and photofermentation using microorganisms.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: January 1, 2013
    Assignee: Arrowhead Center, Inc.
    Inventors: Nagamany Nirmalakhandan, Shuguang Deng, Geoffrey Smith
  • Publication number: 20120322142
    Abstract: The present invention relates to a bioreactor comprising a first fluid distribution chamber and a first fluid collection chamber, the reactor adapted to receive at least one conduit in fluid communication between the first fluid distribution chamber and the first fluid collection chamber; wherein the reactor includes a second fluid distribution means including a plurality of distributors arranged to distribute the second fluid between the first fluid distribution chamber and the first fluid collection chamber. The invention extends to a removable insert for a bioreactor comprising a first fluid distribution plate; a first fluid collection plate; and a second fluid distribution means including a plurality of distributors arranged to distribute the second fluid between the first fluid distribution plate and the first fluid collection plate.
    Type: Application
    Filed: April 18, 2012
    Publication date: December 20, 2012
    Applicant: SYNEXA LIFE SCIENCES (PROPRIETARY) LIMITED
    Inventors: Wade EDWARDS, Winston Daniel LEUKES, P. G. Lourens
  • Patent number: 8329456
    Abstract: A stable system for producing liquid products such as ethanol, butanol and other chemicals from syngas components contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transferring these components into contact with microorganisms contained within bio-pores of the membrane. The membrane side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This system and method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: December 11, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8318414
    Abstract: A system for hemodynamic simulation comprises a vessel having properties of a blood vessel, a reservoir containing a quantity of fluid, tubing connecting the vessel and reservoir, and at least one pump for circulating the fluid within the system. Fluid can be tissue culture medium or blood analog fluid, and the vessel may include mammalian cells attached to its inside. A drive system, comprising two reciprocating drive shafts that are coupled by a cam, enables the uncoupling of pulsatile flow and pulsatile pressure to provide independent control over wall shear stress and circumferential strain. The shaft drives two pumps that are 180 degrees out-of-phase and are connected upstream and downstream of the vessel, and effect this uncoupling.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: November 27, 2012
    Assignee: ICE Development Technologies, LLC
    Inventors: Michael B. Dancu, John M. Tarbell
  • Patent number: 8309348
    Abstract: A stable method for producing liquid products such as ethanol, propanol, butanol and other chemicals from syngas components that contacts CO or a mixture of CO2 and H2 with a highly porous side of an asymmetric membrane under anaerobic conditions and transfers these components into contact with microorganisms contained within bio-pores of the membrane. A liquid contacting side of the membrane utilizes a dense layer to control hydration of the bio-pores with a liquid phase. The gas feed directly contacts the microorganisms in the bio-pores and maximizes their utilization of the syngas. Metabolic products produced by the microorganisms leave the membrane through the side opposite the entering syngas. This method establishes a unitary direction across the membrane for the supply of the primary feed source to the microorganisms and the withdrawal of metabolically produced products. The feed and product flow improves productivity and performance of the microorganism and the membrane.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 13, 2012
    Assignee: Coskata, Inc.
    Inventors: Shih-Perng Tsai, Rathin Datta, Rahul Basu, Seong-Hoon Yoon
  • Patent number: 8293524
    Abstract: Apparatus and methods are provided for analysis of individual particles in a microfluidic device. The methods involve the immobilization of an array of particles in suspension and the application of experimental compounds. Such methods can also include electrophysiology studies including patch clamp recording, electroporation, or both in the same microfluidic device. The apparatus provided includes a microfluidic device coupled to a multi-well structure and an interface for controlling the flow of media within the microchannel device.
    Type: Grant
    Filed: March 25, 2007
    Date of Patent: October 23, 2012
    Assignee: Fluxion Biosciences Inc.
    Inventors: Cristian Ionescu-Zanetti, Michelle Khine, Michael Schwartz, Andrew Blatz
  • Patent number: 8283159
    Abstract: The invention relates to a fermenter (10) for producing biogas from organic material, having a fermentation chamber (11) with a substantially round basal surface to receive fermentation material; arranged, in the peripheral region of the fermentation chamber, filling means (12) for substrate to be fermented; arranged, above the fermentation chamber, an unpressurized gas store (13) with gas discharging means (14); stirring means (15); a settling chamber (16) with overflow rim; and also pumping means (17) for the continuous or batchwise removal of fermentation material from the fermentation chamber and introduction into the settling chamber.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: October 9, 2012
    Inventor: Wilhelm Gantefort
  • Patent number: 8273160
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 25, 2012
    Assignee: Kilimanjaro Energy, Inc.
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Patent number: 8241867
    Abstract: An integrated filtration and detection device for collecting and detecting the growth of microorganisms in a specimen includes a container defining a chamber therein. The container has an inlet and an outlet in fluid communication with the chamber. A filter is mounted in the chamber between the inlet and the outlet. A sensor is mounted in the chamber. The sensor is operative to exhibit a change in a measurable property thereof upon exposure to changes in the chamber due to microbial growth.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 14, 2012
    Assignee: bioMérieux, Inc.
    Inventors: James L. DiGuiseppi, Diederik Engbersen, Scott R. Jeffrey, John Walsh