Medium Contains A Polypeptide Hormone Patents (Class 435/387)
  • Patent number: 9040299
    Abstract: The present invention relates to the generation of a mucin-producing cell using stem/progenitor cells obtained from the amniotic membrane of umbilical cord and therapeutic uses of such mucin-producing cells.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: May 26, 2015
    Assignee: CELLRESEARCH CORPORATION PTE LTD
    Inventor: Toan-Thang Phan
  • Publication number: 20150072420
    Abstract: As described below, the present invention features compositions and methods related to the isolation, culture and therapeutic use of CD31-expressing cells.
    Type: Application
    Filed: April 18, 2014
    Publication date: March 12, 2015
    Applicant: EMORY UNIVERSITY
    Inventors: Young-sup Yoon, Hyun-Jai Cho
  • Patent number: 8975072
    Abstract: Provided are: a method for producing an immortalized human erythroid progenitor cell line, enabling efficient and stable production of enucleated red blood cells; and a method for producing human enucleated red blood cells from a human erythroid progenitor cell line obtained by the aforementioned production method. An expression cassette capable of inducing expression of HPV-E6/E7 genes in the presence of DOX was introduced into the genomic DNA of blood stem cells. Then, the blood stem cells were cultured in the presence of DOX and a blood growth factor. Thereby, immortalized cell lines of human erythroid progenitor cells were established. Further, it was revealed that culturing the cell lines under a condition where the expression of the HPV-E6/E7 genes was not induced enabled differentiation induction into enucleated red blood cells at a high ratio.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Riken
    Inventors: Yukio Nakamura, Ryo Kurita
  • Patent number: 8956866
    Abstract: The present invention concerns RPE cells obtainable by directed differentiation from stem cell, particularly, human stem cells. It has been specifically found that culturing stem cells in the presence of one or more member of the TGF? superfamily, such as Activin A) induced directed differentiation into mature and functional RPE cells. This was evidenced by the expression of markers specific to mature RPE cells, including MiTF-A, RPE65 or Bestrophin). In accordance with one particular embodiment, the cells are a priori cultured with nicotinamide (NA) which was found to augment the cells' response to the inductive effect of the one or more member of the TGF? superfamily. The invention also provides methods of performing the directed differentiation, as well as methods for use of the resulting RPE cells.
    Type: Grant
    Filed: April 27, 2008
    Date of Patent: February 17, 2015
    Assignee: Hadasit Medical Research Services and Development Ltd.
    Inventors: Masha Idelson, Ruslana Alper-Pinus, Alex Obolensky, Eyal Banin, Benjamin Reubinoff
  • Patent number: 8945867
    Abstract: The present invention relates to a process for producing a desired polypeptide using rat cells. Specifically, the present invention relates to a process for producing the polypeptide which comprises culturing rat cells such as YB2/3HL.P2.G11.16Ag.20 (hereinafter referred to as YB2/0), preferably rat cells to which a recombinant DNA comprising DNA encoding a desired polypeptide such as an immunologically functional molecule is introduced, in a medium which does not contain serum (hereinafter referred to as a serum-free medium). Among the desired polypeptides obtained by the process of the present invention, an antibody obtained by using a transformant of YB2/0 has a high antibody-dependent cell-mediated cytotoxic activity (hereinafter sometimes referred to as ADCC activity) and is useful as a pharmaceutical agent.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: February 3, 2015
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: Tatsuya Ogawa, Yoshinobu Konno, Naohisa Akashi, Hiroshi Takasugi, Seiji Sugimoto, Keiichi Yano
  • Patent number: 8895303
    Abstract: In one aspect the present invention is concerned with a method of cell culture, comprising the steps of (i) obtaining a stem or progenitor cell sample, (ii) culturing the stem or progenitor cell sample in media and under closed conditions appropriate to cause proliferation or differentiation of the stem or progenitor cells, wherein the media comprises a vEPO protein variant, (iii) purifying the stem or progenitor cells ex vivo. The invention relates to a method of increasing the number and survival of stem and progenitor cells in vitro and in vivo using a vEPO protein variant. The invention also relates to improved differentiation of stem and progenitor cells in vitro and in vivo using a vEPO protein variant.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: November 25, 2014
    Assignee: Charite-Universitatsmedizin Berlin
    Inventors: Josef Priller, Christel Bonnas, Andreas Meisel
  • Patent number: 8846395
    Abstract: A method for efficient generation of neutrophils, eosinophils, macrophages, osteoclasts, dendritic cells an Langerhans cells from human embryonic stem cells is disclosed.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 30, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Igor I. Slukvin, Kyung-Dal Choi, Maksym A. Vodyanyk
  • Patent number: 8784891
    Abstract: Compositions of the invention for regenerating defective or absent myocardium comprise an emulsified or injectable extracellular matrix composition. The composition may also include an extracellular matrix scaffold component of any formulation, and further include added cells, proteins, or other components to optimize the regenerative process and restore cardiac function.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: July 22, 2014
    Assignee: CorMatrixCardiovascular, Inc.
    Inventor: Robert G Matheny
  • Patent number: 8771737
    Abstract: Compositions of the invention for regenerating defective or absent myocardium comprise an emulsified or injectable extracellular matrix composition. The composition may also include an extracellular matrix scaffold component of any formulation, and further include added cells, proteins, or other components to optimize the regenerative process and restore cardiac function.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: July 8, 2014
    Assignee: CorMatrix Cardiovascular, Inc
    Inventor: Robert G Matheny
  • Publication number: 20140086882
    Abstract: The present invention relates to a method of preparing cells and in particular to a method of preparing breastmilk stem cells (BSCs) by isolation from breastmilk and subsequent culture. The invention further relates to BSCs prepared by the methods of the invention and to methods and uses thereof. The invention has been developed primarily as a method for preparing and culturing BSC.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 27, 2014
    Applicant: Medela Holding AG
    Inventor: Foteini Hassiotou
  • Patent number: 8673637
    Abstract: A method of in vitro maturation of adult human germ line cells in an artificial biological environment, which entails: a) isolating human spermatogonial stem cells (SSCs), and optionally purifying the same; and b) co-culturing the isolated and optionally purified SSCs with a suitably adjusted Sertoli cell environment to obtain haploid germ cells.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: March 18, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Renee Reijo Pera, Paul J. Turek, Juanito Meneses, Nina Kossack
  • Patent number: 8669106
    Abstract: The invention provides, among other things, methods and systems for expanding CD133+ cells. The invention further provides methods and systems for increasing the blood flow to an ischemic tissue in a subject in need thereof, such as to ischemic myocardium. The invention further provides methods and systems for directing differentiation of expanded CD133+ cells. The invention further provides methods and systems for treating a subject with differentiated cells in a subject in need thereof.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 11, 2014
    Assignees: Arteriocyte Inc., Universite Pierre ET Marie Curie (Paris VI)
    Inventors: Ramasamy Sakthivel, Donald J. Brown, Hai-Quan Mao, Luc Douay, Vincent J. Pompili, Kevin McIntosh, Hiranmoy Das, Yukang Zhao
  • Patent number: 8637311
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: January 28, 2014
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Publication number: 20130302834
    Abstract: A method, according to an embodiment, for evaluating a regenerated cartilage includes allowing a group of cells containing auricular chondrocytes to stand in the presence of a culture medium, subsequently collecting at least a portion of a liquid component from the culture medium, measuring the GFAP content of the collected liquid component, and determining whether a regenerated cartilage that has been obtained or can be obtained from the group of cells is suitable for transplantation based on the GFAP content.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Applicants: THE UNIVERSITY OF TOKYO, FUJISOFT INCORPORATED
    Inventors: Kazuto HOSHI, Tsuyoshi Takato, Motohiro Harai
  • Patent number: 8529899
    Abstract: Disclosed are fusion proteins comprising a biologically active molecule and an immunoglobulin (Ig) Fc domain which is linked to the biologically active molecule. The Fc domain is a hybrid human Fc domain of (i) IgG1, IgG2 or IgG4 or (ii) IgG4 and IgD. The hybrid Fc is useful as a carrier of biologically active molecules.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 10, 2013
    Assignees: Genexine, Inc., Postech Academy-Industry Foundation
    Inventors: Sehwan Yang, Young Chul Sung
  • Patent number: 8530235
    Abstract: The present invention relates to a method of modulating apoptosis of a granulosa cell. The method includes one or more of the following steps: (i) modulating the concentration and/or activity of BMP-15 and/or BMP-6 that the granulosa cell is exposed to; (ii) modulating activity of a BMP-15 dependent signalling pathway in the granulosa cell; and (iii) modulating activity of a BMP-6 dependent signalling pathway in a granulosa cell.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: September 10, 2013
    Assignee: Adelaide Research & Innovation Pty Ltd.
    Inventors: Robert B. Gilchrist, Jeremy Thompson, Tamer Hussein
  • Patent number: 8465975
    Abstract: Motor neuron progenitor (MNP) cells and populations of MNP cells, are provided, in particular, populations of human late stage MNP cells having a purity of greater than about 65% late stage MNP cells and high-purity populations of MNP cells having greater than 95% viable cells, as well as method of making and using the same, including deriving late stage MNP cells from pluripotent embryonic stem cells, producing high-purity populations of late stage MNP cells, producing populations of viable MNP cells, transporting viable MNP cells, and transplanting MNP cells.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 18, 2013
    Assignee: California Stem Cell, Inc.
    Inventor: Aleksandra Jovanovic Poole
  • Patent number: 8440461
    Abstract: The present invention relates to methods for reprogramming a somatic cell to pluripotency by administering into the somatic cell at least one or a plurality of potency-determining factors. The invention also relates to pluripotent cell populations obtained using a reprogramming method.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: May 14, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Thomson, Junying Yu
  • Patent number: 8420394
    Abstract: Disclosed are methods for expanding stem cells that use a unique combination of environmental factors and cell culture conditions to produce stem cells having enhanced proliferation and differentiation characteristics. Also disclosed are methods for enhancing the engraftment and/or migratory potential of stem cells for therapeutic uses. Stem cells having unique proliferation, differentiation, migratory and engraftment characteristics are also disclosed.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 16, 2013
    Inventors: Chih-Min Lin, Alex Wharazi
  • Patent number: 8394630
    Abstract: Disclosed are novel stem cells of non-embryonic origins and the uses thereof.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 12, 2013
    Assignee: StemBios Technologies, Inc.
    Inventors: James Wang, Yun Yen
  • Patent number: 8338176
    Abstract: Provided is a method for the derivation of neural stem cells (NSCs) from embryonic stem cells (ESCs) and the use of the NSCs for treatment of various neural disorders. The NSCs that are derived from the ESCs are tissue-specific multipotent NSCs with a stable growth rate, unlimited self-renewal capacity, and a predictable differentiation profile. Being both non-tumorigenic and engraftable, the NSCs of the present invention have utility in repopulation stroke-damaged tissue. The NSCs of the present invention may be differentiated to produce tyrosine-hydroxylase expressing neurons, which may be used as a source of dopaminergic neurons for subjects suffering from a condition characterized by dopaminergic dysfunction, such as Parkinson's disease.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 25, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Marcel M. Daadi, Gary K. Steinberg
  • Patent number: 8318489
    Abstract: The present invention relates to the induction of differentiation in stem cells to cardiomyocytes and factors such as prostaglandin alone or in combination with other factors including essential minerals selected from the group including transferrin and selenium, small molecules selected from the group including a p38 MAPK inhibitor such as SB203580 and protein growth factors of the FGF, IGF and BMP families such as but not limited to IGF1, FGF2, BMP2, BMP4 and BMP6. and insulin that influence the process of differentiation to cardiomyocytes. Media that is appropriate for the induction of differentiation of cardiomyocytes from stem cells is also provided wherein the media contains these factors. The use of cardiomyocytes and cardiac progenitors produced by the directed differentiation in transplantation and screening for cardiac compounds is also provided.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 27, 2012
    Inventors: Bruce Paul Davidson, Ralph Eberhard Graichen, Robert Zweigerdt, Xiuqin Xu, Christine Lindsay Mummery, William Sun
  • Publication number: 20120252119
    Abstract: The present invention relates to a method of producing an embryo from an oocyte by an assisted reproduction technology. The method includes (a) collecting an oocyte from an ovary of a subject in a collection medium comprising a first phosphodiesterase inhibitor and an agent that increases intracellular cAMP concentration in the oocyte, (b) culturing the oocyte in a maturation medium comprising a second phosphodiesterase inhibitor, and (c) producing an embryo from the oocyte by an assisted reproduction technology. The present invention also relates to methods of inducing oocyte maturation. For example a method of in vitro maturation of an oocyte is described which comprises steps (a) and (b) above. The present invention also relates to an oocyte maturation medium comprising a phosphodiesterase inhibitor and a ligand for inducing maturation of the oocyte. A combination product comprising an oocyte collection and maturation medium referred to above is also described.
    Type: Application
    Filed: May 14, 2010
    Publication date: October 4, 2012
    Inventors: Robert Bruce Gilchrist, Jeremy Thompson, Firas Albuz
  • Publication number: 20120225479
    Abstract: The present technology relates to engineered human Fibroblast Growth Factor-2 (FGF2) proteins and methods of using the same. In particular, the methods and compositions relate to FGF2 mutants with increased thermostability compared to the wild-type protein and method for using the proteins in the culturing of embryonic stem cells.
    Type: Application
    Filed: February 29, 2012
    Publication date: September 6, 2012
    Inventor: Soon Seog JEONG
  • Patent number: 8222031
    Abstract: The present invention relates to methods for cultivating dermal fibroblasts, methods for preparing in vitro dermis equivalents, methods for preparing three-dimensional in vitro skin equivalents, an in vitro dermis equivalent, a three-dimensional in vitro skin equivalent, and methods for determining the effect of a chemical substance or of an agent on human skin cells using the in vitro dermis equivalent and/or the in vitro skin equivalent.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: July 17, 2012
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Michaela Noll, Thomas Graeve
  • Patent number: 8158423
    Abstract: A method of making a hair, including a step of culturing an undifferentiated cell of a mammal to produce an embryoid body and a step of further culturing the embryoid body is provided, wherein the culturing step is to culture the embryoid body on a three-dimensional matrix for 5 to 12 days. Furthermore, a biological material obtainable by the method of making a hair as described above is provided. Moreover, a biological material for a screening system of evaluating a medical product or the like, obtainable by utilizing the method of making a hair as described above is provided.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: April 17, 2012
    Assignee: Matsumoto Dental University
    Inventors: Hidehiro Ozawa, Mariko Yamaki, Makoto Asashima, Satoshi Ebina
  • Patent number: 8138147
    Abstract: Novel products comprising conditioned cell culture medium compositions and methods of use are described. The conditioned cell medium compositions of the invention may be comprised of any known defined or undefined medium and may be conditioned using any eukaryotic cell type. The medium may be conditioned by stromal cells, parenchymal cells, mesenchymal stem cells, liver reserve cells, neural stem cells, pancreatic stem cells and/or embryonic stem cells. Additionally, the cells may be genetically modified. A three-dimensional tissue construct is preferred. Once the cell medium of the invention is conditioned, it may be used in any state. Physical embodiments of the conditioned medium include, but are not limited to, liquid or solid, frozen, lyophilized or dried into a powder.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: March 20, 2012
    Assignee: Skinmedica, Inc.
    Inventors: Gail K. Naughton, David L. Horwitz, Mark A. Applegate, Joan Zeltinger, Jonathan N. Mansbridge, Andreas Kern, Lee K. Landeen, Anthony Ratcliffe, R. Emmett Pinney
  • Patent number: 8097458
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 17, 2012
    Assignee: Geron Corporation
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Patent number: 8026096
    Abstract: Disclosed and claimed is a human erythropoietin (EPO) expressed and produced in Spodoptera frugiperda Sf900+ cell line (ATCC: CRL 12579) transfected with a baculovirus construct containing the EPO gene. The EPO has an in vivo activity of 200,000 U/mg to 500,000 U/mg.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: September 27, 2011
    Assignee: Protein Sciences Corporation
    Inventors: Gale E. Smith, John Knell, Andrei I. Voznesensky
  • Patent number: 7989178
    Abstract: A system combining a clonogenic differentiation assay with an instrument-based ATP bioluminescence proliferation assay to produce a standardized colony-forming stem and progenitor cell potency assay is provided.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 2, 2011
    Assignee: Hemogenix, Inc.
    Inventor: Ivan N. Rich
  • Publication number: 20110039330
    Abstract: The present invention provides serum-free cell culture media formulations which are capable of supporting the in vitro cultivation of animal cells. The media comprise at least one nutrient of non-animal derivation, such as at least one plant peptide and/or at least one non-animal or plant lipid and/or fatty acid. The media may further optionally comprise an enzymatic digest or extract of yeast cells. The present invention also provides methods of cultivating animal cells in vitro using these cell culture media formulations. In addition, the media of the present invention can be used for growth of animal cells for virus production.
    Type: Application
    Filed: April 14, 2010
    Publication date: February 17, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Paul PRICE, Steve Gorfien, Douglas Danner, Mark Plavsic
  • Patent number: 7883861
    Abstract: The present invention relates generally to kits that provide reagent mixes and instructions for the use thereof, in performing high-throughput assay methods that determine the proliferative status of isolated target cell populations. The methods measure the luminescent output derived from the intracellular ATP content of incubated target cells, and correlate the luminescence with the proliferative status of the cells. The present invention further relates to kits that provide reagent mixes and instructions for high-throughput assays methods for screening compounds that may modulate the proliferative status of a target cell population. The kits of the present invention and methods therein described may be used for determining the proliferative status of any isolated cell line or type. The kits and methods of the present invention address the need for rapid assays that determine the proliferative status of isolated hematopoietic stem and progenitor cells and of subpopulations of differentiated cells thereof.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: February 8, 2011
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7790458
    Abstract: The invention provides populations of expanded CD34-expressing cells and methods of use. Particular embodiments provide for defined culture media useful for growing these cells, and grafts comprising these cells. The invention finds use in methods for reconstituting, repairing, and regenerating tissue damage.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: September 7, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Ruiling Xu, Andrea Liebmann-Vinson, Keith DeLuca, Mohammad Heidaran
  • Patent number: 7732201
    Abstract: A method for producing a neuroblast and a cellular composition comprising an enriched population of neuroblast cells is provided. Also disclosed are methods for identifying compositions which affect neuroblasts and for treating a subject with a neuronal disorder, and a culture system for the production and maintenance of neuroblasts.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: June 8, 2010
    Assignee: The Regents of the University of California
    Inventors: Fred H. Gage, Jasodhara Ray
  • Patent number: 7709258
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 4, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7709259
    Abstract: A method of enhancing in vitro development of a mammalian embryo is disclosed which comprises supplementing the culture medium with a prostaglandin, or a prostaglandin analog, in an amount effective to promote complete hatching of the embryo (i.e., freeing of the embryo from the zona pellucida). The quality of human blastocysts is enhanced in vitro by culturing with a prostacyclin agonist, Iloprost. The in vivo implantation potential and live birth potential of an in vitro fertilization embryo is thereby enhanced and establishment of a viable pregnancy is facilitated.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: May 4, 2010
    Assignee: Board of Regents of the University of Texas System
    Inventors: Jaou-Chen Huang, Jennifer S. Goldsby, Wan-Song A. Wun
  • Patent number: 7700354
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 20, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7700352
    Abstract: The invention aims to proliferate or establish undifferentiated pluripotent stem cells that retain their differentiation potency by culturing pluripotent stem cells in a medium free of a feeder cell, or a serum. The aim is attained by using a culture medium for pluripotent stem cells comprising the known ingredients, which is supplemented with an inhibitor of an adenylate cyclase activity.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: April 20, 2010
    Assignee: Riken
    Inventors: Hitoshi Niwa, Kazuya Ogawa
  • Patent number: 7666615
    Abstract: The present invention relates generally to assays, methods, and kits that provide reagent mixes and instructions for determining the proliferative status of isolated target cell populations. The methods measure the luminescent output derived from the intracellular ATP content of incubated target cells, and correlate the luminescence with the proliferative status of the cells.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 23, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7632680
    Abstract: The invention is directed to the field of human stem cells and includes methods and compositions for isolating, propagating, and differentiating human stem cells. The invention provides therapeutic uses of the methods and compositions, including autologous transplantation of treated cells into humans for treatment of Parkinson's and other neuronal disorders.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: December 15, 2009
    Assignee: Levesque Biosciences, Inc.
    Inventors: Toomas Neuman, Michel Levesque
  • Publication number: 20090269310
    Abstract: The invention concerns a method for obtaining in vitro a population of cells comprising essentially human smooth muscular cells expressing calponin and SM-MHC from a sample of human muscular biopsy or from human muscular biopsies differentiated in vitro into skeletal muscle cells. The invention also concerns a composition comprising the isolated smooth muscular cells obtainable by said method as therapeutic principle designed for humans. The invention further concerns the use of the isolated smooth muscular cells for preparing a therapeutic composition designed to replace smooth muscular cells. In particular, the invention concerns the use of said isolated smooth muscular cells for treating ischemia, cancer or any disease requiring revascularization of damaged tissues. Finally, the invention concerns the use of said smooth muscular cells as vector for an active principle for preparing a therapeutic composition designed for humans requiring treatment with said active principle.
    Type: Application
    Filed: September 19, 2006
    Publication date: October 29, 2009
    Inventors: Sophie Le Ricousse, Marie-Noelle Lacassagne, Jean-Pierre Marolleau
  • Publication number: 20090233360
    Abstract: The present invention provides methods and compositions for the propagation and expansion of neural precursor cells (NPCs). NPCs may be used in the clinical implementation of stem cell therapy to treat disorders such as Parkinson's disease, Huntington's disease, neuropathic pain and other diseases of the central nervous system. The large-scale production of NPCs in bioreactors allows for the generation of clinical quantities of these cells.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 17, 2009
    Inventors: Behnam A. Baghbaderani, Arindom Sen, Michael S. Kallos, Leo A. Behie
  • Publication number: 20090148876
    Abstract: A cartilage-like biomaterial is bioengineered by using a self-aggregating suspension cell culture with hydrostatic mechanical force without the use of a scaffold or foreign matrix for cell attachment during culture. The cells in suspension culture may be preconditioned prior to application of the hydrostatic mechanical force, such as hydrostatic pressure, for a period of time in the range of about 1 week to about 10 weeks. The cartilage-like biomaterial shares critical structural, phenotype, and functional characteristics with native, intact cartilage tissue.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 11, 2009
    Inventor: George R. Dodge
  • Patent number: 7504256
    Abstract: The present invention relates to a process for producing a desired polypeptide using rat cells. Specifically, the present invention relates to a process for producing the polypeptide which comprises culturing rat cells such as YB2/3HL.P2.G11.16Ag.20 (hereinafter referred to as YB2/0), preferably rat cells to which a recombinant DNA comprising DNA encoding a desired polypeptide such as an immunologically functional molecule is introduced, in a medium which does not contain serum (hereinafter referred to as a serum-free medium). Among the desired polypeptides obtained by the process of the present invention, an antibody obtained by using a transformant of YB2/0 has a high antibody-dependent cell-mediated cytotoxic activity (hereinafter sometimes referred to as ADCC activity) and is useful as a pharmaceutical agent.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: March 17, 2009
    Assignee: Kyowa Hakko Kogyo Co., Ltd.
    Inventors: Tatsuya Ogawa, Yoshinobu Konno, Naohisa Akashi, Hiroshi Takasugi, Seiji Sugimoto, Keiichi Yano
  • Patent number: 7439064
    Abstract: The invention relates to methods for culturing human embryonic stem cells by culturing the stem cells in an environment essentially free of mammalian fetal serum and in a stem cell culture medium including amino acids, vitamins, salts, minerals, transferring, insulin, albumin, and a fibroblast growth factor that is supplied from a source other than just a feeder layer the medium. Also disclosed are compositions capable of supporting the culture and proliferation of human embryonic stem cells without the need for feeder cells or for exposure of the medium to feeder cells.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: October 21, 2008
    Assignee: Wicell Research Institute, Inc.
    Inventors: James A. Thomson, Mark Levenstein
  • Publication number: 20080241111
    Abstract: An object of the present invention is to provide a stem cell applicable to regenerative therapeutic method, and to provide a technique to carry out regenerative therapy using the cell. A collected cardiac tissue fragment is enzymatically treated to prepare a cell suspension. Then using the cell suspension, following steps are carried out: (1) separation of cells by the density gradient method, (2) suspension-culture in a culture medium containing fibroblast growth factor and epidermal growth factor and (3) selection and separation of cells forming a floating sphere to obtain pluripotent stem cells. Thus-obtained pluripotent stem cells are used to carry out regenerative therapy.
    Type: Application
    Filed: March 3, 2006
    Publication date: October 2, 2008
    Applicant: KYOTO UNIVERSITY
    Inventors: Hidemasa Oh, Kento Tateishi, Hiroaki Matsubara
  • Patent number: 7354729
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 8, 2008
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7354730
    Abstract: The present invention relates generally to kits that provide reagent mixes and instructions for the use thereof, in performing high-throughput assay methods that determine the proliferative status of isolated target cell populations. The methods measure the luminescent output derived from the intracellular ATP content of incubated target cells, and correlate the luminescence with the proliferative status of the cells. The present invention further relates to kits that provide reagent mixes and instructions for high-throughput assays methods for screening compounds that may modulate the proliferative status of a target cell population. The kits of the present invention and methods therein described may be used for determining the proliferative status of any isolated cell line or type. The kits and methods of the present invention address the need for rapid assays that determine the proliferative status of isolated hematopoietic stem and progenitor cells and of subpopulations of differentiated cells thereof.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: April 8, 2008
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7304129
    Abstract: Peptides which consist of or comprise the tetrameric peptide structural unit: Xaa-Xaa-Xaa-Xaa in which Xaa at position 1 represents Glu or Asp, Xaa at position 2 represents any amino acid, Xaa at position 3 represents any amino acid and Xaa at position 4 represents Glu or Asp, each of the meanings of Xaa being independent, and peptides which consist of or comprise the sequence PYSSTA, particularly when in multimeric form, mimic the beneficial trophic and neuritogenic effects of FGF but lack the undesirable mitogenic effects. They are useful for the treatment of conditions for which FGF has been proposed, including treatment of neurodegenerative diseases, ischaemia, wound healing and stimulation of angiogenesis in cardiac muscle.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 4, 2007
    Assignees: Imperial Innovations Limited, King's College Innovations
    Inventor: Jane Louise Saffell
  • Patent number: RE41974
    Abstract: A biochemically defined culture medium for culturing engineered Chinese hamster ovary (CHO) cell lines, which is essentially free from protein, lipid and carbohydrate isolated from an animal source, having water, an osmolality regulator, a buffer, an energy source, amino acids including L-glutamine, an inorganic or recombinant iron source, and a synthetic or recombinant growth factor, and optionally non-ferrous metal ions vitamins and cofactors. Also cells adapted to grow in such a culture medium.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 30, 2010
    Assignee: GlaxoSmithKline LLC
    Inventors: Michael John Keen, Nicholas Timothy Rapson