Serum Patents (Class 435/392)
  • Patent number: 11723934
    Abstract: Provided herein are compositions and methods for the induction and/or proliferation of CD8+ T-cells. The disclosure also provides methods of treatment of diseases that can be treated by the induction and/or proliferation of CD8+ T-cells.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 15, 2023
    Assignee: Keio University
    Inventors: Kenya Honda, Takeshi Tanoue, Yutaka Kawakami, Koji Atarashi, Satoru Morita, Ashwin Nicholas Skelly
  • Patent number: 9700582
    Abstract: The present invention relates to a method for growing, rapidly and massively ex vivo, cells collected from a living subject to provide a safe and effective pharmaceutical preparation for biological tissue repair/regeneration. Specifically, the present invention relates to a method for growing cells in a sample collected from a living subject by culturing the cells in a medium containing allogeneic (including autogenic) serum. Preferably the allogeneic serum has been determined as being negative for a serum tumor marker and/or an infectious factors, and the amount of the anticoagulant (e.g., heparin, a heparin derivative, or a salt thereof) added to the collected sample is less than 5 U/mL with respect to the volume of the sample or the amount of the anticoagulant in the medium at the start of culture is less than 0.5 U/mL. The present invention further relates to use of the method.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: July 11, 2017
    Assignee: Sapporo Medical University
    Inventors: Osamu Honmou, Kiyohiro Houkin
  • Patent number: 9644182
    Abstract: Described is a method of expanding human progenitor cells by suspension culturing under non-static conditions. The culturing method provides a three-dimensional space for the rapid expansion of desirable progenitors. By this method, a new compartment of multipotential progenitor cells has been identified, which give rise under differentiation conditions to progeny including osteoblasts, chondrocytes, myoblasts, adipocytes, and other non-hematopoietic cell types. Their use in cell and tissue-based engineering is described.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 9, 2017
    Inventors: Dolores Baksh, John E. Davies, Peter Zandstra
  • Patent number: 9512403
    Abstract: The present invention is directed to a method of producing compositions including embryonic proteins. The method includes culturing cells under hypoxic conditions on a biocompatible surface in vitro. The culturing method produces both soluble and non-soluble fractions, which may be used separately or in combination to obtain physiologically acceptable compositions useful in a variety of medical and therapeutic applications.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: December 6, 2016
    Assignee: Histogen, Inc.
    Inventors: Gail K. Naughton, Frank Ziegler, Mark Baumgartner, Kyle Nickey
  • Patent number: 9372132
    Abstract: A blood component sampling system and method are disclosed. The system is pre-connected and includes a collected blood component container and a reservoir having substantially fixed volume and at least one volumetric indicator indicating a selected volume and a sample container docking station configured to cooperate with a sample collection container. The system and method provide ease of sampling with reduced risk of contamination.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: June 21, 2016
    Assignee: Fenwal, Inc.
    Inventors: Tat Mui, Randy Murphey, Daniel Lynn, Richard L. West, Hugo Ramon, Shawn Davis
  • Patent number: 8927276
    Abstract: The present invention relates to a simplified process, which is shorter in time, for propagation of proliferating cells, such as e.g. progenitor or stem cells, by means of a biphasic culturing system having a differentiation supporting component and a proliferation supporting component, and to the use of the stem cell cultures obtained in this way for cell therapy purposes. The present invention invention describes a method, which is highly efficient to prime stem or progenitor cells to differentiation using non-attachment matrices and differentiation supporting component. The cells produced therefrom may be used to treat a variety of neurodegenerative disorders.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Cellin Technologies OUE
    Inventors: Kaia Palm, Toomas Neuman
  • Patent number: 8841089
    Abstract: The present invention relates to polynucleotides comprising a first nucleic acid sequence for a chromatin element, which is capable of enhancing expression, and at least one second nucleic acid sequence comprising a curved origin motif. Furthermore, the invention relates to a host cell, a non-human transgenic organism, a vector and a kit comprising the aforementioned polynucleotide. Moreover, the invention relates to methods for expressing a polynucleotide of interest.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 23, 2014
    Assignee: Hochschule Mannheim
    Inventors: Manfred Frey, Heiko Flammann, Mathias Hafner
  • Patent number: 8728815
    Abstract: This invention relates to methods of inducing differential stress resistance in a subject with cancer by starving the subject for a short term, administering a cell growth inhibitor to the subject, or reducing the caloric or glucose intake by the subject. The induced differential stress resistance results in improved resistance to cytotoxicity in normal cells, which, in turn, reduces cytotoxic side-effects due to chemotherapy, as well as improved effectiveness of chemotherapeutic agents.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: May 20, 2014
    Assignee: University of Southern California
    Inventor: Valter Longo
  • Patent number: 8679838
    Abstract: It is intended to provide a serum which contains a large amount of growth factors capable of efficiently promoting the growth of stem cells. A human serum for cell culture which shows a residual ratio of platelets remaining within 20 minutes after blood collection in relation to the whole amount of the platelets is 0% to 20%, and a release ratio of cell growth factors is 20% to 100%.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 25, 2014
    Assignee: JMS Co., Ltd.
    Inventors: Koji Suzuki, Seishin Tanaka
  • Patent number: 8623650
    Abstract: The present invention provides compositions and methods for the culture and maintenance of pluripotent stem cells. More particularly, the present invention provides for compositions and methods for culturing, maintaining, growing and stabilizing primate pluripotent stem cells in a feeder-free defined media further comprising human serum, or a soluble attachment component of the human serum, for promoting cell attachment.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 7, 2014
    Assignee: Viacyte, Inc.
    Inventors: Allan J. Robins, Thomas C. Schulz
  • Patent number: 8617887
    Abstract: The present invention is generally in the field of neurological diseases and disorders, particular in the field of neurodegenerative diseases in which the myelin cover of nerves is lost. IL6R/IL6 chimera is used to promote the formation of oligodendrocytes from embryonic stem cells for treatment of neurodegenerative diseases or posttraumatic nerve damage.
    Type: Grant
    Filed: June 13, 2004
    Date of Patent: December 31, 2013
    Assignee: Yeda Research and Development Co. Ltd
    Inventors: Michel Revel, Peter Lonai, Rozemari Stirbu Lonai
  • Publication number: 20130130382
    Abstract: To provide an autoserum-containing bone marrow cell culture system, whereby bone marrow cells, which are collected from a subject without using an anticoagulant, are subjected to an anticoagulation treatment using a medium in a liquid-tight state, cultured and then further cultured using the serum of said subject which is prepared in a liquid-tight state; an autoserum-containing bone marrow cell culture method; and a method for producing a medicinal composition which comprises, as the active ingredient, autoserum-containing cultured bone marrow cells. [Solution] An autoserum-containing bone marrow cell culture system for culturing bone marrow cells, which are collected from a subject without using an anticoagulant, using the serum of said subject, said system comprising a bone marrow cell suspension-storing device, a collected blood-storing device, an autoserum-acquiring device, and a bone marrow cell-culturing device.
    Type: Application
    Filed: August 3, 2011
    Publication date: May 23, 2013
    Applicant: SAPPORO MEDICAL UNIVERSITY
    Inventors: Osamu Honmou, Yoshihiro Yoshikawa, Naomi Morikawa
  • Patent number: 8426200
    Abstract: The present invention relates to compositions and methods for culturing stem cells, such that neuronal differentiation can be achieved.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: April 23, 2013
    Assignee: Regents of the University of Minnesota
    Inventors: Catherine Verfaillie, Yuehua Jiang
  • Patent number: 8420394
    Abstract: Disclosed are methods for expanding stem cells that use a unique combination of environmental factors and cell culture conditions to produce stem cells having enhanced proliferation and differentiation characteristics. Also disclosed are methods for enhancing the engraftment and/or migratory potential of stem cells for therapeutic uses. Stem cells having unique proliferation, differentiation, migratory and engraftment characteristics are also disclosed.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 16, 2013
    Inventors: Chih-Min Lin, Alex Wharazi
  • Patent number: 8257947
    Abstract: The present invention is directed to a method of producing compositions including embryonic proteins. The method includes culturing cells under hypoxic conditions on a biocompatible three-dimensional surface in vitro. The culturing method produces both soluble and non-soluble fractions, which may be used separately or in combination to obtain physiologically acceptable compositions useful in a variety of medical and therapeutic applications.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 4, 2012
    Inventors: Gail K. Naughton, Frank Ziegler, Mark Baumgartner, Kyle Nickey
  • Patent number: 8211700
    Abstract: This invention relates to methods of inducing differential stress resistance in a subject with cancer by starving the subject for a short term, administering a cell growth inhibitor to the subject, or reducing the caloric or glucose intake by the subject. The induced differential stress resistance results in improved resistance to cytotoxicity in normal cells, which, in turn, reduces cytotoxic side-effects due to chemotherapy, as well as improved effectiveness of chemotherapeutic agents.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: July 3, 2012
    Assignee: University of Southern California
    Inventor: Valter Longo
  • Patent number: 7993917
    Abstract: Methods for the diagnosis of visceral, cutaneous and canine leishmaniasis in a subject suspected of being infected with the parasitic protozoa Leishmania is disclosed. Disclosed are antibody-capture enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies to Leishmania parasite soluble antigens and antigen-capture ELISAs for the detection of Leishmania parasite soluble antigens in host samples. Also disclosed are immunodiagnostic kits for the detection of Leishmania parasite circulating antigens or IgM and IgG antibodies in a sample from subject having visceral, cutaneous or canine leishmaniasis. In these methods and kits, detection may be done photometrically or visually. The methods and kits also allow the visualization of Leishmania amastigotes or promastigotes in a sample.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 9, 2011
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Samuel K. Martin
  • Patent number: 7977063
    Abstract: The present invention concerns a method for determining an allergic response by determining the extent of degranulation of human IgE sensitized cells upon activation by allergens in food products.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: July 12, 2011
    Assignee: N.V. Nutricia
    Inventors: Virginie Sophie Christelle Tregoat, Johan Garssen
  • Patent number: 7709258
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 4, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Publication number: 20100105108
    Abstract: A method of making a vaccine using animal derived component free (ADCF) cell culture technology, including the steps of attaching ADCF-adapted cells to a microcarrier including an attachment mechanism for attaching filipodia of the cells, the microcarrier being in a culture, growing the cells in ADCF maintenance media, infecting the cells with vaccine media, producing virus within the cells, and harvesting the virus. A vaccine produced by the above method in a pharmaceutically acceptable carrier. A vaccine production structure of ADCF-adapted cells removably attached to microcarrier beads including an attachment mechanism for attaching filipodia of the cells.
    Type: Application
    Filed: December 18, 2009
    Publication date: April 29, 2010
    Applicant: SOLOHILL ENGINEERING, INC.
    Inventors: Bonnie L. Wallace, William J. Hillegas
  • Patent number: 7700352
    Abstract: The invention aims to proliferate or establish undifferentiated pluripotent stem cells that retain their differentiation potency by culturing pluripotent stem cells in a medium free of a feeder cell, or a serum. The aim is attained by using a culture medium for pluripotent stem cells comprising the known ingredients, which is supplemented with an inhibitor of an adenylate cyclase activity.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: April 20, 2010
    Assignee: Riken
    Inventors: Hitoshi Niwa, Kazuya Ogawa
  • Patent number: 7700354
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 20, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7666673
    Abstract: The present invention provides a method of growing spermatogonial stem cells of mammals and the like in vitro, which is characterized in that glial cell-derived neurotrophic factor (GDNF) or an equivalent thereto, and leukemia inhibitory factor (LIF) are contained in a medium (culture broth) for culturing spermatogonial stem cells. According to the method of the present invention, spermatogonial stem cells can be grown in vitro to the extent that enables use thereof for developmental engineering.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: February 23, 2010
    Assignee: Kyoto University
    Inventors: Takashi Shinohara, Mito Shinohara
  • Patent number: 7666615
    Abstract: The present invention relates generally to assays, methods, and kits that provide reagent mixes and instructions for determining the proliferative status of isolated target cell populations. The methods measure the luminescent output derived from the intracellular ATP content of incubated target cells, and correlate the luminescence with the proliferative status of the cells.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 23, 2010
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 7651847
    Abstract: The present invention provides methods for identifying oligosaccharides specific to cancer and methods for determining a strain of cancer in an individual. The present invention also provides methods for diagnosing cancer or a stage of cancer in an individual by detecting the presence or absence of specific cancer markers and methods for treating cancer by administering antibodies directed to such markers. In addition, the present invention provides cancer markers comprising O-linked oligosaccharides and kits for diagnosing or treating cancer.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: January 26, 2010
    Assignee: The Regents of the University of California
    Inventors: Carlito B. Lebrilla, Hyun Joo An, Kit S. Lam, Suzanne Miyamoto
  • Patent number: 7645609
    Abstract: The invention provides media and methods for culturing mammalian cells whereby the sialylation of a protein produced by the cells is increased. The medium can contain N-acetylmannosamine and, optionally, galactose. The medium may also comprise fructose and mannose. Alternatively, the medium can contain galactose and fructose and, optionally, can also comprise mannose and/or N-acetylmannosamine. The methods can be practiced along with other methods for culturing cells so as to increase the quantity or quality of a protein produced by the cells, including culturing the cells at a temperature below 37° C.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: January 12, 2010
    Assignee: Immunex Corporation
    Inventor: Brian D. Follstad
  • Publication number: 20090246182
    Abstract: The invention concerns a method for culturing cells derived from the adipose tissue and in particular the stromal vascular fraction (SVF) to induce formation of cardiomyocytes, the use of the cells obtained by said culture method to reconstitute an ischemized cardiac zone, in particular following an infarction, as well as a pharmaceutical composition containing said cells. The method for obtaining cardiac cells comprises at least the following steps: a) selecting cardiomyogenic cells from the stromal vascular fraction (SVF); b) culturing the cells selected at step a) in a liquid medium optimized for expanding ex vivo the cardiomyogenic cells; c) maintaining and expanding said cells by successive passes in the liquid medium; and d) obtaining cardiac cells.
    Type: Application
    Filed: January 26, 2007
    Publication date: October 1, 2009
    Inventors: Louis Casteilla, Valerie Planat-Benard, Luc Penicaud, Carine Chanut
  • Publication number: 20090093056
    Abstract: Methods of generating and expanding proliferative, multipotent connective tissue progenitor cells from adult stem cells are provided. Also provided are methods of generating functional tendon grafts in vitro and bone, cartilage and connective tissues in vivo using the isolated cell preparation of connective tissue progenitor cells.
    Type: Application
    Filed: January 11, 2007
    Publication date: April 9, 2009
    Applicant: Technion Research & Development Foundation Ltd.
    Inventors: Joseph Itskovitz-Eldor, Shahar Cohen
  • Patent number: 7514261
    Abstract: The invention provides methods of treating and preventing loss of tissue vascularization that can occur, for example, upon aging.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: April 7, 2009
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Jay M. Edelberg, Shahin Rafii, Mun K. Hong
  • Patent number: 7501231
    Abstract: The invention can be summarized as follows. The present invention provides cell culture compositions and cell cryopreservation compositions for culturing and cryopreserving enteric system (ENS) neurons and central nervous system (CNS) neurons. The present invention also provides a method of culturing and cryopreserving ENS and CNS cells. The compositions of the present invention comprise nutrient medium, serum, glutamine, glucose an antibiotic and one or more of the following components: one or more mitotic inhibitors, one or more antioxidants, and a cryopreservative.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: March 10, 2009
    Assignee: University of Ottawa
    Inventors: William Staines, Anthony Krantis
  • Publication number: 20080286243
    Abstract: The present invention relates to a method for isolating hair follicle stem cells and a composition for inducing hair growth. More specifically, relates to a method for isolating hair follicle stem cells showing a positive immunological response to CD34, by chemically degrading hair follicle-containing scalp tissue and then culturing the degraded tissue in a serum-containing medium and a serum-free medium, as well as a composition for inducing hair growth, which contains, as an active ingredient, CD34-positive hair follicle stem cells isolated by the method. The hair follicle-derived stem cells, which are obtained according to the disclosed method, are classified as autologous adult stem cells, have self-renewal capability, the ability to differentiate into adult hair follicle cells and the ability to induce hair growth, and can be used as a novel cell therapeutic agent against hair loss.
    Type: Application
    Filed: July 4, 2007
    Publication date: November 20, 2008
    Applicants: SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION, RNL BIO CO., LTD.
    Inventors: Kyung Sun Kang, Jeong Chan Ra
  • Patent number: 7452721
    Abstract: Methods for the diagnosis of visceral, cutaneous and canine leishmaniasis in a subject suspected of being infected with the parasitic protozoa Leishmania is disclosed. Disclosed are antibody-capture enzyme-linked immunosorbent assays (ELISAs) for the detection of antibodies to Leishmania parasite soluble antigens and antigen-capture ELISAs for the detection of Leishmania parasite soluble antigens in host samples. Also disclosed are immunodiagnostic kits for the detection of Leishmania parasite circulating antigens or IgM and IgG antibodies in a sample from subject having visceral, cutaneous or canine leishmaniasis. In these methods and kits, detection may be done photometrically or visually. The methods and kits also allow the visualization of Leishmania amastigotes or promastigotes in a sample.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: November 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Samuel K. Martin
  • Patent number: 7410787
    Abstract: The invention relates to a method for in vitro seriological diagnosis of Whipple's disease, whereby the bacteria responsible for the disease are isolated and established in a culture and brought into contact with the serum or biological fluid of an infected patient. The invention also relates to useful oligonucelotides with a probe and a primer for amplifying, sequencing and detecting the gene rpoB of the bacteria, Tropheryma whippelii.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: August 12, 2008
    Assignee: Protisvalor Mediterranee
    Inventors: Didier Raoult, Bernard La Scola, Marie-Laure Birg, Florence Fenollar
  • Patent number: 7354729
    Abstract: The present invention relates generally to high-throughput assay methods that determine the proliferative status of hematopoietic stem and progenitor cells. The present invention further relates to high-throughput assays for screening compounds that modulate the growth of hematopoietic stem and progenitor cells and for identifying subpopulations thereof that are suitable for transplantation. The assay of the present invention is particularly useful for quality control and monitoring of the growth potential in the stem cell transplant setting and would provide improved control over the reconstitution phase of transplanted cells.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 8, 2008
    Assignee: HemoGenix, Inc.
    Inventor: Ivan N. Rich
  • Patent number: 6989271
    Abstract: There is provided a method of inducing bone marrow stromal cells to differentiate into bone marrow stromal cell-derived Schwann cells in vitro, comprising the steps of: collecting bone marrow stromal cells from bone marrow and culturing the cells in a standard essential culture medium supplemented with a serum; adding a reducing agent to the culture medium and further culturing the cells; adding a differentiation inducing agent to the culture medium and further culturing the cells; and adding a cyclic AMP-augmenting agent or a cyclic AMP analogue and/or a glial cell differentiation and survival stimulating factor to the culture medium, and further culturing the cells to obtain the bone marrow stromal cell-derived Schwann cells. There are also provided bone marrow stromal cell-derived Schwann cells obtained thereby and a pharmaceutical composition for neural regeneration that comprises them.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 24, 2006
    Assignee: Sanbio, Inc.
    Inventors: Mari Dezawa, Hajime Sawada, Masahiko Takano
  • Patent number: 6960473
    Abstract: We describe a new two-step culture method for mass production in vitro of erythroid cells from either CD34+ (105 cells/mL) or light-density (106 cells/mL) cells purified from the blood of normal donors and thalassemic patients. The method includes (i) culture of the cells in the presence of dexamethasone and estradiol (10?6 M each) and (ii) the growth factors SCF (50 ng/mL), IL-3 (1 ng/mL), and EPO (1 U/mL). In their proliferative phase, these cultures generated about 1-2×107 erythroblasts for each milliliter of blood collected from normal donors or thalassemic patients. They were composed mostly (90%) of CD45low/glycophorin (GPA)neg/CD71low cells at day 7, 50-60% of which became CD45neg/GPA+/CD71high by days 15-20. However, when cells from days 7 to 12 of the proliferative phase were transferred in differentiation medium containing EPO and insulin, they progressed to mature erythroblasts (>90% benzidinepos and CD45neg/GPA+/CD71medium) in 4 days.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: November 1, 2005
    Assignee: Istituto Superiore di Sanita
    Inventors: Giovanni Migliaccio, Anna Rita Franco
  • Patent number: 6838089
    Abstract: The present invention concerns polymer particle vaccine delivery systems in which a water insoluble protein antigen, e.g. a lipidated HpaA protein, is incorporated with particles comprising a polymer matrix. The present invention also concerns a method for incorporating such a water insoluble protein antigen with a polymer matrix in order to produce a polymer particle vaccine delivery system. In addition, the invention also provides a vaccine composition comprising the polymer particle delivery system. The vaccine can be used to treat and/or reduce the risk of for example Helicobacter infection.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: January 4, 2005
    Assignee: AstraZeneca AB
    Inventors: Hans Carlsson, Anette Larsson, Erik Söderlind
  • Patent number: 6610535
    Abstract: The present invention relates to a substantially pure population of viable pancreatic progenitor cells, and methods for isolating such cells. The present invention further concerns certain therapeutic uses for such progenitor cells, and their progeny.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: August 26, 2003
    Assignee: ES Cell International Pte Ltd.
    Inventors: Kuanghui Lu, Kevin Pang, Lee Rubin
  • Patent number: 6599740
    Abstract: A process of using a fish plasma component as a nutrient medium component for tissue culture includes obtaining blood from a fish, separating plasma from the blood, and extracting one or more specific components of the plasma. The tissue is cultured using the extracted plasma components, and none of any remainder of the plasma, in a nutrient medium. The tissue cultured using the extracted plasma component is other than fish tissue, such as mammalian tissue or insect tissue.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: July 29, 2003
    Assignee: Sea Run Holdings, Inc.
    Inventors: Evelyn A. Sawyer, Paul A. Janmey, Lisa A. Flanagan
  • Patent number: 6558949
    Abstract: This invention relates to media for culturing human cells that the proliferation speed of human cells is increased and the cell expression type is stably manifested, and to a method for culturing human cells using the same. This invention is characterized in that the media used for culturing human cells comprises human serum.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: May 6, 2003
    Inventors: Byoung-Hyun Min, So Ra Park
  • Publication number: 20030008394
    Abstract: A method for culturing Langerhans islets to obtain an amount sufficient for transplant and autotransplant is disclosed. The islets are cultured in a culture serum (rat/human) medium which is supplemented with radical scavengers, growth factors, a matrix material, nerve growth factor, cell migrating/scattering factors and anti-integrin &bgr;1 antibody at proper the time during the culturing process The medium is supplemented with radical scavengers and growth factors for the first time and then further supplemented with matrix material, radical scavengers, nerve growth factor and the growth factors around 12-24 hours after culturing. Thereafter, the medium is supplemented with growth factors, cell migrating/scattering factors and anti-integrin &bgr;1 antibody at 4-5 days into the culturing process.
    Type: Application
    Filed: July 19, 2002
    Publication date: January 9, 2003
    Inventor: Tai-Wook Yoon
  • Patent number: 6500668
    Abstract: A culture medium for avian embryonic cells and an avian cell culture medium is disclosed. The culture medium is characterized in that it has elements complementary to avian embryonic cells. The complementary elements are cytokines, fibroblast growth factors, insulin-like growth factors or stem cell growth factors. The medium is substantially free of active retinoic acid. A method for culturing avian embryonic cells, and the resulting products, are also disclosed.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: December 31, 2002
    Inventors: Jacques Samarut, Bertrand Pain
  • Publication number: 20020187551
    Abstract: A method for culturing Langerhans islets to obtain an amount sufficient for transplant and autotransplant is disclosed The islets are cultured in a culture serum (rat/human) medium which is supplemented with radical scavengers, growth factors, a matrix material, nerve growth factor, cell migrating/scattering factors and anti-integrin &bgr;1 antibody at proper the time during the culturing process. The medium is supplemented with radical scavengers and growth factors for the first time and then further supplemented with matrix material, radical scavengers, nerve growth factor and the growth factors around 12-24 hours after culturing. Thereafter, the medium is supplemented with growth factors, cell migrating/scattering factors and anti-integrin &bgr;1 antibody at 4-5 days into the culturing process. The culturing process is conducted for an extended period of time, so that any latent red blood cells are eliminated from the islet culture.
    Type: Application
    Filed: July 8, 2002
    Publication date: December 12, 2002
    Inventor: Tai-Wook Yoon
  • Publication number: 20020177228
    Abstract: A method for preparing a preparation of mammalian pancreatic endocrine cells comprising the steps: dissociating intact pancreatic tissue into a cell suspension comprising single cells and cell aggregates; enriching said cell suspension with regard to the content in endocrine cells by separating single cells and cellular aggregates with size <100 &mgr;m; and removing contaminating non-endocrine cells by density centrifugation.
    Type: Application
    Filed: April 12, 2001
    Publication date: November 28, 2002
    Applicant: Beta-Cell N.V.
    Inventor: Daniel Pipeleers
  • Patent number: 6436701
    Abstract: A method of selecting and growing pluripotential embryonic stem cells isolated from an ungulate species blastocysts of embryos that develop by way of an embryonic disc is disclosed. The method comprises growing blastocysts in tissue culture growth medium which includes both heat-inactivated new born calf serum and heat-inactivated fetal calf serum; disaggregating the blastocysts either after spontaneous hatching or after mechanical removal of the zone pellucida; growing stem cell colonies from the disaggregated cells in issue culture growth medium; selecting stem cell colonies by morphological characteristics; and growing the selected stem cells in tissue culture growth medium. The cells are round cells, tightly packed with large nuclei in relation to cytoplasm, and fairly prominent nucleoli. They grow in tightly adherent coloedes and as the colonies get larger the cells tend to flatten out in the center of the colony.
    Type: Grant
    Filed: April 23, 1991
    Date of Patent: August 20, 2002
    Assignee: Babraham Institute
    Inventors: Martin John Evans, Robert Michael Moor, Elena Notaranni
  • Publication number: 20020076813
    Abstract: Compositions for stabilizing polypeptides or antigens are described. These compositions are useful for stabilizing polypeptides or antigens stored in aqueous formulations. Such formulations can be used for various analytical or other methods.
    Type: Application
    Filed: December 14, 2000
    Publication date: June 20, 2002
    Inventors: Jeffrey W. Steaffens, Laura Panzarella
  • Publication number: 20020076814
    Abstract: A process of using a fish plasma component as a nutrient medium component for tissue culture includes obtaining blood from a fish, separating plasma from the blood, and extracting one or more specific components of the plasma. The tissue is cultured using the extracted plasma components, and none of any remainder of the plasma, in a nutrient medium. The tissue cultured using the extracted plasma component is other than fish tissue, such as mammalian tissue or insect tissue.
    Type: Application
    Filed: July 18, 2001
    Publication date: June 20, 2002
    Inventors: Evelyn A. Sawyer, Paul A. Janmey, Lisa A. Flanagan
  • Patent number: 6383805
    Abstract: A method and a medium for culturing epithelial cells of both normal and malignant origin is provided. The method entails physically disaggregating tissue samples, placing the resulting fragments onto a surface comprised of basement membrane matrix components, and culturing the tissue in a medium containing preselected fetal and newborn calf sera and rat sera. Both primary explant cell cultures and cell lines, which are long-lived and particularly suitable for further study, are produced. The cultured primary explant cells undergo differentiation to form complex structures resembling those seen in vivo.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: May 7, 2002
    Assignee: University of Pittsburgh
    Inventor: Jean J. Latimer
  • Patent number: 6261805
    Abstract: The present disclosure utilizes a novel approach to protein preparation in the baculovirus expression vector system (BEVS). Specifically, the present invention analyzes the effects of microgravity/low shear on complex glycosylation of proteins prepared via BEVS, including the addition of terminal sialic acid residues to N-linked oligosaccharides.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: July 17, 2001
    Assignee: Boyce Thompson Institute for Plant Research, Inc.
    Inventor: H. Alan Wood
  • Patent number: 6204056
    Abstract: A patient replica is created from layered culture medium where solid culture medium is formed so that a discontinuity exists, for example, between layers of culture medium or between culture medium and the container holding the medium. An injection port is provided in registration with the discontinuity so that a sample of patient blood can be infused into the discontinuity to form a thin layer of blood in contact with a surface of culture medium. The thin layer of blood obviates the requirement for any anticoagulant allowing blood-borne pathogens to be readily cultured without using broth. Further antibiotics or other drug samples may be placed on an exposed surface of the culture medium above the blood layer so that the antibiotic can diffuse through the culture medium and reveal the sensitivities of the cultured pathogens.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: March 20, 2001
    Inventors: Allen C. Barnes, Janice S. Barnes