Pyrolysis, Combustion, Or Elevated Temperature Conversion Patents (Class 436/155)
  • Patent number: 11670401
    Abstract: One aspect of the present disclosure relates to a method of quantifying soil carbon in a unit of land. The method generally comprises the steps of (i) obtaining an estimated spatial distribution of carbon content in the unit of land, (ii) stratifying the unit of land into a plurality of strata based at least partly on the spatial distribution of carbon content, (iii) selecting one or more locations from each of one or more of the plurality of strata, the one or more locations being selected with randomness, (iv) determining sample carbon content associated with the one or more first locations and (v) determining total carbon content in the unit of land based at least partly on the sample carbon content. In another aspect, this method may be used to quantify soil carbon sequestered in a unit of land by repeating steps (iv) and (v) at a second time and thereafter determining the amount of carbon sequestered.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: June 6, 2023
    Assignee: THE UNIVERSITY OF SYDNEY
    Inventors: Alex McBratney, Budiman Minasny, Jaap De Gruijter, Philip James Mulvey
  • Patent number: 11657903
    Abstract: One aspect of the present disclosure relates to a method of quantifying soil carbon in a unit of land. The method generally comprises the steps of (i) obtaining an estimated spatial distribution of carbon content in the unit of land, (ii) stratifying the unit of land into a plurality of strata based at least partly on the spatial distribution of carbon content, (iii) selecting one or more locations from each of one or more of the plurality of strata, the one or more locations being selected with randomness, (iv) determining sample carbon content associated with the one or more first locations and (v) determining total carbon content in the unit of land based at least partly on the sample carbon content. In another aspect, this method may be used to quantify soil carbon sequestered in a unit of land by repeating steps (iv) and (v) at a second time and thereafter determining the amount of carbon sequestered.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: May 23, 2023
    Assignee: THE UNIVERSITY OF SYDNEY
    Inventors: Alex McBratney, Budiman Minasny, Jaap De Gruijter, Philip James Mulvey
  • Patent number: 10773242
    Abstract: Cement-based photocatalytic composition, which comprises: (a) at least one cement binder; (b) at least one photocatalyst; (c) at least one cellulose ether; (d) at least one fluidizing agent; (e) at least one first calcareous filler in the form of particles of which at least 95% by weight has a size not greater than 100 ?m; (f) at least one second calcareous filler in the form of particles of which at least 95% by weight has a size not greater than 30 ?m; (g) at least one silane supported on an inorganic support in the form of powder. Such composition can be employed as a water paint for obtaining wall coatings with very low thickness, in particular the outdoor applications, which ensure a high and stable photocatalytic effect over time even with relatively low quantities of photocatalyst, generally lower than 10% by weight, with optimal results in terms of uniformity of the coating and resistance of the same to weathering agents.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: September 15, 2020
    Assignee: AM TECHNOLOGY LIMITED
    Inventor: Massimo Bernardoni
  • Patent number: 9040306
    Abstract: The present invention relates to a high-temperature furnace for T(O)C measurement of a sample, which has a furnace housing which bounds a vaporization space and has a sample opening for the dropwise introduction of the sample and at least one flushing opening for introduction of a flushing liquid. According to the invention, the furnace housing is lined with a spinel ceramic on an inner side facing the vaporization space. By means of the spinel ceramic, the vaporization space is lined with a material which allows particularly high temperatures within the vaporization space and thus very complete combustion and is at the same time very resistant to temperature changes. This allows cleaning with a flushing liquid at essentially the operating temperature of the vaporization space and removal of deposited salts, in particular recrystallized organic salts, from the vaporization space in the flushing liquid in dissolved or undissolved form.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: May 26, 2015
    Assignee: LANXESS Deutschland GmbH
    Inventors: Christian Heuckeroth, Rudolf Kreutzer, Peter Kawulycz
  • Publication number: 20150132543
    Abstract: This invention relates to the field of authentication of coating compositions such as varnishes, inks and paints, and it is particularly useful in the field of authentication of such coating compositions when applied to substrates like banknotes or other valuable documents. It is particularly directed to a marked coating composition. e.g. an ink, that is marked with a marker (taggant) such as to allow for its authentication, and a method for authenticating such a marked coating composition. The marking is achieved by covalently binding a taggant to a coating composition component. e.g. such used for security documents. The taggant, which is not extractable through usual chemical treatments like washing methods or the use of solvents, can be detected and identified upon thermally induced chemical fragmentation with a PY-GC-MS apparatus. The marked ink or the marked substrate is thus authenticated as belonging to a particularly marked ink, varnish or batch.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 14, 2015
    Applicant: SICPA HOLDING SA
    Inventors: Eric Nouzille, Raynald Demange, Pierre Degott
  • Patent number: 8969095
    Abstract: The present invention is directed to methods and systems for detecting the presence of explosive elements. A sample element may be used to swipe an object for a test sample. The sample element may be positioned in a sample holder of a testing device having a heater. The heater may be programmed to heat the sample element and sample in a controlled manner through two or three temperature increases from approximately 35 degrees to 165 degrees centigrade in approximately 40 seconds. Prior to each temperature increase a first, second and third reagent fluid is applied to the sample holder, and during the temperature rise the sample holder is observed for the presence of various explosive elements by detecting colors as compared to a color chart. The color observations may be based on time and temperature variations using a testing device.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 3, 2015
    Inventor: Jeffery S. Haas
  • Patent number: 8846407
    Abstract: A method and device for detecting explosive compounds in an air sample in which the air sample is filtered with activated carbon treated with a weakly basic solution, after which the air sample is divided into two parts, with one part being heated at lower temperatures to decompose non-explosive nitrogenous compounds and the second part being heated at higher temperatures to decompose explosive nitrogenous compounds. Nitrogen dioxide is measured in both portions of the air sample with a spectrographic detector, and the presence or absence of explosive nitrogenous compounds in the air sample is determined.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: September 30, 2014
    Inventor: James M. Hargrove
  • Patent number: 8802443
    Abstract: A method for identifying gambiered Guangdong silk includes the steps of: detecting the surface state of fiber by microscope; detecting the pyrolysis fragments of fabrics by pyrolysis gas chromatography; determining the crude protein content in the fiber by Kjeldahl determination; and detecting the dye component of the fabrics by high performance liquid chromatography. The method of the present invention can accurately identify the true and fake, good and bad of the gambiered Guangdong silk, and then make an accurate evaluation on the gambiered Guangdong silk; and the present invention is simple, useful, environmental and has low cost.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: August 12, 2014
    Assignee: Shenzhen Liangzi Fashion Industrial Co., Ltd.
    Inventors: Zhihua Huang, Xueming Liu, Hongying Zhou, Yingying Wu
  • Patent number: 8796035
    Abstract: The invention relates to a method and to a device for sulfur characterization and quantification in a sample of sedimentary rocks or of petroleum products wherein the following stages are carried out: heating said sample in a pyrolysis oven (1) in a non-oxidizing atmosphere, oxidizing part of the pyrolysis effluents and continuously measuring the amount of SO2 generated by said part after oxidation, then transferring the pyrolysis residue of said sample into an oxidation oven (1?) and continuously measuring the amount of SO2 contained in the effluents resulting from said oxidation heating.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 5, 2014
    Assignees: IFP Energies Nouvelles, Vinci Technologies
    Inventors: Jean Espitalie, Roland Antonas, Violaine Lamoureux-Var, Gérémie Letort, Daniel Pillot, Valérie Beaumont, Frank Haeseler
  • Publication number: 20140186961
    Abstract: A method is provided that identifies the compounds contributing to a malodor from an air conditioner, reproduces the malodor, and prepares a corresponding malodor composition. Through the analysis method of the present invention, the compounds contributing to the malodor from an air conditioner are identified and quantified. The malodor is reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced malodor provides significant data required for development of an apparatus and a method for removing specific odor.
    Type: Application
    Filed: July 22, 2013
    Publication date: July 3, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Tae Hee Lee, Chi Won Jeong, Ji Wan Kim, Sun Dong Kim, Sang Jun Lee, Seok Man Kim
  • Patent number: 8748193
    Abstract: This invention relates generally to methods and apparatus for desorption and ionization of analytes for the purpose of subsequent scientific analysis by such methods, for example, as mass spectrometry or biosensors. More specifically, this invention relates to the field of mass spectrometry, especially to the type of matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry used to analyze macromolecules, such as proteins or biomolecules. Most specifically, this invention relates to the sample probe geometry, sample probe composition, and sample probe surface chemistries that enable the selective capture and desorption of analytes, including intact macromolecules, directly from the probe surface into the gas (vapor) phase without added chemical matrix.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: June 10, 2014
    Assignee: Baylor College of Medicine
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 8697451
    Abstract: A sulfur breakthrough monitoring assembly for use in a fuel utilization system for detecting sulfur-containing compounds in desulfurized fuel, said monitoring assembly comprising: a heater for heating desulfurized fuel to a predetermined temperature, the predetermined temperature being between 450° C. and 600° C., a sulfur breakthrough detector adapted to receive heated fuel from the heater and including at least a reforming catalyst bed for reforming the heated fuel and a plurality of temperature sensors including a first temperature sensor for sensing temperature of the heated fuel before the fuel is conveyed through the reforming catalyst bed and a second temperature sensor for sensing temperature in the reforming catalyst bed, and a controller for determining whether concentration of the sulfur-containing compounds in the fuel exceeds a first predetermined concentration based on temperature outputs from the first and second temperature sensors.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 15, 2014
    Assignee: FuelCell Energy, Inc.
    Inventor: Joseph M. Daly
  • Publication number: 20140087471
    Abstract: Disclosed herein is a method for identifying the compounds contributing to urine odor emitting from an air conditioner, a method for artificially reproducing the detected urine odor, and preparing a corresponding urine odor composition. Through the analysis method of the present invention, the compounds contributing to the urine odor emitted from an air conditioner may be identified and quantified. The detected urine odor may be reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced urine odor may provide meaningful data required for development of an apparatus and a method for removing specific odor.
    Type: Application
    Filed: December 14, 2012
    Publication date: March 27, 2014
    Applicant: Hyundai Motor Company
    Inventors: Tae Hee Lee, Ji Wan Kim, Seok Man Kim
  • Patent number: 8679852
    Abstract: A particulate matter generator implemented as a “mini-burner”, and used in conjunction with a larger test system for the specific purpose of enhancing the particulate matter content of exhaust gas. The exhaust stream of the larger system is supplemented with exhaust from the mini-burner to produce exhaust with desired particulate matter characteristics. The exhaust gas may then be used for various test purposes, such as testing emissions control devices.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: March 25, 2014
    Assignee: Southwest Research Institute
    Inventors: Cynthia C. Webb, John W. Miller
  • Publication number: 20140054502
    Abstract: Disclosed herein is a method for identifying the compounds contributing to a pungent odor from an air conditioner, a method for artificially reproducing the pungent odor, and preparing a corresponding pungent odor composition. Through the analysis method of the present invention, the compounds contributing to the pungent odor from an air conditioner may be identified and quantified. The pungent odor may be reproduced from a combination of the compounds identified by the analysis method of the present invention. The reproduced pungent odor may provide significant data required for development of an apparatus and a method for removing specific odors.
    Type: Application
    Filed: November 30, 2012
    Publication date: February 27, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Tae Hee Lee, Ji Wan Kim
  • Publication number: 20140057361
    Abstract: A device and method for headspace sampling is disclosed herein. The headspace sampling device comprises a sample holding device configured to be sealed in a vial. The sample holding device has a pair of electrodes gap spaced from one another and a basket extending between the electrodes configured to hold a sample. The basket is configured to heat a sample held therewith and volatize at least a portion of the sample upon an electrical current being passed through the electrodes and the basket.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 27, 2014
    Applicant: National Institute of Standards and Technology
    Inventor: Thomas J. Bruno
  • Patent number: 8632726
    Abstract: The invention relates to a device for producing CO2, N2 and/or SO2 from a sample for a quantitative analysis of the sample, comprising a reactor structure and metals acting in an oxidizing manner or metal oxides in the reactor. According to the invention, the reactor structure has at least two zones through which the sample can flow, which is to say a first zone with reactor metal and reservoir metal, or only reactor metal, and following the first zone, a second zone with reactor metal and reservoir metal, or only reservoir metal, wherein both metals can form oxides, and wherein the ratio of the reactor metal to the reservoir metal in the first zone is greater than in the second zone.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: January 21, 2014
    Assignee: Thermo Fischer Scientific (Bremen) GmbH
    Inventor: Michael Krummen
  • Patent number: 8586387
    Abstract: A method of performing a bioassay comprising activating capsules containing a signal precursor that is hydrolysable from a latent form in which substantially no signal is generated to a form in which it is able to generate a detectable signal, said activating comprising treating said capsules with heat and with an acid or a base catalysing solution, the combination of said heat and the pH of the catalysing solution being such as to hydrolyse said precursor to the form in which it is able to generate a detectable signal.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: November 19, 2013
    Assignee: Supernova Diagnostics, Inc.
    Inventors: Neil J. Campbell, Keith Edward Moravick, Joseph D. Penniman, Bruce J. Richardson
  • Patent number: 8530241
    Abstract: The present technology provides an illustrative hydrofluorocarbon (HFC) elimination device. An HFC sensing device is configured to detect an ambient, gaseous HFC composition. The HFC elimination device further includes a component comprising a surface that includes glass, and a heating element that is configured to heat the glass to a temperature to decompose the ambient, gaseous HFC composition in response to detection of the ambient, gaseous HFC composition by the HFC sensing device.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: September 10, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Angele Sjong
  • Patent number: 8448495
    Abstract: This device includes a stage for forming a gaseous flow from the sample, and a column for separation by selective retention of each gaseous constituent. It includes an oven for combustion of the gaseous flow in order to form a gaseous residue from each constituent, and a quantification unit for quantifying the content of each constituent to be analyzed in the gaseous flow. The quantification unit includes an optical measurement cell connected to an oven, and a mirror for introducing a laser incident optical signal into the cell. The quantification unit also measures a transmitted optical signal resulting from an interaction between the optical signal and each gaseous residue in the cell, and calculates the content on the basis of the transmitted optical signal.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: May 28, 2013
    Assignee: Geoservice Equipments
    Inventors: Jérôme Breviere, Douglas Baer, Michael John Whiticar
  • Patent number: 8426783
    Abstract: An instrument for carrying out controlled microwave assisted chemical processes is particularly useful for handling relatively small samples. The instrument includes a needle, and a needle seal adjacent the needle and having a shaft coaxial with the needle and in communication with the needle. A pressure transducer is opposite the needle seal from the needle and in communication with the shaft. A housing holds the needle to the needle seal and the needle seal to the transducer. A chamber is formed between the housing and the needle seal. A lateral shaft goes through the needle seal from the coaxial shaft to the chamber in the housing, and a valve is in communication with the chamber.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 23, 2013
    Assignee: CEM Corporation
    Inventors: Edward Earl King, James Edward Thomas
  • Patent number: 8388892
    Abstract: An in-line loss-on-ignition measurement system includes an on-site extractor subsystem configured to collect fuel or a combustion by-product from a hydrocarbon fuel burning plant. An on-site analyzer is configured to receive the collected matter from the extractor subsystem and configured to weigh the collected matter, burn the collected matter, and weight the collected matter again. A controller is responsive to the analyzer and is configured to determine the loss-on-ignition data for the plant based on the weight of the collected matter before and after it is burned in the analyzer.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: March 5, 2013
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Daniel Harjes, John Williams, James A. Bickford, Daniel Traviglia, David G. D'Amore, James D. Derouin
  • Publication number: 20120309100
    Abstract: A sample preparation chamber for gas analysis that includes a heating element within is provided. The heating element is maintained at an elevated temperature, such that organic compounds that may be present in an input gas sample are removed via oxidation and/or thermal decomposition to provide a treated gas sample that is substantially free of organic contaminants. The treated gas sample may then be analyzed in a gas analysis instrument (e.g., an optical spectroscopic instrument, a mass spectrometer, etc.) to provide results that are free from interference due to organic contaminants. Preferably, the heating element is configured as a Ni—Cr wire. An important feature of this approach is that the heating element (and the rest of the sample preparation chamber) are not altered in operation to remove the organic compounds.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Gregor Hsiao, Joshua T. Oen
  • Patent number: 8323981
    Abstract: An analytical induction furnace and method for combusting conductive sample materials (500) utilizing a crucible for holding a sample within the induction furnace. Less than one gram of accelerator material is then inserted into the crucible with the sample and the induction furnace is activated for a predetermined time period (503) for thoroughly combusting the sample and accelerator. In some instances, no accelerator is required with the sample at frequencies of approximately 4.5 MHz. The invention provides for the induction furnace that is actuated in an RF frequency range between 2-9 MHz with little to no accelerator for thoroughly melting the sample for use in an analytical instrument.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: December 4, 2012
    Assignee: Leco Corporation
    Inventors: Jason Griesbach, Ted Casper
  • Publication number: 20120295365
    Abstract: A fuel property determination method includes a reaction mechanism analysis process (S1) of analyzing elementary reactions that compose chemical reactions between a plurality of types of initial materials including the materials that compose the fuel and obtaining the elementary reactions as fuel elementary reactions, and an octane number determination process (S2) of calculating the combustion characteristics of the fuel by performing a simulation based on the fuel elementary reactions and determining the octane number based on the combustion characteristics of the fuel.
    Type: Application
    Filed: May 18, 2010
    Publication date: November 22, 2012
    Inventors: Kaoru Maruta, Hisashi Nakamura, Soichiro Kato
  • Publication number: 20120064635
    Abstract: An energy content meter can spectroscopically quantify oxidation products after oxidation of a combustible mixture. The measured oxidation product concentrations or mole fractions can be converted to an energy content of the un-oxidized combustible mixture using a conversion factor that relates oxygen consumption during oxidation of the combustible mixture to the energy content of the combustible mixture.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Inventors: Alfred Feitisch, Xiang Liu, Xin Zhou, Dale Langham, Charles F. Cook
  • Patent number: 8084267
    Abstract: A laboratory degradation test system for testing degradation of a test specimen in a test fluid flow includes a reactor assembly, which reactor assembly comprises: a reactor vessel, the reactor vessel having a reaction space, an inlet and an outlet and a specimen holder for retaining a test specimen inside the reactor vessel, a heater for heating the reactor vessel, a fluid circulation system generating a test fluid flow over the test specimen, which fluid circulation system comprises: a circulation line which extends between the outlet of the reactor vessel and the inlet of the reactor vessel, which circulation line is arranged outside the reactor vessel, a pump for providing fluid circulation through the circulation line and the reactor vessel, which pump is arranged in the circulation line. The volume available to the test fluid inside the reaction space after insertion of the degradation test specimen is less than or equal to 10 ml.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: December 27, 2011
    Assignee: Avantium International B.V.
    Inventors: Gerardus Johannes Maria Gruter, Roelandus Hendrikus Wilhelmus Moonen, Jan Peter de Jong, David Michael Knowles
  • Publication number: 20110244587
    Abstract: A method for identifying a lubricant composition that reduces the propensity for knock in an engine. The lubricant composition is mixed with a solvent to reduce the viscosity of the lubricant composition, thereby forming a lubricant-solvent mixture having a viscosity similar to or less than that of engine fuel. A sample of a lubricant-solvent mixture is then subjected to a constant volume combustion test to determine the reactivity associated with the lubricant-solvent mixture. The test is repeated for a range of lubricant-solvent ratios, and statistical methods are used to calculate the reactivity of the lubricant composition without solvent.
    Type: Application
    Filed: April 6, 2010
    Publication date: October 6, 2011
    Applicant: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Manfred AMANN, Terrence F. ALGER, II
  • Patent number: 8030086
    Abstract: A method and a particle sensor for measuring particles, especially soot particles, in which the particles to be detected accumulate in a measuring region of the particle sensor. The particles located in the gas stream or the particles already accumulated in the measuring region are burned by a combustion device, the combustion being controlled via a control signal from a control unit, which is electrically connected to a measuring device, in such a way that the quantity of the particles adhering in the measuring region remains constant. The physical variable of the combustion device, which leads to the controlled combustion of the particles, is drawn upon as the signal amplitude of the particle sensor.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: October 4, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Ralf Schmidt, Henrik Schittenhelm
  • Patent number: 8026105
    Abstract: A method for identifying a lubricant composition that reduces the propensity for knock in an engine. The lubricant composition is mixed with a solvent to reduce the viscosity of the lubricant composition, thereby forming a lubricant-solvent mixture having a viscosity similar to or less than that of engine fuel. A sample of a lubricant-solvent mixture is then subjected to a constant volume combustion test to determine the reactivity associated with the lubricant-solvent mixture. The test is repeated for a range of lubricant-solvent ratios, and statistical methods are used to calculate the reactivity of the lubricant composition without solvent.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: September 27, 2011
    Assignee: Southwest Research Institute
    Inventors: Manfred Amann, Terrence F. Alger, II
  • Patent number: 8021885
    Abstract: The present invention concerns a method for the determination of the oxidative stability of a lubricating fluid, comprising the steps of: introducing a sample of the lubricating fluid under test in an reaction cell; introducing catalytic amounts of a catalyst to the reaction cell; heating the cell to the oxidation temperature of the lubricating fluid and maintaining this temperature; delivering oxygen containing gas at constant flow rate through the cell over the course of the reaction; delivering a gas comprising nitrogen dioxide at a constant flow rate through the cell for a specified time; applying and maintaining a specified vacuum on the reaction cell; allowing the mixture to react for a specified time; measuring the viscosity of the oxidized lubricating fluid. Additionally, the present invention describes an apparatus for the determination of the oxidative stability of a lubricating fluid.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: September 20, 2011
    Assignee: Evonik Rohmax Additives GmbH
    Inventors: Bernard Kinker, Raymond Romaszewski
  • Patent number: 8012757
    Abstract: Provided are a method for preparing a standard sample in which a uniform dispersion of a predetermined concentration of red phosphorus is guaranteed even in a very small amount, and an analytical method for quantitatively determining red phosphorus contained in a resin by pyrolysis-GC/MS, in which the standard sample is used. The method for producing a standard sample for quantitatively determining red phosphorus contained in a resin includes the steps of preparing a red-phosphorus-containing compound by weighing a predetermined amount of red phosphorus and uniformly mixing the red phosphorus in a resin; decreasing the number of particles having a maximum diameter of 5 ?m or more to 1/20 or less of the number of particles having a maximum diameter of 1 ?m or more and less than 5 ?m by pulverizing the red-phosphorus-containing compound; and obtaining a standard sample by weighing about 0.05 to 10 mg, preferably about 0.1 to 0.5 mg of the pulverized red-phosphorus-containing compound.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: September 6, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Masuo Iida
  • Patent number: 7976780
    Abstract: Methods and apparatus are provided to measure isotopic characteristics of a number of sample types. Embodiments of the invention combine novel and existing components to produce more accurate isotopic information. Further, embodiments of the invention allow for isotopic readings to be taken and analyzed outside of a laboratory. An example of such an embodiment is an apparatus comprising a combustion furnace; a reactant tube passing through the combustion furnace; an injector coupled to one, or a combination of, the combustion furnace, and reactant tube, to introduce a sample; a laser isotopic measurement device coupled to the reactant tube on the exit end; and a processor electrically coupled to one, or a combination of, the injector, the combustion furnace, the reactant tube, and the isotopic measurement device, in which a carrier gas transports the sample through the apparatus.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: July 12, 2011
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Louis W. Elrod, Christopher M. Jones
  • Patent number: 7977113
    Abstract: A biological agent detector detects the presence of any biological agents, such as anthrax or other biological warfare agents, in a sample of air. The biological agent detector includes a bio-concentrator that concentrates an aerosol and a pyrolyzer portion including two detecting devices. One detecting device operates in a sample collection mode and collects a sample of air when the other detecting device operates in a sample analysis mode and analyzes a sample of air. After a predetermined amount of time, the detecting devices switch functions, providing continuous sampling of air.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 12, 2011
    Assignee: Hamilton Sundstrand Corporation
    Inventors: William S. Donaldson, Richard K. Chun
  • Publication number: 20110151575
    Abstract: Energy released from energized particles is sensed. Whether the energized particles include a possible energetic material is determined based on the sensed energy. If a determination is made that the energized materials include a possible energetic material, a spectral signature of the sensed energy is determined. The spectral signature of the sensed energy is compared to one or more known spectral signatures associated with energetic materials. Whether the possible energetic material is an actual energetic material is determined based on the comparison.
    Type: Application
    Filed: December 21, 2007
    Publication date: June 23, 2011
    Applicant: L-3 COMMUNICATIONS CYTERRA CORPORATION
    Inventors: Mark Fraser, Ravi K. Konduri
  • Patent number: 7955857
    Abstract: The invention relates to a spray pyrolysis method characterized in that it is used in the synthesis of nanoparticles with a closed structure of metal chalcogens having a lamellar crystalographic structure of general formula MaXb, wherein M represents a metal and X represents a chalcogen, a and b represent the respective proportions of metal and chalcogen, and in that it comprises pyrolysis of a liquid aerosol obtained from a solution of at least one metal precursor (M) and a chalcogen (X), or at least one precursor of said metal (M) and at least one precursor of said chalcogen (X) dissolved in a solvent, said solution being atomized into fine droplets in a suspension in a vector gas.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: June 7, 2011
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Stéphane Bastide, Claude Levy-Clement, Dominique Duphil, Jean-Pascal Borra
  • Patent number: 7867766
    Abstract: An apparatus and method are disclosed for measuring the kinetic parameters of a catalyst powder, which include the reaction rate constants, active site concentration and intraparticle diffusivity. The measurement of the active site concentration selectively measures just the active sites and not the entire exposed atom concentration. The apparatus and method use surface concentrations less than 50% and larger than 1% the total active site concentration and a dynamic pulsed flow to avoid including weak adsorption sites not involved in the catalysis. The measurement is more accurate because (1) it uses a reactant gas and non-steady state adsorption at temperatures near to reaction temperatures, and (2) it uses the chemical kinetics expressions to extract the measured active site concentration to perform the measurement so as to count just those sites actually active for that reactant.
    Type: Grant
    Filed: February 11, 2007
    Date of Patent: January 11, 2011
    Inventor: Dezheng Wang
  • Patent number: 7863620
    Abstract: Disclosed is a thin film transistor substrate and a system for inspecting the same. The thin film transistor substrate comprises gate wiring formed on an insulation substrate and including gate lines, and gate electrodes and gate pads connected to the gate lines; a gate insulation layer covering the gate wiring; a semiconductor layer formed over the gate insulation layer; data wiring formed over the gate insulation layer and including data pads; a protection layer covering the data wiring; auxiliary pads connected to the data pads through contact holes formed in the protection layer; and a pad auxiliary layer formed protruding a predetermined height under the data pads.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyang-Shik Kong, Sung-Wook Huh, Young-Bae Park
  • Patent number: 7837937
    Abstract: A biological agent detector detects the presence of any biological agents, such as anthrax or other biological warfare agents, in a sample of air. The biological agent detector includes a bio-concentrator that concentrates an aerosol and a pyrolyzer portion including two detecting devices. One detecting device operates in a sample collection mode and collects a sample of air when the other detecting device operates in a sample analysis mode and analyzes a sample of air. After a predetermined amount of time, the detecting devices switch functions, providing continuous sampling of air.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: November 23, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: William S. Donaldson, Richard K. Chun
  • Patent number: 7833802
    Abstract: The invention is directed to a system and method for detecting substances, such as explosives and/or drugs, using, in part, short bursts of energy light from a relatively low energy strobe. Embodiments include coupling the strobe with a detector for use in a portable hand-held unit, or a unit capable of being carried as a backpack. Embodiments further include placement of one or more stroboscopic desorption units and detectors in luggage conveyors systems, carry-on X-ray machines, and check-in counter locations.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: November 16, 2010
    Assignee: ADA Technologies, Inc.
    Inventors: Kent D. Henry, John Stanley Lovell
  • Patent number: 7816142
    Abstract: A system for testing multiple samples for the presence of lead includes a plurality of vessels, a plurality of plungers, a housing for removably storing the plurality of vessels, and a retainer for holding the plurality of plungers so that each of the plungers may be inserted into a respective vessel simultaneously. In order to use the system of the present invention, a sample is placed within each of the plurality of vessels and a reagent, such as nitric acid, is added to each sample. Each sample is then heated in a separate heating device and a filtering means, such as a cotton ball, is inserted into each vessel. Each plunger then pushes its respective cotton ball into its respective vessel simultaneously so that each liquid sample is located adjacent the top of each vessel. The plungers are removed and the housing is then placed into an analyzer.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: October 19, 2010
    Assignee: EMSL Analytical, Inc.
    Inventor: Peter Frasca
  • Patent number: 7803627
    Abstract: Process for evaluating the coke and/or bitumen yield and quality of a plurality of refinery feedstocks, by (i) providing a plurality of refinery feedstocks, (ii) placing a sample of each of the plurality of refinery feedstocks on a heating device, (iii) heating each sample under vacuum to a temperature in the range 300° C. to 420° C. using the respective heating device while measuring the weight loss of the sample, and then (iv) (a) measuring the bitumen quality of the vacuum residues formed, and/or (b)(i) heating the vacuum residues to a temperature in the range 450° C. to 600° C. using the heating device, while measuring the weight loss of the sample, and then (ii) measuring the coke quality of the products formed.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 28, 2010
    Assignee: BP Oil International Limited
    Inventor: Michael Graham Hodges
  • Patent number: 7772004
    Abstract: The invention relates to a method allowing to determine at least one petroleum characteristic of a geologic sediment sample, wherein the sample is heated in an oxidizing atmosphere, its temperature being successively raised to a first, then to a second value, said first value below 200° C. being reached very quickly, then maintained substantially constant for a certain time, said second value ranging between 600° C. and 850° C. being reached with a temperature gradient ranging between 1 and 30° C./min, from said first value. According to the invention, the amount of SO2 contained by the effluent resulting from said oxidizing heating is measured continuously, every moment of the heating period of said sample.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: August 10, 2010
    Assignee: Institut Francais du Petrole
    Inventor: François Lorant
  • Patent number: 7741127
    Abstract: A method of using a burner-based system to produce diesel exhaust gas that contains particulate matter of a desired composition, to simulate the PM matter in exhaust produced by a production-type diesel internal combustion engine.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: June 22, 2010
    Assignee: Southwest Research Institute
    Inventors: Gordon James Johnston Bartley, Cynthia Chaffin Webb, Imad Abdul-Khalek
  • Publication number: 20100105147
    Abstract: A laboratory degradation test system for testing degradation of a test specimen in a test fluid flow includes a reactor assembly, which reactor assembly comprises: a reactor vessel, the reactor vessel having a reaction space, an inlet and an outlet and a specimen holder for retaining a test specimen inside the reactor vessel, a heater for heating the reactor vessel, a fluid circulation system generating a test fluid flow over the test specimen, which fluid circulation system comprises: a circulation line which extends between the outlet of the reactor vessel and the inlet of the reactor vessel, which circulation line is arranged outside the reactor vessel, a pump for providing fluid circulation through the circulation line and the reactor vessel, which pump is arranged in the circulation line. The volume available to the test fluid inside the reaction space after insertion of the degradation test specimen is less than or equal to 10 ml.
    Type: Application
    Filed: March 19, 2008
    Publication date: April 29, 2010
    Applicant: AVANTIUM INTERNATIONAL B.V.
    Inventors: Gerardus Johannes Maria Gruter, Roelandus Hendrikus Wilhelmus Moonen, Jan Peter de Jong, David Michael Knowles
  • Patent number: 7704748
    Abstract: A novel Flame Temperature Analyzer (FTA) method and apparatus for measuring combustible gas concentration and oxygen content in a sample gas includes supplying a mixture of oxidant and fuel to a sensing flame and measuring the temperature of the flame as the sample is added to the combustion chamber.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: April 27, 2010
    Assignee: Control Instruments Corporation
    Inventors: Christopher G. Schaeffer, Matthew James Schaeffer, Pravin Patel
  • Publication number: 20100081213
    Abstract: Provided is a microfluidic apparatus including: a microfluidic structure for providing spaces for receiving a fluid and for forming channels, through which the fluid flows; and valves for controlling the flow of fluid through the channels in the microfluidic apparatus. The microfluidic structure includes: a sample chamber; a sample separation unit receiving the sample from the sample chamber and separating a supernatant from the sample by using a centrifugal force; a testing unit receiving the supernatant from the sample separation unit for detecting a specimen from the supernatant using an antigen-antibody reaction, and a quality control chamber for identifying reliability of the test.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Beom Seok LEE, Ji Won KIM, Jeong Gun LEE, Kui Hyun KIM
  • Patent number: 7618825
    Abstract: A method for influencing and monitoring the oxide layer on metallic components of hot CO2/H2O cycle systems, in particular of CO2/H2O gas turbine installations, in which a hydrocarbon-containing fuel is burnt with oxygen, and the excess CO2 and H2O formed is removed from the cycle system at a suitable location. To protect the oxide layer of the components which are under thermal load, an excess of oxygen is used, the level of which is dependent on the current state of the oxide layer, the state of the oxide layer being determined by periodic and/or continuous measurements.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: November 17, 2009
    Assignee: ALSTOM Technology Ltd.
    Inventor: Werner Balbach
  • Patent number: 7611740
    Abstract: A method for measuring a growth rate of a carbon nanotube includes the following steps: (a) providing a substrate (12); (b) forming a catalyst layer on the substrate; (c) heating the substrate to a predetermined temperature; (d) intermittently introducing/providing and then interrupting a reaction gas proximate the substrate to grow a patterned carbon nanotube array, each carbon nanotube having at least one line mark formed thereon as a result of the patterned growth; and (e) calculating the growth rate which is equal to a length between a pair of line marks divided by a time interval between said two line marks.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: November 3, 2009
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Kai Liu, Shou-Shan Fan
  • Patent number: 7572637
    Abstract: Urea water is added to a catalyst in an exhaust pipe for purification. A first-order lag response model corresponding to the exhaust temperature upstream of the catalyst estimates catalyst temperature for each of divided cells of the catalyst. Cell volumes for each of temperature zones are summed on the basis of the estimated temperatures for the cells. The summation for each temperature zone is divided by the whole catalyst volume to determine temperature distribution volume ratio. The ratio for each of the temperature zones is multiplied by a reference injection amount of the urea water determined in consideration to a current engine operation status on the assumption that the catalyst temperatures are all within the temperature zone. The calculated values for the respective temperature zone are summed into a directive injection amount of the urea water.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: August 11, 2009
    Assignee: Hino Motors, Ltd.
    Inventor: Ichiro Tsumagari