Magnetic Patents (Class 436/526)
  • Patent number: 8580531
    Abstract: The invention relates to a method for detecting a plurality of antigenic molecules carried by erythrocytes and/or a plurality of anti-erythrocyte antibodies, said antigenic molecules carried by the erythrocytes consisting of antigenic molecules carried not only by the erythrocytes, but also by at least one other cell population, other than the blood group antigen molecules, said method comprising bringing a sample into contact with distinguishable beads, on which are attached a) antibodies specific for said antigens, or b) erythrocytes or erythrocyte membrane fragment.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 12, 2013
    Assignee: Bio-Rad Innovations
    Inventors: Frederic Buffiere, Yves Raisin, Eliane Rivalin, Amparo Sanjuan
  • Patent number: 8569077
    Abstract: A method for removing excess unbound ferrofluid and imaging immunomagnetically enriched circulating tumor cells is provided. A vessels having a preformed grooves in the viewing surface is optimally designed for cell alignment and imaging. After separating the unbound particles by centrifugation, an externally-applied force is applied to transport magnetically responsive particle-CTC complex toward the transparent collection wall. The grooved inner surface of the viewing face of the chamber provide uniform distribution of the particles for easy imaging. The invention is also useful in conducting quantitative analysis and sample preparation in conjunction with automated cell enumeration techniques as in quantitative analysis of CTC in disease.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: October 29, 2013
    Assignee: Veridex, LLC
    Inventors: Tyco M. Scholtens, Frederik Schreuder, Jan Greve, Arjan G. J. Tibbe, Leon W. M. M. Terstappen
  • Patent number: 8569078
    Abstract: The present invention provides novel compositions of binding moiety-nanoparticle conjugates, aggregates of these conjugates, and novel methods of using these conjugates, and aggregates. The nanoparticles in these conjugates can be magnetic metal oxides, either monodisperse or polydisperse. Binding moieties can be, e.g., oligonucleotides, polypeptides, or polysaccharides. Oligonucleotide sequences are linked to either non-polymer surface functionalized metal oxides or with functionalized polymers associated with the metal oxides. The novel compositions can be used in assays for detecting target molecules, such as nucleic acids and proteins, in vitro or as magnetic resonance (MR) contrast agents to detect target molecules in living organisms.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 29, 2013
    Assignee: The General Hospital Corporation
    Inventors: Lee Josephson, Ralph Weissleder, J. Manuel Perez
  • Patent number: 8562920
    Abstract: An object is to provide a micro plate treating device and micro plate treating method capable of handling a larger number of kinds of solution or suspensions or a larger volume of solutions or suspensions per work area by use of a normalized micro plate without enlarging the scale of the device.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 22, 2013
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima
  • Patent number: 8563298
    Abstract: This invention features systems and methods for the detection of analytes, and their use in the treatment and diagnosis of disease.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 22, 2013
    Assignee: T2 Biosystems, Inc.
    Inventors: Thomas Jay Lowery, Jr., Mark John Audeh, James Franklin Chepin, Rahul Dhanda, Lori Anne Neely, Charles William Rittershaus
  • Patent number: 8565892
    Abstract: Nanoparticle-sized magnetic absorption enhancers (MAEs) that exhibit a controlled response to a magnetic field, including a controlled mechanical response and inductive thermal response. The MAEs have a magnetic material that exhibits the inductive thermal response to the magnetic field and is embedded in a coating, such that the MAE conforms to a particular shape, e.g., a hemisphere, a dome or a shell, that is chosen to produce the desired controlled mechanical response of the entire MAE to the magnetic field. A targeting moiety for specifically binding the MAE to a pathogen target is also provided. The MAEs are preferably bound by a flexible linker to promote the desired mechanical response, which includes interactions between MAEs that are not bound to their pathogen target for the purpose of forming spheres, spherical shells, or generally spherical dimers.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: October 22, 2013
    Assignee: Qteris, Inc.
    Inventor: Joseph N. Nayfach-Battilana
  • Patent number: 8563330
    Abstract: The invention provides a device and method for the rapid identification of patients suspected of having thalassemia. The invention provides a test strip for the aqueous detection of thalassemia related proteins in whole blood. The test strip includes antibodies specific to the gamma 4, (?4) protein and provides easy visual discrimination between a positive result and a negative result. The invention can be used in remote or clinical settings.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 22, 2013
    Assignee: National Science and Technology Development Agency
    Inventors: Watchara Kasinrerk, Chatchai Tayapiwatana, Thanusak Tatu, Suthat Fucharoen, Sawitree Chiampanichayakul
  • Patent number: 8557607
    Abstract: Materials and methods for making small magnetic particles, e.g. clusters of metal atoms, which can be employed as a substrate for immobilizing a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: October 15, 2013
    Assignees: Consejo Superior de Investigacione Cientificas, Midatech Limited
    Inventors: Soledad Penades, Manuel Martin-Lomas, Jesus Martines De La Fuente, Thomas William Rademacher
  • Patent number: 8557608
    Abstract: A method is disclosed for characterizing a local magnetic field, in particular a stray field caused by a magnetizable or magnetic particle in a prescribed measuring area of a magnetic field. In at least one embodiment, a sensor array including a number of magnetic sensors and each having at least one layer sensitive to magnetic fields is arranged at least in a subregion of the measuring area, and at least one device is provided for reading out separately the signal from each sensor. According to at least one embodiment, the size, in particular of XMR sensors and the surface of the layer sensitive to magnetic fields and the grid dimension of the sensor array, are selected such that at least two neighboring sensors are influenced by the local stray field. An associated device for carrying out the method is also disclosed.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 15, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventor: Joachim Bangert
  • Patent number: 8557531
    Abstract: Endothelial cells are detected in a blood sample by enriching the endothelial cells from the blood sample followed by performing on the enriched endothelial cells an immunoassay capable of detecting antigens expressed by the endothelial cells. The immunoassay is capable of detecting antigen expressed from 300 endothelial cells per milliliter of blood. The method can be used for assaying mature circulating endothelial cells or circulating endothelial progenitor cells.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: October 15, 2013
    Assignee: Wellstat Biologics Corporation
    Inventor: Robert M. Lorence
  • Patent number: 8551333
    Abstract: A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: October 8, 2013
    Assignee: The Regents of the University of California
    Inventors: Adam Yuh Lin, Tak Sing Wong
  • Patent number: 8535541
    Abstract: Disclosed is a method for separating immunomagnetic bead labeled particulates. A carrier board is formed with at least one flow channel structure, which includes an inner reservoir, an outer reservoir, and at least one micro flow channel in communication with the inner reservoir and the outer reservoir. The method includes labeling target particulates with immunomagnetic bead, introducing a sample fluid into the inner reservoir, and applying a magnetic force and a driving force, wherein the driving force drives the particulates not labeled with immunomagnetic bead to flow through the micro flow channel to the outer reservoir, while the magnetic force attracts the particulates labeled with the immunomagnetic bead to retain in the inner reservoir. The driving force may be centrifugal force, pressure, or surface tension.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: September 17, 2013
    Assignee: National Taiwan University
    Inventors: Andrew Man Chung Wo, Yu-Cheng Pan, Ken-Chao Chen, Chen-Lin Chen
  • Patent number: 8535949
    Abstract: This invention relates to magnetic resonance-based sensors and related methods.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 17, 2013
    Assignee: The General Hospital Corporation
    Inventors: Lee Josephson, Yi Sun, Ralph Weissleder
  • Patent number: 8529837
    Abstract: A system and method for detecting specific binding reactions using magnetic labels.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 10, 2013
    Assignee: Biomag Corp.
    Inventors: Clayton M. Hardman, Sanjay R. Mishra
  • Patent number: 8530230
    Abstract: The present invention is directed to methods for conducting multiplexed assays. The methods are particularly well suited for measuring a plurality of analytes that may be present in very different abundances. The invention also relates to systems, devices, equipment, kits and reagents for use in such methods.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 10, 2013
    Assignee: Meso Scale Technologies, LLC
    Inventors: Selen A. Stromgren, Eli N. Glezer
  • Patent number: 8512559
    Abstract: Embodiments of the invention relate to device, method, and system for separation and/or detection of biological cells and biomolecules using micro-channels, magnetic interactions, and magnetic tunnel junctions. The micro-channels can be integrated into a microfluidic device that may be part of an integrated circuit. Magnetic interactions used for the separation are created, in part, by magnetic stripes associated with the micro-channels. Detection of biological cells and biomolecules is effectuated by a magnetic tunnel junction sensor that comprises two ferromagnetic layers separated by a thin insulating layer. The magnetic tunnel junction sensor can be integrated into a silicon based device, such a microfluidic device, an integrated circuit, or a microarray to achieve rapid and specific separation and/or detection of biomolecules and cells.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: August 20, 2013
    Assignee: Intel Corporation
    Inventors: Shriram Ramanathan, Chang-Min Park
  • Patent number: 8513002
    Abstract: Spectroscopic analysis systems and methods for analyzing samples are disclosed. An analysis system may contain an electromagnetic radiation source to provide radiation, a spectroscopic analysis chamber to perform a coherent Raman spectroscopy (e.g., stimulated Raman or coherent anti-Stokes Raman spectroscopy), and a radiation detector to detect radiation based on the spectroscopy. The chamber may have a resonant cavity to contain a sample for analysis, at least one window to the cavity to transmit the first radiation into the cavity and to transmit a second radiation out, a plurality of reflectors affixed to a housing of the cavity to reflect radiation of a predetermined frequency, the plurality of reflectors separated by a distance that is sufficient to resonate the radiation. The spectroscopic analysis system may be coupled with a nucleic acid sequencing system to receive a single nucleic acid derivative in solution and identify the derivative to sequence the nucleic acid.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 20, 2013
    Assignee: Intel Corporation
    Inventors: Andrew Arthur Berlin, Christopher Marc Gerth, Tae-Woong Koo
  • Patent number: 8507094
    Abstract: The present invention relates to a composite bead and a fabrication method thereof, and particularly, to a porous composite bead comprising superparamagnetic cluster and nanoparticles, such as light-emitting nanoparticles, magnetic nanoparticles, metallic nanoparticles, metal oxide nanoparticles and the like, and a fabrication method thereof.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: August 13, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyoungja Woo, Wooyoung Park
  • Patent number: 8501000
    Abstract: The present invention includes a container and a method of separating one or more components of interest bound to magnetic particles using centrifugal forces.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: August 6, 2013
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Heinz-Michael Hein, Emad Sarofim, Lotar Schenk, Hans-Peter Wahl
  • Patent number: 8492166
    Abstract: A particle suspension for use in immunoassay, comprising: particles for use in immunoassay; and a silicone antifoam agent, is disclosed. And a reagent kit for use in immunoassay, comprising: a reagent containing particles and a silicone antifoam agent; another reagent containing an antigen or antibody capable of binding to a target substance and particles; and a further reagent containing a labeled antigen or antibody capable of binding to the target substance, is disclosed.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 23, 2013
    Assignee: Sysmex Corporation
    Inventor: Toshiyuki Baba
  • Patent number: 8492168
    Abstract: The present invention relates to droplet-based affinity assays. According to one embodiment, a method of detecting a target analyte in a sample is provided, wherein the method includes: (a) executing droplet operations to combine affinity-based assay reagents on a droplet microactuator with a sample potentially comprising the target analyte to generate a signal indicative of the presence, absence and/or quantity of analyte; and (b) detecting the signal, wherein the signal corresponds to the presence, absence and/or quantity of the analyte in the sample.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: July 23, 2013
    Assignee: Advanced Liquid Logic Inc.
    Inventors: Vijay Srinivasan, Vamsee K. Pamula, Michael G. Pollack, Richard B. Fair
  • Patent number: 8492167
    Abstract: Methods and apparatuses for determining whether a fluid has been introduced into an assay measurement apparatus involving delivering a fluid to a surface of a resonant device. The methods also involve monitoring an electrical signal output by the resonant device, wherein properties of the electrical signal vary based on physical properties of the fluid in contact with the surface of the resonant device and determining if the electrical signal output by the resonant device satisfies a predetermined condition indicative of the presence of the fluid.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 23, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8486720
    Abstract: The present invention provides a method for the generation of novel libraries of encoded magnetic particles from sub-libraries of by the generation of novel sub-libraries of magnetic nanoparticles and encoded particles. The sub-libraries are functionalized on demand are useful in the formation of arrays. The present invention is especially useful for performing multiplexed (parallel) assays for qualitative and/or quantitative analysis of binding interactions of a number of analyte molecules in a sample.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: July 16, 2013
    Assignee: BioArray Solutions, Ltd.
    Inventors: Sukanta Banerjee, Michael Seul, Alice X. Li
  • Patent number: 8486722
    Abstract: A sensing method for biopolymers by detecting the magnetic signal generated from a labeled biopolymer under AC magnetic field with thermo-responsive magnetic nano particles as label having a critical solution temperature across which the particles have the ability to aggregate or disperse with cooling or heating.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: July 16, 2013
    Assignees: National University Corporation Toyohashi University of Technology, JNC Corporation
    Inventors: Saburo Tanaka, Shinji Katsura, Noriyuki Ohnishi, Kageaki Matsui
  • Patent number: 8486721
    Abstract: Methods and devices for reducing interference from leukocytes in an analyte immunoassay are provided. In one embodiment, a method is provided comprising the steps of amending a biological sample with magnetic sacrificial beads opsonized to leukocytes, binding leukocytes in the sample to the magnetic sacrificial beads, and magnetically retaining the beads out of contact from an immunosensor.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 16, 2013
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Graham Davis
  • Patent number: 8481336
    Abstract: A magnetic sifter is adapted for manipulation of biological cells by providing a greater pore density at the edge of the sifter than at the center. Application of an external magnetic field to the sifter causes high magnetic fields and field gradients at the sifter pores. These conditions are suitable for capturing magnetically tagged or labeled cells at the sifter pores. Altering the external magnetic field can provide controlled capture and/or release of magnetically labeled cells from the sifter pores. The purpose of having a greater pore density at the periphery of the sifter than at the center is to provide improved flow rate uniformity through the sifter. Such flow rate uniformity is advantageous for cell quantification.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 9, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Christopher M. Earhart, Shan X. Wang, Robert J. Wilson
  • Patent number: 8476080
    Abstract: A vessel for use in clinical analysis including an open top, a closed bottom, and at least four tapered sides. A method for collecting magnetic particles in a fluid comprising the steps of providing a magnet and a vessel containing magnetic particles in a fluid, attracting the magnetic particles to the magnet, and moving the magnetic particles with the magnet out of the fluid.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: July 2, 2013
    Assignee: Biokit, S.A.
    Inventors: Mark Talmer, Kathleen Limerick, Gary Schroeder
  • Patent number: 8470148
    Abstract: The present invention relates to a method for sample application and separation. More closely, the invention relates to convenient direct loading of a biomolecule sample via magnetic beads to, for example, a gel before electrophoresis. In this way, the invention combines elution and application steps with minimal losses of sample. Thus, the invention relates to a method for sample application of biomolecules on a separation media, comprising the following steps: a) obtaining said biomolecules from a sample by magnetic beads; b) applying the magnetic beads with the biomolecules to a separation medium; c) releasing the biomolecules into the separation media, and d) separation of the biomolecules from each other in the separation medium.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: June 25, 2013
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Gunnar Glad, Nils Norrman, Susanna Lindman
  • Patent number: 8465989
    Abstract: A method (800) of detecting a target within a population of molecules comprising: contacting a plurality of labeled probe molecules with the population of molecules potentially containing a target of the probe molecules (810); acquiring a probe specific signal emitted by said labeled probe molecules that bound to said target together with a background signal (820); modulating said probe specific signal by at least one of modulating said acquisition and modulating an emission of said probe specific signal (830); and detecting said probe specific signal over said background signal using said preferential modulation (840). The target comprises one or more molecule type selected from the group consisting of a nucleic acid sequence, an amino acid sequence, a carbohydrate sequence, an ion and a feature of a protein determined by non-primary structure. The probe specific signal may be a fluorescent signal.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: June 18, 2013
    Assignee: Ramot at Tel-Aviv University Ltd.
    Inventors: Ady Arie, Amos Danielli
  • Patent number: 8454825
    Abstract: A rod assembly for the extraction of magnetizable particles from solutions is described. The rod assembly includes at least one guide element. A rod element is insertable into the at least one guide element and moveable in a direction substantially parallel to the at least one guide element. A magnet element is moveable to a distal magnet element position; wherein the distal magnet element position is located on a distal end section of the at least one guide element; wherein the at least one guide element includes an opening at a distal end. A method for the extraction of magnetizable particles from solutions is also described, as well as a magnet element for the extraction of magnetizable particles from solutions.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: June 4, 2013
    Assignee: Stratec Biomedical AG
    Inventor: Ralf Griebel
  • Patent number: 8455264
    Abstract: A method for the fluorescent detection of a substance, the method comprising providing particles comprising a metal or a metal oxide core, wherein one or more optionally fluorescently tagged antibodies or human specific peptide nucleic acid (PNA) oligomers for binding to a substance is/are bound, directly or indirectly, to the surface of the metal or metal oxide; contacting a substrate, which may or may not have the substance on its surface, with the particles for a time sufficient to allow the antibody/PNA oligomer to bind with the substance; removing those particles which have not bound to the substrate; if the antibodies or PNA oligomers are not fluorescently tagged, contacting the substrate with one or more fluorophores that selectively bind with the antibody and/or substance, then optionally washing the substrate to remove unbound fluorophores; and illuminating the substrate with appropriate radiation to show the fluorophores on the substrate.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: June 4, 2013
    Assignee: Intelligent Fingerprinting Limited
    Inventors: David Russell, Richard Leggett, Emma Lee-Smith, Sue Jickells, Barbara Daniel
  • Patent number: 8456158
    Abstract: A magnetic binding substance, which is a first binding substance that specifically binds with a target substance, having magnet enveloping dielectric particles, which have magnetic particles enveloped therein and surfaces modified with functional groups that exhibit polarity within a liquid sample, attached thereto, and a labeling binding substance, which is a second binding substance that specifically binds with the target substance having photoresponsive labels attached thereto, are mixed with the liquid sample such that binding reactions occur. A magnetic field is generated within a sample cell, to draw the magnetic binding substance to a local region. Excitation light is irradiated only onto a predetermined region including the local region while the magnetic binding substance is drawn to the local region, causing the photoresponsive labels present therein to generate optical signals. The optical signals are detected.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 4, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Hisashi Ohtsuka
  • Patent number: 8455265
    Abstract: A surface grafted conjugated polyelectrolyte (CPE) is formed by coupling a CPE by a coupling moiety to the surface of a substrate. The substrate can be of any shape and size, and for many uses of the surface grafted CPE, it is advantageous that the substrate is a nanoparticle or microparticle. Surface grafted CPEs are presented that use silica particles as the substrate, where a modified silane coupling agent connects the surface to the CPE by a series of covalent bonds. Two methods of preparing the surface grafted CPEs are presented. One method involves the inclusion of the surface being modified by the coupling agent and condensed with monomers that form the CPE in a grafted state to the substrate. A second method involves the formation of a CPE with terminal groups that are complimentary to functionality that has been placed on the surface of the substrate by reaction with a coupling agent. The surface grafted CPEs are also described for use as biosensors and biocides.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: June 4, 2013
    Assignee: STC.UNM
    Inventors: David G. Whitten, Sireesha Chemburu, Thomas Corbitt, Linnea Ista, Gabriel Lopez, Kirk S. Schanze, Motokatsu Ogawa, Eunkyung Ji
  • Patent number: 8450073
    Abstract: The present invention is related to compositions useful for the measurement of free or unbound analyte concentrations in a fluid. The present invention includes the use of capture ligands and stabilizing agents to improve the accuracy of analyte concentration assays. Methods and tools for using the present invention are also disclosed.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: May 28, 2013
    Assignee: Beckman Coulter, Inc.
    Inventors: Wenyuan Lu, Katherine M. Leith, Stephen P. Chan, Courtney E. Walton
  • Patent number: 8445294
    Abstract: Embodiments of the invention relate generally to ferromagnetic microdisks, methods of detecting target bioanalyte using ferromagnetic microdisks, and kits (such as for using in the laboratory setting) containing the reagents necessary to make, and/or use ferromagnetic microdisks for bioanalyte detection, depending on the user's planned application. The methods and products allow the fabrication of ferromagnetic microdisks, and their use in the detection of biological molecules with high sensitivity, little or no signal decay, improved safety, convenience, and lowered cost for use and disposal.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 21, 2013
    Assignee: Intel Corporation
    Inventor: Chang-Min Park
  • Patent number: 8440469
    Abstract: A method for increasing a spectroscopic signal in a biological assay is provided. The method includes forming a suspension of magnetically attractable particles. The method also includes introducing a first magnetic field at a first location to draw the magnetically attractable particles towards the first location and form a first agglomeration. The method also includes removing the first magnetic field. The method further includes introducing a second magnetic field at a second location to draw the first agglomeration towards the second location and form a second agglomeration. The method further includes focusing an excitation source on the second agglomeration formed at the second location.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: May 14, 2013
    Assignee: Morpho Detection, Inc.
    Inventors: Tracy Lynn Paxon, Frank John Mondello, Yuan-Hsiang Lee, Michael Craig Burrell
  • Patent number: 8431026
    Abstract: A system for concentrating magnetic particles suspended in a fluid comprising a vessel for containing said fluid having an inner base surface that slopes downwards towards a collection region, the collection region including a retrieval well for collecting magnetic particles; a magnet assembly for positioning under and in proximity with the vessel for attracting magnetic particles to the bottom surface of the vessel, said magnet assembly providing a relatively larger magnetic flux density at a peripheral region thereof; means for laterally traversing the magnet assembly relative to the vessel between a first position whereby the magnet is generally centered under the vessel and a second position whereby the peripheral portion of the magnet is positioned under the well of the vessel; and agitation means for agitating said vessel to facilitate movement of the magnetic particles to the well, where the concentrated particles can be easily removed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 30, 2013
    Inventor: Anthony N. Sharpe
  • Patent number: 8426152
    Abstract: The present invention provides a method of detecting changes in the refractive index at the surface of a localized surface plasmon resonance (LSPR) detection system. The method includes generating an insoluble product from an enzymatic substrate using an immobilized enzyme, wherein the insoluble product accumulates at a LSPR supporting surface. The method also includes detecting changes in the reflected or transmitted light of the surface arising from the presence of the insoluble product using LSPR.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: April 23, 2013
    Assignee: LamdaGen Corporation
    Inventors: Daniele Gerion, Randy Storer, Hiroyuki Takei
  • Patent number: 8409877
    Abstract: An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 2, 2013
    Assignee: Intel Corporation
    Inventors: David J. Liu, Kai Wu, Xing Su
  • Patent number: 8404494
    Abstract: A non-specific adsorption inhibitor of formula (1), wherein n is a real number of 4 to 2,000, R1 and R2 individually represent a hydrogen atom or a group comprising 1 to 11 amino group(s) or imino group(s), or both, provided that the total number of amino groups and imino groups contained in R1 and R2 is 2 to 11. Non-specific adsorption inhibitor composition, probe-bonded particles.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: March 26, 2013
    Assignee: JSR Corporation
    Inventors: Kouji Tamori, Eiji Takamoto
  • Patent number: 8389297
    Abstract: The present invention relates to a droplet-based affinity assay device and system. According to one embodiment, a droplet microactuator is provided and includes an antibody immobilized on a surface. According to another embodiment, a droplet microactuator is provided and includes a droplet on the droplet microactuator, the droplet comprising an antibody.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 5, 2013
    Assignees: Duke University, Advanced Liquid Logic Inc.
    Inventors: Vamsee K. Pamula, Vijay Srinivasan, Michael G. Pollack, Richard B. Fair
  • Patent number: 8377708
    Abstract: A new reaction apparatus including a capillary having an inner surface to which a probe molecule that specifically binds to an analyte is immobilized and achieving a highly efficient reaction using a small amount of a sample and a process of the reaction are provided. The reaction apparatus includes a capillary having an inner surface to which a probe molecule that specifically binds to an analyte is immobilized; a passage allowing a fluid discharged from one end of the capillary to flow to the other end of the capillary; a columnar magnetic body that is disposed in a fluid containing the analyte in the capillary and/or the passage in the state that the fluid fed in the capillary can circulate via the passage; end-fixing means for fixing one end of the columnar magnetic body in the capillary and/or the passage by a DC magnetic field; and end-moving means for moving the other end of the columnar magnetic body by an AC magnetic field such that the fluid circulates via the passage.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 19, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Adarsh Sandhu
  • Patent number: 8372658
    Abstract: A chemical analytic apparatus of the present invention is the one which proposes that a miniaturization, a making low-cost and portability are possible and also the operation of each process of separation, concentration and dilution of specimen is possible, and, which includes: an introduction means (S1) that introduces a droplet to which magnetic ultrafine particles are mixed into another liquid that differs from the droplet while maintaining a single droplet; a conveyance means by which the droplet that includes the magnetic particles is conveyed in another liquid of the introduction means by applying magnetic field externally to the magnetic ultrafine particles; and processing means (S2 to S6) by which operations for processing of chemical analysis are performed one by one in the process in which the droplet to which the magnetic ultrafine particles are mixed is conveyed by the conveyance means.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 12, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Mitsuhiro Shikida, Kazuo Sato, Hiroyuki Honda, Kohta Inouchi
  • Patent number: 8372659
    Abstract: The present invention provides a highly sensitive sensing device for biopolymers which detects the magnetic signal generated from a labeled biopolymer under AC magnetic field using thermo-responsive magnetic nano particles as a probe.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: February 12, 2013
    Assignees: National University Corporation Toyohashi University of Technology, JNC Corporation
    Inventors: Saburo Tanaka, Shinji Katsura, Noriyuki Ohnishi, Kageaki Matsui
  • Patent number: 8361326
    Abstract: The present invention relates to a device and a method for treating liquids with magnetic particles, wherein at least one further central element which ensures collection and homogenization of the particles is additionally provided.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 29, 2013
    Assignee: Qiagen GmbH
    Inventors: Ralf Himmelreich, Thomas Rothmann
  • Patent number: 8357546
    Abstract: Embodiments of the invention relate generally to ferromagnetic microdisks, methods of detecting target bioanalyte using ferromagnetic microdisks, and kits (such as for using in the laboratory setting) containing the reagents necessary to make, and/or use ferromagnetic microdisks for bioanalyte detection, depending on the user's planned application. The methods and products allow the fabrication of ferromagnetic microdisks, and their use in the detection of biological molecules with high sensitivity, little or no signal decay, improved safety, convenience, and lowered cost for use and disposal.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: January 22, 2013
    Assignee: Intel Corporation
    Inventor: Chang-Min Park
  • Patent number: 8354280
    Abstract: The technology provided herein generally relates to reusable detection surfaces and methods for reusing a detection surface after using the detection surface in an assay for an analyte.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: January 15, 2013
    Assignee: BioScale, Inc.
    Inventors: Jaime E. Arenas, Hyun-Goo Choi, William Matthew Dickerson, Sarah Beth Hembree, Lara Louise Madison, Brett P. Masters, Michael F. Miller, Wayne U. Wang
  • Patent number: 8343777
    Abstract: Detection of magnetic beads at temperature below room temperature can increase the signal level significantly as compared to the same detection when performed at room temperature. Additional improvement is obtained if the beads are below 30 nm in size and if deviations of bead size from the median are small. A preferred format for the beads is a suspension of super-paramagnetic particles in a non-magnetic medium.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: January 1, 2013
    Assignee: Headway Technologies, Inc.
    Inventor: Yuchen Zhou
  • Patent number: 8337705
    Abstract: Described are a device and a method for the manipulation of a liquid sample material in which magnetic microparticles are suspended whereby the microparticles have a functionalized surface and an analyte is bound to the surface. The sample material is introduced into a device with a liquid system through an injection device (50) and in a first mobile phase the sample material is carried to an extractor (90). In a section (97) of the extractor (90) the microparticles are immobilized by means of a magnetic field of a controllable means (96) and separated from the remaining sample material. By switching over of a switching unit (110) a second mobile phase (75) is carried to the extractor (90) and the second mobile phase (75) detaches the adsorbed analyte from the surface of the microparticles. The second mobile phase (75) with the dissolved analyte(s) can be analyzed by way of chromatographic separation (130) and subsequent detection (140).
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: December 25, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Michael Vogeser
  • Patent number: RE43979
    Abstract: The invention relates to a method for detecting specific target-cells in a simple and time saving way, using paramagnetic particles, antibodies recognizing the Fc portions of target-cell associating antibodies and target-cell associating antibodies directed to specific antigen determinants in the target-cell membranes. Incubation of the cell suspension with a mild detergent and/or second set of antibodies or antibody fragments, prelabeled or not with fluorescent agents, metallocolloids, radioisotopes, biotincomplexes or certain enzymes allowing visualization, with dramatically increase the specificity of the method. The method can further be used for isolation of the target-cells by magnetic field application and kit for performing the method according to the invention is described.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: February 5, 2013
    Assignee: Abbott Laboratories
    Inventors: Oystein Fodstad, Gunnar Kvalheim