And Additional Electrical Device Patents (Class 438/314)
  • Patent number: 11348834
    Abstract: A circuit includes at least one bipolar transistor and at least one variable capacitance diode. The circuit is fabricated using a method whereby the bipolar transistor and variable capacitance diode are jointly produced on a common substrate.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: May 31, 2022
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Gregory Avenier, Alexis Gauthier, Pascal Chevalier
  • Patent number: 10219409
    Abstract: A system and method for providing and using wickless capillary driven constrained vapor bubble heat pipes for application in display devices are disclosed. An example embodiment includes: a display device layer fabricated from a substrate, the display device layer including a plurality of in-built channels integrated therein; and a plurality of wickless capillary driven constrained vapor bubble heat pipes being embedded into the plurality of in-built channels, each wickless capillary driven constrained vapor bubble heat pipe including a body having a capillary therein with generally square corners and a high energy interior surface, and a highly wettable liquid partially filling the capillary to dissipate heat between an evaporator region and a condenser region.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: February 26, 2019
    Assignee: Intel Corporation
    Inventors: Sumita Basu, Shantanu D. Kulkarni, Prosenjit Ghosh, Konstantin I. Kouliachev
  • Patent number: 9136350
    Abstract: A radio frequency (RF) laterally diffused metal oxide semiconductor (LDMOS) device is disclosed which additionally includes a lightly-doped P-type buried layer under a P-type channel region and a moderately-dope P-type buried layer in the lightly-doped P-type buried layer. The two buried layers result in a lower base resistance for an equivalent parasitic NPN transistor, thereby impeding the occurrence of snapback in the device. Additionally, an equivalent reverse-biased diode formed between the channel region and the buried layers is capable of clamping the drain-source voltage of the device and sinking redundant currents to a substrate thereof. Furthermore, the design of a gate oxide layer of the RF LDMOS device to have a greater thickness at a proximal end to a drain region can help to reduce the hot-carrier effect, and having a smaller thickness at a proximal end to the source region can improve the transconductance of the RF LDMOS device.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: September 15, 2015
    Assignee: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventors: Zhengliang Zhou, Han Yu, Ying Cai, Xi Chen
  • Patent number: 8921190
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Stephen E. Luce, John J. Pekarik, Yun Shi
  • Patent number: 8778758
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes forming a plurality of electrode structures above a substrate. The method includes forming an insulating film on the plurality of electrode structures to make a gap between mutually-adjacent electrode structures. The method includes forming a silicon nitride film having compressive stress above the insulating film. The method includes forming a planarization film above the silicon nitride film. The method includes planarizing a surface of the planarization film by polishing by CMP (chemical mechanical polishing) method.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 15, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Kubota
  • Publication number: 20140167115
    Abstract: A heterojunction bipolar transistor includes a ballast resistor layer of which resistance increases with an increase in temperature. The ballast resistor layer includes a first ballast resistor sub-layer having a positive temperature coefficient of resistivity in a first temperature range and a second temperature range and a second ballast resistor sub-layer having a negative temperature coefficient of resistivity in the first temperature range and a positive temperature coefficient of resistivity in the second temperature range.
    Type: Application
    Filed: November 25, 2013
    Publication date: June 19, 2014
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Isao OBU, Yasunari UMEMOTO, Atsushi KUROKAWA
  • Publication number: 20140154857
    Abstract: Embodiments relate to a method of forming a memory array,comprising: forming a collector layer; forming a plurality of collector regions in the collector layer; forming a plurality of base regions over the collector region; forming a plurality of emitter regions over the base regions; forming a plurality of memory elements over the emitter regions, wherein the collector regions, base regions and emitter regions form heterojunction bipolar transistors.
    Type: Application
    Filed: June 24, 2013
    Publication date: June 5, 2014
    Inventor: Armin TILKE
  • Patent number: 8609502
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: December 17, 2013
    Assignee: DENSO CORPORATION
    Inventors: Masaki Koyama, Yutaka Fukuda
  • Patent number: 8507352
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: August 13, 2013
    Assignee: DENSO CORPORATION
    Inventors: Masaki Koyama, Yutaka Fukuda
  • Patent number: 8486797
    Abstract: Bipolar junction transistors are provided in which at least one of an emitter contact, a base contact, or a collector contact thereof is formed by epitaxially growing a doped SixGe1-x layer, wherein x is 0?x?1, at a temperature of less than 500° C. The doped SixGe1-x layer comprises crystalline portions located on exposed surfaces of a crystalline semiconductor substrate and non-crystalline portions that are located on exposed surfaces of a passivation layer which can be formed and patterned on the crystalline semiconductor substrate. The doped SixGe1-x layer of the present disclosure, including the non-crystalline and crystalline portions, contains from 5 atomic percent to 40 atomic percent hydrogen.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Tak H. Ning, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20130175581
    Abstract: A zener diode in a SiGe BiCMOS process is disclosed. An N-type region of the zener diode is formed in an active region and surrounded by an N-deep well. A pseudo buried layer is formed under each of the shallow trench field oxide regions on a corresponding side of the active region, and the N-type region is connected to the pseudo buried layers via the N-deep well. The N-type region has its electrode picked up by deep hole contacts. A P-type region of the zener diode is formed of a P-type ion implanted region in the active region. The P-type region is situated above and in contact with the N-type region, and has a doping concentration greater than that of the N-type region. The P-type region has its electrode picked up by metal contact. A method of fabricating zener diode in a SiGe BiCMOS process is also disclosed.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventor: Shanghai Hua Hong NEC Electronics Co., Ltd.
  • Patent number: 8450162
    Abstract: Methods and systems for fabricating an integrated BiFET using two separate growth procedures are disclosed. Performance of the method fabricates the FET portion of the BiFET in a first fabrication environment. Performance of the method fabricates the HBT portion of the BiFET in a second fabrication environment. By separating the fabrication of the FET portion and the HBT portion in two or more separate reactors, the optimum device performance can be achieved for both devices.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 28, 2013
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo
  • Patent number: 8420494
    Abstract: A new class of electronic devices suitable for Si IC incorporation and of diverse utility are described. The devices are useful for many sensing applications as well as for special circuit applications. Sensing applications include chemical and biochemical sensing, photo detection (UV, visible, IR and FIR), magnetic field sensing, electric field sensing, and force sensing. The devices are MEMs compatible. Sensor sensitivity is voltage and current tunable over a wide range. The devices further constitute a new and useful class of IC reference voltage devices. Selective non linear features are also achievable in support of non-linear device applications. These unique devices may be considered as distributed merged bipolar and FET structures. The new distributed channel bipolar devices (DCBDs) have a channel of a selected shape formed in a surface of a substrate by doping or by influencing of a coating. In the device structure, the channel acts as an NPN or PNO BJT collector or emitter.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 16, 2013
    Assignee: University of Hawaii
    Inventor: James W. Holm-Kennedy
  • Patent number: 8237191
    Abstract: Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The method includes forming two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20120112243
    Abstract: A semiconductor structure includes a heterojunction bipolar transistor (HBT) including a collector layer located over a substrate, the collector layer including a semiconductor material, and a field effect transistor (FET) located over the substrate, the FET having a channel formed in the semiconductor material that forms the collector layer of the HBT.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 10, 2012
    Inventors: Peter J. Zampardi, HsiangChih Sun
  • Patent number: 8124489
    Abstract: Provided are a monolithic microwave integrated circuit device and a method for forming the same. The method includes: forming an sub-collector layer, a collector layer, a base layer, an emitter layer, and an emitter cap layer on a Heterojunction Bipolar Transistor (HBT) region and a PIN diode region of a substrate; forming an emitter pattern and an emitter cap pattern in the HBT region and exposing the base layer by patterning the emitter layer and the emitter cap layer; and forming an intrinsic region by doping a portion of the collector layer of the PIN diode region with a first type impurity, the PIN diode region being spaced apart from the HBT region.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 28, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung-Gue Min, Jongmin Lee, Seong-Il Kim, Hyung Sup Yoon
  • Publication number: 20110269289
    Abstract: A method of manufacturing a transistor device (600), wherein the method comprises forming a trench (106) in a substrate (102), only partially filling the trench (106) with electrically insulating material (202), and implanting a collector region (304) of a bipolar transistor (608) of the transistor device (600) through the only partially filled trench (106).
    Type: Application
    Filed: July 8, 2009
    Publication date: November 3, 2011
    Applicant: NXP B.V.
    Inventors: Philippe Meunier-Beillard, Hans Mertens
  • Patent number: 8048739
    Abstract: According to yet another embodiment, a method for forming a non-volatile memory device includes etching a substrate to form first and second trenches. The first and second trenches are filled with an insulating material to form first and second isolation structures. A conductive layer is formed over the first and second isolation structures and between the first and second isolation structures to form a floating gate. The conductive layer and the first isolation structure are etched to form a third trench having an upper portion and a lower portion, the upper portion having vertical sidewalls and the lower portion having sloping sidewalls. The third trench is filled with a conductive material to form a control gate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Patent number: 7972936
    Abstract: A heterogeneous integrated circuit and method of making the same. An integrated circuit includes a surrogate substrate including a material selected from the group consisting of Group II, Group III, Group IV, Group V, and Group VI materials and their combinations; at least one active semiconductor device including a material combination selected from the group consisting of Group IV-IV, Group III-V and Group II-VI materials; and at least one transferred semiconductor device including a material combination selected from the group consisting of Group IV-IV, Group III-V and Group II-VI materials. The at least one active semiconductor device and the at least one transferred device are interconnected.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: July 5, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Peter D. Brewer, Andrew T. Hunter, Yakov Royter
  • Publication number: 20110140175
    Abstract: Provided are a monolithic microwave integrated circuit device and a method for forming the same. The method includes: forming an sub-collector layer, a collector layer, a base layer, an emitter layer, and an emitter cap layer on a Heterojunction Bipolar Transistor (HBT) region and a PIN diode region of a substrate; forming an emitter pattern and an emitter cap pattern in the HBT region and exposing the base layer by patterning the emitter layer and the emitter cap layer; and forming an intrinsic region by doping a portion of the collector layer of the PIN diode region with a first type impurity, the PIN diode region being spaced apart from the HBT region.
    Type: Application
    Filed: July 8, 2010
    Publication date: June 16, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Byoung-Gue MIN, Jongmin Lee, Seong-ll Kim, Hyung Sup Yoon
  • Patent number: 7939407
    Abstract: Semiconductor-based non-volatile memory that includes memory cells with composite charge storage elements is fabricated using an etch stop layer during formation of at least a portion of the storage element. One composite charge storage element suitable for memory applications includes a first charge storage region having a larger gate length or dimension in a column direction than a second charge storage region. While not required, the different regions can be formed of the same or similar materials, such as polysilicon. Etching a second charge storage layer selectively with respect to a first charge storage layer can be performed using an interleaving etch-stop layer. The first charge storage layer is protected from overetching or damage during etching of the second charge storage layer. Consistency in the dimensions of the individual memory cells can be increased.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: May 10, 2011
    Assignee: SanDisk Corporation
    Inventors: Vinod Robert Purayath, George Matamis, Takashi Orimoto, James Kai
  • Patent number: 7923318
    Abstract: Methods and systems for fabricating an integrated BiFET using two separate growth procedures are disclosed. Performance of the method fabricates the FET portion of the BIFET in a first fabrication environment. Performance of the method fabricates the HBT portion of the BiFET in a second fabrication environment. By separating the fabrication of the FET portion and the HBT portion in two or more separate reactors, the optimum device performance can be achieved for both devices.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: April 12, 2011
    Assignee: MicroLink Devices, Inc.
    Inventors: Noren Pan, Andree Wibowo
  • Patent number: 7892943
    Abstract: A first dielectric plug is formed in a portion of a trench that extends into a substrate of a memory device so that an upper surface of the first dielectric plug is recessed below an upper surface of the substrate. The first dielectric plug has a layer of a first dielectric material and a layer of a second dielectric material formed on the layer of the first dielectric material. A second dielectric plug of a third dielectric material is formed on the upper surface of the first dielectric plug.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Michael Violette
  • Publication number: 20110037096
    Abstract: Semiconductor structures and methods of manufacture semiconductors are provided which relate to heterojunction bipolar transistors. The method includes forming two devices connected by metal wires on a same wiring level. The metal wire of a first of the two devices is formed by selectively forming a metal cap layer on copper wiring structures.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James S. DUNN, Alvin J. JOSEPH, Anthony K. STAMPER
  • Patent number: 7867844
    Abstract: Some embodiments include methods of forming charge storage transistor gates and standard FET gates in which common processing is utilized for fabrication of at least some portions of the different types of gates. FET and charge storage transistor gate stacks may be formed. The gate stacks may each include a gate material, an insulative material, and a sacrificial material. The sacrificial material is removed from the FET and charge storage transistor gate stacks. The insulative material of the FET gate stacks is etched through. A conductive material is formed over the FET gate stacks and over the charge storage transistor gate stacks. The conductive material physically contacts the gate material of the FET gate stacks, and is separated from the gate material of the charge storage transistor gate stacks by the insulative material remaining in the charge storage transistor gate stacks. Some embodiments include gate structures.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: January 11, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Publication number: 20100240187
    Abstract: An integrated semiconductor structure includes a heterojunction bipolar transistor and a Schottky diode. The structure has a substrate, the heterojunction bipolar transistor overlying and contacting the substrate, wherein the heterojunction bipolar transistor includes a transistor collector layer, and a Schottky diode overlying the substrate and overlying the transistor collector layer. The Schottky diode includes a Schottky diode barrier layer structure that desirably is not of the same material, doping, and thickness as the transistor collector layer.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 23, 2010
    Applicant: THE BOEING COMPANY
    Inventor: Berinder P.S. Brar
  • Patent number: 7727847
    Abstract: A light-absorbing layer is selectively formed over an insulating surface, an insulating layer is formed over the insulating surface and the light-absorbing layer, the insulating surface, the light-absorbing layer, and the insulating layer are irradiated with laser light to selectively remove only the insulating layer above the light-absorbing layer in an irradiated region of the insulating layer so that an opening reaching the light-absorbing layer is formed in the insulating layer, and a conductive film is formed in the opening so as to be in contact with the light-absorbing layer. By forming the conductive film in the opening so as to be in contact with the exposed light-absorbing layer, the conductive film can be electrically connected to the light-absorbing layer with the insulating layer interposed therebetween.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: June 1, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Yasuyuki Arai
  • Patent number: 7709335
    Abstract: Provided may be a method of manufacturing a semiconductor device. The method may include forming a plurality of isolation patterns including conductive patterns on a semiconductor substrate and forming gaps between the isolation patterns, forming active patterns filling the gaps on the semiconductor substrate, forming a gate insulation layer on the isolation patterns and the active patterns, and forming gate patterns on the gate insulation layer.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-il Kim, Hyeong-sun Hong, Makoto Yoshida
  • Patent number: 7682919
    Abstract: A method in the fabrication of an integrated circuit including a PMOS varactor and an npn transistor, comprises the steps of (i) simultaneously forming buried n+-doped regions (31) for the PMOS varactor and the npn transistor in a p-doped substrate (10, 41); (ii) simultaneously forming n-doped wells (41) above the buried n+-doped regions (31); (iii) simultaneously forming field isolation areas (81) around the n-doped regions (41); (iv) forming a PMOS gate region (111, 194) and a p-doped base each in a respective one of the n-doped wells (41); and (v) simultaneously forming n+-doped contacts to the buried n+-doped regions (31); the contacts being separated from the n-doped wells (41). Source and drain regions may be formed in the PMOS n-well (inversion mode) or the PMOS n+-doped contact may be formed in the PMOS n-well instead of being separated from there (accumulation mode).
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: March 23, 2010
    Assignee: Infineon Technologies AG
    Inventor: Ted Johansson
  • Patent number: 7638820
    Abstract: Provided is a process for forming a contact for a compound semiconductor device without electrically shorting the device. In one embodiment, a highly doped compound semiconductor material is electrically connected to a compound semiconductor material of the, same conductivity type through an opening in a compound semiconductor material of the opposite conductivity type. Another embodiment discloses a transistor including multiple compound semiconductor layers where a highly doped compound semiconductor material is electrically connected to a compound semiconductor layer of the same conductivity type through an opening in a compound semiconductor layer of the opposite conductivity type. Embodiments further include metal contacts electrically connected to the highly doped compound semiconductor material. A substantially planar semiconductor device is disclosed. In embodiments, the compound semiconductor material may be silicon carbide.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: December 29, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Martin E. Kordesch, Howard D. Bartlow, Richard L. Woodin
  • Patent number: 7625803
    Abstract: The invention includes a memory device having a capacitor in combination with a transistor. The memory device can be within a TFT construction. The capacitor is configured to provide both area and perimeter components of capacitance for capacitive enhancement. The capacitor includes a reference plate which splits into at least two prongs. Each of the prongs is surrounded by a lateral periphery. A dielectric material extends around the lateral peripheries of the prongs, and a storage node surrounds an entirety of the lateral peripheries of the prongs. The storage node is separated from the reference plate by at least the dielectric material. Also, the invention includes electronic systems comprising novel capacitor constructions.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Publication number: 20090230431
    Abstract: The present invention has as an objective to provide: a semiconductor device to satisfy both of the trade-off characteristic advantages of the HBT; and the HFET and a manufacturing method thereof. The semiconductor device in the present invention is an HBT and HFET integrated circuit. The HBT includes a sub-collector layer, a GaAs collector layer, a GaAs base layer, and an InGaP emitter layer which are sequentially stacked. The sub-collector layer includes a GaAs external sub-collector region, and a GaAs internal sub-collector region disposed on the GaAs external sub-collector region. A mesa-shaped collector part and a collector electrode are separately formed on the GaAs external sub-collector region. The HFET includes a GaAs cap layer, a source electrode, and a drain electrode, the GaAs cap layer including portion of the GaAs external sub-collector region, and the source electrode and the drain electrode being formed on the GaAs cap layer.
    Type: Application
    Filed: March 9, 2009
    Publication date: September 17, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Keiichi MURAYAMA, Akiyoshi TAMURA, Hirotaka MIYAMOTO, Kenichi MIYAJIMA
  • Publication number: 20090085066
    Abstract: According to an exemplary embodiment, a method for integrating a high speed bipolar transistor in a high speed transistor region of a substrate with a high voltage transistor in a high voltage transistor region of the substrate includes forming a buried subcollector in the high speed transistor region of the substrate. The method further includes forming a first high energy implant region in the high voltage transistor region of the substrate, where the first high energy implant region extends to a depth greater than a depth of a peak dopant concentration of the buried subcollector, thereby increasing a collector-to-emitter breakdown voltage of the high voltage transistor. The collector-to-emitter breakdown voltage of the high voltage transistor can be greater than approximately 5.0 volts. The high speed bipolar transistor can have a cutoff frequency of greater approximately 200.0 GHz.
    Type: Application
    Filed: August 4, 2008
    Publication date: April 2, 2009
    Applicant: NEWPORT FAB, LLC DBA JAZZ SEMICONDUCTOR
    Inventor: Edward Preisler
  • Patent number: 7439144
    Abstract: A sidewall image transfer process for forming sub-lithographic structures employs a layer of sacrificial polymer containing silicon that is deposited over a gate conductor layer and covered by a cover layer. The sacrificial polymer layer is patterned with conventional resist and etched to form a sacrificial mandrel. The edges of the mandrel are oxidized or nitrided in a plasma at low temperature, after which the polymer and the cover layer are stripped, leaving sublithographic sidewalls. The sidewalls are used as hardmasks to etch sublithographic gate structures in the gate conductor layer.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 21, 2008
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
  • Publication number: 20080157122
    Abstract: An integrated semiconductor structure includes a heterojunction bipolar transistor and a Schottky diode. The structure has a substrate, the heterojunction bipolar transistor overlying and contacting the substrate, wherein the heterojunction bipolar transistor includes a transistor collector layer, and a Schottky diode overlying the substrate and overlying the transistor collector layer. The Schottky diode includes a Schottky diode barrier layer structure that desirably is not of the same material, doping, and thickness as the transistor collector layer.
    Type: Application
    Filed: February 26, 2008
    Publication date: July 3, 2008
    Applicant: THE BOEING COMPANY
    Inventor: Berinder P.S. BRAR
  • Publication number: 20080124883
    Abstract: A structure comprises a single wafer with a first subcollector formed in a first region having a first thickness and a second subcollector formed in a second region having a second thickness, different from the first thickness. A method is also contemplated which includes providing a substrate including a first layer and forming a first doped region in the first layer. The method further includes forming a second layer on the first layer and forming a second doped region in the second layer. The second doped region is formed at a different depth than the first doped region. The method also includes forming a first reachthrough in the first layer and forming a second reachthrough in second layer to link the first reachthrough to the surface.
    Type: Application
    Filed: November 16, 2007
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION,
    Inventors: Douglas D. COOLBAUGH, Alvin J. Joseph, Seong-dong Kim, Louis D. Laozerotti, Xuefeng Liu, Robert M. Rassel
  • Patent number: 7176098
    Abstract: A heterojunction bipolar transistor comprises a collector layer, a base layer formed on the collector layer and an emitter layer formed on the base layer. The emitter layer includes a first semiconductor layer covering the entire top surface of the base layer and a second semiconductor layer formed on a predetermined part of the first semiconductor layer. An inactivated region is formed, by ion implantation, in a region of the collector layer located below the base layer except for a part thereof corresponding to the second semiconductor layer. The edge of the inactivated region is located away from the edge of the second semiconductor layer, and a region of the first semiconductor layer between the edge of the inactivated region and the edge of the second semiconductor layer is depleted.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: February 13, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Keisuke Kojima, Toshiharu Tanbo, Keiichi Murayama
  • Patent number: 7166517
    Abstract: The present invention provides a method of manufacturing a semiconductor device which includes an amorphous semiconductor film forming treatment of supplying a starting material gas containing germanium to a semiconductor substrate, thereby forming an amorphous semiconductor film containing the germanium on the semiconductor substrate. Further, it also provides a semiconductor device of a novel structure manufactured by the manufacturing method.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: January 23, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Akihiro Miyauchi, Yousuke Inoue, Toshio Andou
  • Patent number: 7132320
    Abstract: The present invention achieves the enhancement of a manufacturing yield factor and the reduction of manufacturing cost in a manufacturing method of a semiconductor device having a hetero junction bipolar transistor (HBT), a Schottky diode and a resistance element. The present invention is directed to the manufacturing method of a semiconductor device in which respective semiconductor layers which become a sub collector layer, a collector layer, a base layer, a wide gap emitter layer and an emitter layer are sequentially formed over one surface of a semiconductor substrate and, thereafter, respective semiconductor layers are processed to form the hetero junction bipolar transistor, the Schottky diode and the resistance element in a monolithic manner. An emitter electrode of the hetero junction bipolar transistor, a Schottky electrode of the Schottky diode and a resistance film of the resistance element are simultaneously formed using a same material (for example, WSiN).
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: November 7, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Atsushi Kurokawa, Toshiaki Kitahara, Hiroshi Inagawa, Yoshinori Imamura
  • Patent number: 7037799
    Abstract: Devices and methods are disclosed related to a bipolar transistor device and methods of fabrication. A top region is formed at a surface of and within a base region. The top region is formed by implanting a dopant of an opposite conductivity to that of the base region. However, the top region remains of the same conductivity type as the base region (e.g., n-type or p-type). This implanting, also referred to as counterdoping, increases resistivity of the top region and thus improves an emitter-base breakdown voltage. Additionally, this implanting does not have a substantial detrimental affect on a beta value, also referred to as an amplification property, or a collector emitter breakdown voltage, also referred to as BVceo, for the transistor. The beta value and the collector emitter breakdown voltage are mainly a function of a bottom portion of the base region.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: May 2, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Billy Bradford Hutcheson
  • Patent number: 7018884
    Abstract: The present invention provides a method for parallel production of an MOS transistor in an MOS area of a substrate and a bipolar transistor in a bipolar area of the substrate. The method comprises generating an MOS preparation structure in the MOS area, wherein the MOS preparation structure comprises an area provided for a channel, a gate dielectric, a gate electrode layer and a mask layer on the gate electrode layer. Further, a bipolar preparation structure is generated in the bipolar area, which comprises a conductive layer and a mask layer on the conductive layer. The mask layer is thinned in the area of the gate electrode. For determining a gate electrode and a base terminal area, common structuring of the gate electrode layer and the conductive layer is performed.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: March 28, 2006
    Assignee: Infineon Technologies AG
    Inventors: Adrian Berthold, Josef Böck, Jürgen Holz, Wolfgang Klein
  • Patent number: 6953728
    Abstract: This semiconductor device manufacturing method comprises the steps of: forming a thick gate oxide film (thick oxide film) in a first region of a substrate, forming a thin gate oxide film (thin oxide layer) in a second region, and then, applying oxynitridation to these gate oxide films; forming gate electrodes to 1d on these gate oxide films; and implanting an ion that contains nitrogen or nitrogen atoms into at least one part of an interface between the hick gate oxide film (thick oxide film) and the substrate before or after the step of forming the gate electrodes, thereby forming a highly oxy-nitrided region. In this manner, in a semiconductor device in which there coexist a MISFET having a thin gate insulation film and a MISFET having a thick gate insulation film, hot carrier reliability of the MISFET having the thick gate insulation film is improved.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: October 11, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Eiichi Murakami, Akio Nishida, Kazunori Umeda, Kousuke Okuyama, Toshiaki Yamanaka, Jiro Yugami, Shinichiro Kimura
  • Patent number: 6951790
    Abstract: Methods and apparatus are provided. A NAND memory array has a select line coupled to each of a plurality of NAND strings of memory cells of the memory array. The select line has a select gate at each intersection of one of the plurality of NAND strings and the select line. The select line further includes first and second conductive layers separated by a dielectric layer, and a contact that extends from a third conductive layer, disposed on the second conductive layer, to the first conductive layer. The contact is formed in a hole that passes through the second conductive layer and the dielectric layer and that terminates at the first conductive layer. The contact electrically connects the first and second conductive layers. The hole can have a slot shape so that the contact spans two or more NAND strings of the plurality of NAND strings.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: October 4, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Michael Violette
  • Patent number: 6919615
    Abstract: A semiconductor device for an integrated injection logic cell having a pnp bipolar transistor structure formed on a semiconductor substrate, wherein at least one layer of insulating films formed on a base region of the pnp bipolar transistor structure is comprised of a silicon nitride film. The semiconductor device of the present invention is advantageous in that the silicon nitride film constituting at least one layer of the insulating films formed on the base region of the pnp bipolar transistor prevents an occurrence of contamination on the surface of the base region, so that both the properties of the pnp bipolar transistor and the operation of the IIL cell can be stabilized. Further, by the process of the present invention, the above-mentioned excellent semiconductor device can be produced.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 19, 2005
    Assignee: Sony Corporation
    Inventor: Hirokazu Ejiri
  • Patent number: 6911369
    Abstract: The present disclosure provides a process for producing a SiGe layer in a bipolar device having a reduced amount of gaps or discontinuities on a shallow trench isolation (STI) region use for a base electrode connection. The process is used for forming an SiGe layer for use in a semiconductor device. The process includes doping a single crystal substrate with a first dopant type, baking the doped single crystal substrate at a temperature less than 900° C., and at a pressure less than 100 torr; and depositing the SiGe layer on the baked single crystal substrate (epi SiGe) to serve as the base electrode and on the STI region (poly SiGe) to serve as a connection for the base electrode. The semiconductor device is thereby created from the combination of the doped single crystal substrate and the deposited SiGe layer.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: June 28, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuen-Chyr Lee, Liang-Gi Yao, Fu Chin Yang, Shih-Chang Chen, Mong-Song Liang
  • Patent number: 6894362
    Abstract: Disclosed is a manufacturing method to fabricate Heterojunction Bipolar Transistors (HBTs) that enables self-alignment of emitter and base metal contact layers with precise sub-micron spacing using a dielectric-assisted metal lift-off process. Such an HBT process relies on the formation of an “H-shaped” dielectric (i.e., Si3N4/SiO2) mask conformally deposited on top of the emitter contact metallization that is used to remove excess base metal through lift-off by a wet chemical HF-based etch. This HBT process also uses a thin selective etch-stop layer buried within the emitter layer to prevent wet chemical over-etching to the base and improves HBT reliability by forming a non-conducting, depleted ledge above the extrinsic base layer. The geometry of the self-aligned emitter and base metal contacts in the HBT insures conformal coverage of dielectric encapsulation films, preferably Si3N4 and/or SiO2, for reliable HBT emitter p-n junction passivation.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 17, 2005
    Inventor: Roger J. Malik
  • Patent number: 6828205
    Abstract: A method for using an isotropic wet etching process chemical process for trimming semiconductor feature sizes with improved critical dimension control including providing a hard mask overlying a substrate included in a semiconductor wafer said hard mask patterned for masking a portion of the substrate for forming a semiconductor feature according to an anisotropic plasma etching process; isotropically wet etching the hard mask to reduce a dimension of the hard mask prior to carrying out the anisotropic plasma etching process; and, anisotropically plasma etching a portion of the substrate not covered by the hard mask to form the semiconductor feature.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: December 7, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Ming-Huan Tsai, Ming-Jie Huang, Huan-Just Lin, Hun-Jan Tao
  • Patent number: 6800532
    Abstract: A variable capacitor includes an N+ layer including a variable capacitance region, a P+ layer epitaxially grown on the N+ layer and formed from a SiGe film and a Si film, and a P-type electrode. An NPN-HBT (Hetero-junction Bipolar Transistor) includes a collector diffusion layer formed simultaneously with the N+ layer of the variable capacitor, a collector layer, and a Si/SiGe layer epitaxially grown simultaneously with the P+ layer of the variable capacitor. Since a depletion layer formed in a PN junction of the variable capacitor can extend entirely across the N+ layer, reduction in variation range of the capacitance can be suppressed.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: October 5, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Teruhito Ohnishi, Takeshi Takagi, Akira Asai, Taizo Fujii, Mitsuo Sugiura, Yoshihisa Minami
  • Patent number: 6784063
    Abstract: The present invention discloses a method for fabricating a BiCMOS transistor, which improves the high frequency characteristics of a bipolar transistor by reducing base resistance and a parasitic capacitance between the base and collector.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: August 31, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae-han Cha
  • Patent number: 6780725
    Abstract: A method of manufacturing vertical NPN and PNP transistors on a substrate includes forming a first oxide film, a P-polycrystal silicon film, and a second oxide film successively on N-silicon epitaxial film on the substrate. An opening is made in the first oxide film to expose the N-silicon epitaxial film and a bottom of the P-polycrystal silicon film anisotropically etching the second oxide film and the P-polycrystal silicon film, and then isotropically etching the exposed first oxide film. A part of the opening is plugged by growing a selective epitaxial layer including a P-monocrystal layer from the surface of the N-silicon epitaxial film, and growing a polycrystal layer from the bottom of the P-polycrystal silicon film. Then, within a PNP transistor section, position and impurity concentration of a P-N junction are adjusted by self-aligned implanting or diffusing of P-impurities into the N-silicon epitaxial layer through the opening.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: August 24, 2004
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hirokazu Fujimaki