Forming Lateral Transistor Structure Patents (Class 438/316)
  • Patent number: 8981456
    Abstract: A semiconductor storage device according to the present embodiment includes a semiconductor substrate. Each of memory cell arrays includes a plurality of memory cells on the semiconductor substrate. Select gate transistors are provided on ends of the memory cell arrays and brought into conduction when the memory cells are connected to a corresponding line. An embedded impurity layer is embedded in active areas between the select gate transistors respectively corresponding to the memory cell arrays adjacent to each other. Contact plugs connect the embedded impurity layer and the lines.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenichi Fujii, Tooru Hara
  • Patent number: 8981475
    Abstract: A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region and partially overlaps the drift region. A conformal dielectric layer is on the top surface and forms a mesa above the gate conductor. The conformal dielectric layer has a conformal etch-stop layer embedded therein. Contact studs extend through the dielectric layer and the etch-stop layer, and are connected to the source region, drain region, and gate conductor. A source electrode contacts the source contact stud, a gate electrode contacts the gate contact stud, and a drain electrode contacts the drain contact stud. A drift electrode is over the drift region.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Patent number: 8962461
    Abstract: Consistent with an example embodiment, a GaN heterojunction structure has a three-layer dielectric structure. The lowermost and middle portions of the gate electrode together define the gate foot, and this is associated with two dielectric layers. A thinner first dielectric layer is adjacent the gate edge at the bottom of the gate electrode. The second dielectriclayer corresponds to the layer in the conventional structure, and it is level with the main portion of the gate foot.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Godefridus Adrianus Maria Hurkx, Jeroen Antoon Croon, Johannes Josephus Theodorus Marinus Donkers, Stephan Heil, Jan Sonsky
  • Publication number: 20140374802
    Abstract: Embodiments of the present invention include a method for forming a semiconductor emitter and the resulting structure. The invention comprises forming an epitaxial base layer on a semiconductor substrate. A dielectric layer is deposited over the epitaxial base layer. An opening is etched in a portion of the dielectric layer exposing a portion of the epitaxial base layer and a spacer is deposited along the sidewall of the opening. The emitter is grown from the epitaxial base layer to overlap the top surface of the spacer and a portion of the dielectric layer. The single crystal emitter is formed without a mask and without the requirement of subsequent patterning processes.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David L. Harame, Vikas K. Kaushal, Marwan H. Khater, Qizhi Liu
  • Publication number: 20140361300
    Abstract: Disclosed are bipolar devices, which incorporate an entirely monocrystalline link-up region between the intrinsic and extrinsic base layers, and methods of forming the devices. In the methods, a selective epitaxial deposition process grows monocrystalline semiconductor material for the extrinsic base layer on an exposed edge portion of a monocrystalline section of an intrinsic base layer. This deposition process is continued to intentionally overgrow the monocrystalline semiconductor material until it grows laterally and essentially covers a dielectric landing pad on a center portion of that same monocrystalline section of the intrinsic base layer. Subsequently, an opening is formed through the extrinsic base layer to the dielectric landing pad and the dielectric landing pad is selectively removed, thereby exposing monocrystalline surfaces only of the intrinsic and extrinsic base layers.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 11, 2014
    Inventors: Renata A. Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater
  • Patent number: 8796100
    Abstract: The present invention discloses a method of manufacturing an N-type LDMOS device. The method comprises forming a gate above the semiconductor substrate; forming a body, comprising forming a Pwell apart from the gate and forming a Pbase partly in the Pwell, wherein the Pbase is wider and shallower than the Pwell; and forming an N-type source and a drain contact region. Wherein the body curvature of the LDMOS device is controlled by adjusting the layout width of the Pwell.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 5, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Jeesung Jung
  • Patent number: 8791500
    Abstract: A semiconductor device having a lateral insulated gate bipolar transistor includes a first conductivity type drift layer, a second conductivity type collector region formed in a surface portion of the drift layer, a second conductivity type channel layer formed in the surface portion of the drift layer, a first conductivity type emitter region formed in a surface portion of the channel layer, and a hole stopper region formed in the drift layer and located between the collector region and the emitter region. Holes are injected from the collector region into the drift layer and flow toward the emitter region through a hole path. The hole stopper region blocks a flow of the holes and narrows the hole path to concentrate the holes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 29, 2014
    Assignee: DENSO CORPORATION
    Inventors: Youichi Ashida, Shigeki Takahashi
  • Patent number: 8586441
    Abstract: A germanium lateral bipolar junction transistor (BJT) is formed employing a germanium-on-insulator (GOI) substrate. A silicon passivation layer is deposited on the top surface of a germanium layer in the GOI substrate. Shallow trench isolation structures, an extrinsic base region structure, and a base spacer are subsequently formed. A germanium emitter region, a germanium base region, and a germanium collector region are formed within the germanium layer by ion implantation. A silicon emitter region, a silicon base region, and a silicon collector region are formed in the silicon passivation layer. After optional formation of an emitter contact region and a collector contact region, metal semiconductor alloy regions can be formed. A wide gap contact for minority carriers is provided between the silicon base region and the germanium base region and between the silicon emitter region and the germanium emitter region.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Bahman Hekmatshoartabari, Tak H. Ning, Dae-Gyu Park
  • Patent number: 8557670
    Abstract: A lateral heterojunction bipolar transistor is formed on a semiconductor-on-insulator substrate including a top semiconductor portion of a first semiconductor material having a first band gap and a doping of a first conductivity type. A stack of an extrinsic base and a base cap is formed such that the stack straddles over the top semiconductor portion. A dielectric spacer is formed around the stack. Ion implantation of dopants of a second conductivity type is performed to dope regions of the top semiconductor portion that are not masked by the stack and the dielectric spacer, thereby forming an emitter region and a collector region. A second semiconductor material having a second band gap greater than the first band gap and having a doping of the second conductivity type is selectively deposited on the emitter region and the collector region to form an emitter contact region and a collector contact region, respectively.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Dae-Gyu Park
  • Patent number: 8546229
    Abstract: Insufficient gain in bipolar transistors (20) is improved by providing an alloyed (e.g., silicided) emitter contact (452) smaller than the overall emitter (42) area. The improved emitter (42) has a first emitter (FE) portion (42-1) of a first dopant concentration CFE, and a second emitter (SE) portion (42-2) of a second dopant concentration CSE. Preferably CSE?CFE. The SE portion (42-2) desirably comprises multiple sub-regions (45i, 45j, 45k) mixed with multiple sub-regions (47m, 47n, 47p) of the FE portion (42-1). A semiconductor-metal alloy or compound (e.g., a silicide) is desirably used for Ohmic contact (452) to the SE portion (42-2) but substantially not to the FE portion (42-1). Including the FE portion (42-1) electrically coupled to the SE portion (42-2) but not substantially contacting the emitter contact (452) on the SE portion (42-2) provides gain increases of as much as ˜278.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: October 1, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8536701
    Abstract: An electronic device packaging structure is provided. The semiconductor device includes a semiconductor base, an emitter, a collector, and a gate. The emitter and the gate are disposed on a first surface of the semiconductor base. The collector is disposed on a second surface of the semiconductor base. A first passivation layer is located on the first surface of the semiconductor base surrounding the gate. A first conductive pad is disposed on the first passivation layer. A second conductive pad is disposed on the collector on the second surface. At least one conductive through via structure penetrates the first passivation layer, the first and second surfaces of the semiconductor base, and the collector to electrically connect the first and second conductive pads.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ra-Min Tain, Ming-Ji Dai, John H. Lau
  • Patent number: 8525261
    Abstract: A semiconductor device comprises a source region, a drain region, and a drift region between the source and drain regions. A split gate is disposed over a portion of the drift region, and between the source and drain regions. The split gate includes first and second gate electrodes separated by a gate oxide layer. A super-junction structure is disposed within the drift region between the gate and the drain region.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: September 3, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Shyi-Yuan Wu, Wing Chor Chan, Chien-Wen Chu
  • Patent number: 8460976
    Abstract: The present invention relates to a manufacturing method of SOI devices, and in particular, to a manufacturing method of SOI high-voltage power devices.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: June 11, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinhong Cheng, Zhongjian Wang, Yuehui Yu, Dawei He, Dawei Xu, Chao Xia
  • Patent number: 8431450
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Patent number: 8377755
    Abstract: A method of manufacturing a SOI high voltage power chip with trenches is disclosed. The method comprises: forming a cave and trenches at a SOI substrate; filling oxide in the cave; oxidizing the trenches, forming oxide isolation regions for separating low voltage devices at the same time; filling oxide in the oxidized trenches; and then forming drain regions, source regions and gate regions for a high voltage power device and low voltage devices. The process involves depositing an oxide layer overlapping the cave of the SOI substrate. A SOI high voltage power chip thus made will withstand at least above 700V voltage.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: February 19, 2013
    Assignee: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    Inventors: Xinhong Cheng, Zhongjian Wang, Yuehui Yu, Dawei He, Dawei Xu, Chao Xia
  • Publication number: 20120139009
    Abstract: A lateral heterojunction bipolar transistor (HBT) is formed on a semiconductor-on-insulator substrate. The HBT includes a base including a doped silicon-germanium alloy base region, an emitter including doped silicon and laterally contacting the base, and a collector including doped silicon and laterally contacting the base. Because the collector current is channeled through the doped silicon-germanium base region, the HBT can accommodate a greater current density than a comparable bipolar transistor employing a silicon channel. The base may also include an upper silicon base region and/or a lower silicon base region. In this case, the collector current is concentrated in the doped silicon-germanium base region, thereby minimizing noise introduced to carrier scattering at the periphery of the base. Further, parasitic capacitance is minimized because the emitter-base junction area is the same as the collector-base junction area.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicant: International Business Machine Corporation
    Inventors: Tak H. Ning, Kevin K. Chan, Marwan H. Khater
  • Patent number: 8183119
    Abstract: A resist pattern (5) is formed in a dimension of a limitation of an exposure resolution over a hard mask material film (4) over a work film (3). The material film (4) is processed using the resist pattern (5) as a mask. A hard mask pattern (6) is thereby formed. Thereby a resist pattern (7), over a non-selected region (6b), having an opening (7a) through which a selection region (6a) in the mask pattern is exposed is formed. Only the mask pattern (6a) exposed through the opening (7a) is slimmed by performing a selection etching, the work film (3) is etched by using the mask pattern (6). A work film pattern (8) is thereby formed, which include a wide pattern section (8a) of a dimension width of the limitation of the exposure resolution and a slimmed pattern section (8a) of a dimension that is not more than the limitation of the exposure resolution.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Hashimoto, Soichi Inoue, Kazuhiro Takahata, Kei Yoshikawa
  • Patent number: 8173510
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of the surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 8114750
    Abstract: A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Natalie B. Feilchenfeld, Jeffrey P. Gambino, Xuefeng Liu, Benjamin T. Voegeli, Steven H. Voldman, Michael J. Zierak
  • Patent number: 7998817
    Abstract: A method for fabricating a high-voltage transistor with an extended drain region includes forming in a semiconductor substrate of a first conductivity type, first and second trenches that define a mesa having respective first and second sidewalls; then partially filling each of the trenches with a dielectric material that covers the first and second sidewalls. The remaining portions of the trenches are then filled with a conductive material to form first and second field plates. Source and body regions are formed in an upper portion of the mesa, with the body region separating the source from a lower portion of the mesa. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: April 18, 2009
    Date of Patent: August 16, 2011
    Assignee: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 7968416
    Abstract: An integrated circuit arrangement and fabrication method is provided. The integrated circuit arrangement contains an NPN transistor and a PNP transistor. The PNP transistor contains an emitter connection region and a cutout. The cutout delimits the width of the emitter connection region. The electrically conductive material of the connection region laterally overlaps the cutout.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thomas Böttner, Stefan Drexl, Thomas Huttner, Martin Seck
  • Patent number: 7927950
    Abstract: A method of fabricating a floating trap type nonvolatile memory device includes forming a cell gate insulating layer on a semiconductor substrate, the cell gate insulating layer being comprised of a lower insulating layer, a charge storage layer and an upper insulating layer sequentially stacked; thermally annealing the cell gate insulating Layer at a temperature of approximately 810° C. to approximately 1370° C.; and forming a gate electrode on the thermally annealed cell gate insulating layer.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: April 19, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Mei Choi, Chang-Hyun Lee, Seung-Hwan Lee, Young-Geun Park, Sung-Jung Kim, Young-Sun Kim
  • Patent number: 7892943
    Abstract: A first dielectric plug is formed in a portion of a trench that extends into a substrate of a memory device so that an upper surface of the first dielectric plug is recessed below an upper surface of the substrate. The first dielectric plug has a layer of a first dielectric material and a layer of a second dielectric material formed on the layer of the first dielectric material. A second dielectric plug of a third dielectric material is formed on the upper surface of the first dielectric plug.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Michael Violette
  • Patent number: 7888732
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of said surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 7824978
    Abstract: A bipolar transistor with very high dynamic performance, usable in an integrated circuit. The bipolar transistor has a single-crystal silicon emitter region with a thickness smaller than 50 nm. The base of the bipolar transistor is made of an SiGe alloy.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: November 2, 2010
    Assignee: STMicroelectronics S.A.
    Inventors: Alain Chantre, Bertrand Martinet, Michel Marty, Pascal Chevalier
  • Patent number: 7824996
    Abstract: A resist pattern (5) is formed in a dimension of a limitation of an exposure resolution over a hard mask material film (4) over a work film (3). The material film (4) is processed using the resist pattern (5) as a mask. A hard mask pattern (6) is thereby formed. Thereby a resist pattern (7), over a non-selected region (6b), having an opening (7a) through which a selection region (6a) in the mask pattern is exposed is formed. Only the mask pattern (6a) exposed through the opening (7a) is slimmed by performing a selection etching, the work film (3) is etched by using the mask pattern (6). A work film pattern (8) is thereby formed, which include a wide pattern section (8a) of a dimension width of the limitation of the exposure resolution and a slimmed pattern section (8a) of a dimension that is not more than the limitation of the exposure resolution.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Hashimoto, Soichi Inoue, Kazuhiro Takahata, Kei Yoshikawa
  • Patent number: 7776704
    Abstract: The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, Alvin J. Joseph, Qizhi Liu
  • Patent number: 7745291
    Abstract: A method for fabricating a high-voltage transistor with an extended drain region includes forming in a semiconductor substrate of a first conductivity type, first and second trenches that define a mesa having respective first and second sidewalls partially filling each of the trenches with a dielectric material that covers the first and second sidewalls. The remaining portions of the trenches are then filled with a conductive material to form first and second field plates. Source and body regions are formed in an upper portion of the mesa, with the body region separating the source from a lower portion of the mesa. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: June 29, 2010
    Assignee: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 7666749
    Abstract: Provided are a SiGe semiconductor device and a method of manufacturing the same.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 23, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Hun Kim, Hyun Cheol Bae, Sang Heung Lee
  • Patent number: 7638820
    Abstract: Provided is a process for forming a contact for a compound semiconductor device without electrically shorting the device. In one embodiment, a highly doped compound semiconductor material is electrically connected to a compound semiconductor material of the, same conductivity type through an opening in a compound semiconductor material of the opposite conductivity type. Another embodiment discloses a transistor including multiple compound semiconductor layers where a highly doped compound semiconductor material is electrically connected to a compound semiconductor layer of the same conductivity type through an opening in a compound semiconductor layer of the opposite conductivity type. Embodiments further include metal contacts electrically connected to the highly doped compound semiconductor material. A substantially planar semiconductor device is disclosed. In embodiments, the compound semiconductor material may be silicon carbide.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: December 29, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Martin E. Kordesch, Howard D. Bartlow, Richard L. Woodin
  • Patent number: 7540970
    Abstract: Methods of fabricating a semiconductor device are provided. Methods of forming a finer pattern of a semiconductor device using a buffer layer for retarding, or preventing, bridge formation between patterns in the formation of a finer pattern below resolution limits of a photolithography process by double patterning are also provided. A first hard mask layer and/or a second hard mask layer may be formed on a layer of a substrate to be etched. A first etch mask pattern of a first pitch may be formed on the second hard mask layer. After a buffer layer is formed on the overall surface of the substrate, a second etch mask pattern of a second pitch may be formed thereon in a region between the first etch mask pattern. The buffer layer may be anisotropically etched using the second etch mask pattern as an etch mask, forming a buffer layer pattern.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 2, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Cha-Won Koh, Sang-Gyun Woo, Jeong-Lim Nam, Kyeong-Koo Chi, Seok-Hwan Oh, Gi-Sung Yeo, Seung-Pil Chung, Heung-Sik Park
  • Publication number: 20080290464
    Abstract: A method of forming a semiconductor device is disclosed. The method includes providing a floor for a semiconductor device by utilizing a CMOS process. The method further includes providing a BiCMOS-like process on top of the floor to further fabricate the semiconductor device, wherein the BiCMOS-like process and the CMOS process provides the semiconductor device.
    Type: Application
    Filed: May 25, 2007
    Publication date: November 27, 2008
    Applicant: Micrel, Inc.
    Inventor: Schyi-yi Wu
  • Publication number: 20080121936
    Abstract: Embodiments herein present a structure, method, etc. for a self-alignment scheme for a heterojunction bipolar transistor (HBT). An HBT is provided, comprising an extrinsic base, a first self-aligned silicide layer over the extrinsic base, and a nitride etch stop layer above the first self-aligned silicide layer. A continuous layer is also included between the first self-aligned silicide layer and the nitride etch stop layer, wherein the continuous layer can comprise oxide. The HBT further includes spacers adjacent the continuous layer, wherein the spacers and the continuous layer separate the extrinsic base from an emitter contact. In addition, an emitter is provided, wherein the height of the emitter is less than or equal to the height of the extrinsic base. Moreover, a second self-aligned silicide layer is over the emitter, wherein the height of the second silicide layer is less than or equal to the height of the first silicide layer.
    Type: Application
    Filed: July 26, 2006
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Francois Pagette, Anna Topol
  • Patent number: 7300849
    Abstract: A method for fabricating a heterojunction bipolar transistor (HBT) is provided. The method includes providing a substrate including a collector region; forming a compound base region over the collector region; forming a cap layer overlying the compound base region including doping the cap layer with a pre-determined percentage of at least one element associated with the compound base region; and forming an emitter region over the cap layer.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: November 27, 2007
    Assignee: Atmel Corporation
    Inventors: Darwin Gene Enicks, Damian Carver
  • Patent number: 7282401
    Abstract: A method used in fabrication of a recessed access device transistor gate has increased tolerance for mask misalignment. One embodiment of the invention comprises forming a vertical spacing layer over a semiconductor wafer, then etching the vertical spacing layer and the semiconductor wafer to form a recess in the wafer. A conductive transistor gate layer is then formed within the trench and over the vertical spacing layer. The transistor gate layer is etched, which exposes the vertical spacing layer. A spacer layer is formed over the etched conductive gate layer and over the vertical spacing layer, then the spacer layer and the vertical spacing layer are anisotropically etched. Subsequent to anisotropically etching the vertical spacing layer, a portion of the vertical spacing layer is interposed between the semiconductor wafer and the etched conductive transistor gate layer in a direction perpendicular to the plane of a major surface of the semiconductor wafer.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 7217609
    Abstract: A method in the fabrication of an integrated bipolar circuit comprises the steps of: providing a p-type substrate; forming in the substrate a buried n+-type region and an n-type region above the buried n+-type region; forming field isolation areas around the n-type region; forming a PMOS gate region on the n-type region; forming a diffused n+-type contact from the upper surface of the substrate to the buried n+-type region; the contact being separated from the n-type region; forming a p-type polysilicon source on the n-type region; forming a p-type source in the n-type region; forming a p-type drain in the n-type region; and connecting the PMOS transistor structure to operate as a PNP transistor, wherein the source is connected to the gate and constitutes an emitter of the PNP transistor; the drain constitutes a collector of the PNP transistor; and the n-type region constitutes a base of the PNP transistor.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: May 15, 2007
    Assignee: Infineon Technologies AG
    Inventors: Hans Norström, Ted Johansson
  • Patent number: 7202136
    Abstract: A silicon germanium heterojunction bipolar transistor device and method comprises a semiconductor region, and a diffusion region in the semiconductor region, wherein the diffusion region is boron-doped, wherein the semiconductor region comprises a carbon dopant therein to minimize boron diffusion, and wherein a combination of an amount of the dopant, an amount of the boron, and a size of the semiconductor region are such that the diffusion region has a sheet resistance of less than approximately 4 Kohms/cm2. Also, the diffusion region is boron-doped at a concentration of 1×1020/cm3 to 1×1021/cm3. Additionally, the semiconductor region comprises 5–25% germanium and 0–3% carbon. By adding carbon to the semiconductor region, the device achieves an electrostatic discharge robustness, which further causes a tighter distribution of a power-to-failure of the device, and increases a critical thickness and reduces the thermal strain of the semiconductor region.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Louis D. Lanzerotti, Brian P. Ronan, Steven H. Voldman
  • Patent number: 7151035
    Abstract: A sidewall-insulation film 9 is provided on a side surface of a first opening portion 8a formed in a base extraction electrode 5B of a hetero-junction bipolar transistor, and a portion of the sidewall-insulation film 9 extends so as to protrude from a surface opposite to a semiconductor substrate 1 toward a main surface of the semiconductor substrate 1 in the base extraction electrode 5B, and protruded length thereof is set to be equal to or smaller than one half of thickness of the insulation film 4 interposed between the main surface of the semiconductor substrate 1 and a lower surface of the base extraction electrode 5B.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: December 19, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Makoto Koshimizu, Yasuaki Kagotoshi, Nobuo Machida
  • Patent number: 7098113
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 29, 2006
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Patent number: 7037798
    Abstract: The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kevin K. Chan, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu, Beth Ann Rainey, Kathryn T. Schonenberg
  • Patent number: 7022571
    Abstract: A quantum structure and the forming method based on the difference in characteristic of two matters is provided. The forming method includes several steps. At first, providing a first dielectric layer for forming a second dielectric layer thereon. The second dielectric layer has major elements and impurities contained. Treating the second dielectric layer to drive the impurities to form the quantum structure. For example, oxidizing the major elements to drive the impurities in the first dielectric layer to form the quantum structure in said first dielectric layer because the oxidizing capability of the major elements is stronger than that of the impurities.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: April 4, 2006
    Assignee: United Microelectronics Corp.
    Inventors: Ting-Chang Chang, Po-Tsun Liu
  • Patent number: 6987039
    Abstract: A method of forming a lateral bipolar transistor without added mask in CMOS flow including a p-substrate; patterning and n-well implants; pattern and implant pocket implants for core nMOS and MOS; pattern and implants pocket implants I/O nMOS and pMOS; sidewall deposit and etch and then source/drain pattern and implant for nMOS and pMOS. The method includes the steps of forming emitter and collector contacts by implants used in source/drain regions; forming an emitter that includes implants done in core pMOS during core pMOS LDD extender and pocket implant steps and while the collector omits the core pMOS LDD extender and pocket implants; forming a base region below the emitter and collector contacts by the n-well region with said base region going laterally from emitter to collector being the n-well and including pocket implants; and forming base contact by said n-well region and by implants used in nMOS source/drain regions.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: January 17, 2006
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 6972237
    Abstract: A method for manufacturing a heterojunction bipolar transistor is provided. An intrinsic collector structure is formed on a substrate. An extrinsic base structure partially overlaps the intrinsic collector structure. An intrinsic base structure is formed adjacent the intrinsic collector structure and under the extrinsic base structure. An emitter structure is formed adjacent the intrinsic base structure. An extrinsic collector structure is formed adjacent the intrinsic collector structure. A plurality of contacts is formed through an interlevel dielectric layer to the extrinsic collector structure, the extrinsic base structure, and the emitter structure.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 6, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jia Zhen Zheng, Jian Xun Li
  • Patent number: 6908824
    Abstract: A method for manufacturing a lateral heterojunction bipolar transistor (HBT) is provided comprising a semiconductor substrate having a first insulating layer over the semiconductor substrate. A base trench is formed in a first silicon layer over the first insulating layer to form a collector layer over an exposed portion of the semiconductor substrate and an emitter layer over the first insulating layer. A semiconductive layer is formed on the sidewalls of the base trench to form a collector structure in contact with the collector layer and an emitter structure in contact with the emitter layer. A base structure is formed in the base trench. A plurality of connections is formed through an interlevel dielectric layer to the collector layer, the emitter layer, and the base structure. The base structure preferably is a compound semiconductive material of silicon and at least one of silicon-germanium, silicon-germanium-carbon, and combinations thereof.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: June 21, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jian Xun Li, Lap Chan, Purakh Raj Verma, Jia Zhen Zheng, Shao-fu Sanford Chu
  • Patent number: 6838346
    Abstract: A method for fabricating a high-voltage transistor with an extended drain region includes forming an epitaxial layer on a substrate, the epitaxal layer and the substrate being of a first conductivity type; then etching the epitaxial layer to form a pair of spaced-apart trenches that define first and second sidewall portions of the epitaxial layer. A dielectric layer is formed that partially fills each of the trenches, covering the first and second sidewall portions. The remaining portions of the trenches are then filled with a conductive material to form first and second field plate members that are insulated from the substrate and the epitaxial layer. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used o interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 6818513
    Abstract: A method of forming a field effect transistor device includes: forming a well region of a second conductivity type in a semiconductor substrate of a first conductivity type, the semiconductor substrate having a major surface and a drain region; forming a source region of the first conductivity type in the well region; forming a trench gate electrode adjacent to the source region; forming a stripe trench extending from the major surface of the semiconductor substrate into the semiconductor substrate to a predetermined depth; and depositing a semiconductor material of the second conductivity type within the stripe trench.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: November 16, 2004
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Bruce D. Marchant
  • Patent number: 6803273
    Abstract: A method of forming a semiconductor component having a conductive line (24) and a silicide region (140) that crosses a trench (72). The method involves forming nitride sidewalls (130) to protect the stack during the silicidation process.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: October 12, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Thomas M. Ambrose, Freidoon Mehrad, Ming Yang, Lancy Tsung
  • Patent number: 6794237
    Abstract: A heterojunction bipolar transistor (30) in a silicon-on-insulator (SOI) structure is disclosed. The transistor collector (28), heterojunction base region (20), and intrinsic emitter region (25) are formed in the thin film silicon layer (6) overlying the buried insulator layer (4). A base electrode (10) is formed of polysilicon, and has a polysilicon filament (10f) that extends over the edge of an insulator layer (8) to contact the silicon layer (6). After formation of insulator filaments (12) along the edges of the base electrode (10) and insulator layer (8), the thin film silicon layer (6) is etched through, exposing an edge. An angled ion implantation then implants the heterojunction species, for example germanium and carbon, into the exposed edge of the thin film silicon layer (6), which after anneal forms the heterojunction base region (20).
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: September 21, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Gregory E. Howard
  • Patent number: 6790736
    Abstract: In accordance with a particular embodiment of the present invention, a method for manufacturing a semiconductor device includes forming a buried layer of a semiconductor substrate. An active region is formed adjacent at least a portion of the buried layer, and an isolation structure is formed adjacent at least a portion of the active region. A gate oxide is formed adjacent at least a portion of the active region. The method also includes forming a polysilicon layer adjacent at least a portion of the gate oxide. At least a portion of the polysilicon layer is removed to form a polysilicon definition structure. The polysilicon definition structure at least substantially surrounds and defines an emitter contact region. The method also includes forming an implant region of the emitter contact region, wherein the implant region is self-aligned.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: September 14, 2004
    Assignee: Texas Instruments Incorporated
    Inventor: Xiaoju Wu
  • Patent number: 6780666
    Abstract: A pixel cell having two capacitors connected in series where each capacitor has a capacitance approximating that at of the periphery capacitors and such that the effective capacitance of the series capacitors is smaller than that of each of the periphery capacitors. The series-connected capacitors are coupled to the floating diffusion (FD) region for receiving “surplus” charge from the FD region during saturation conditions.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 24, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Brent A. McClure