Total Dielectrical Isolation Patents (Class 438/355)
  • Patent number: 8791500
    Abstract: A semiconductor device having a lateral insulated gate bipolar transistor includes a first conductivity type drift layer, a second conductivity type collector region formed in a surface portion of the drift layer, a second conductivity type channel layer formed in the surface portion of the drift layer, a first conductivity type emitter region formed in a surface portion of the channel layer, and a hole stopper region formed in the drift layer and located between the collector region and the emitter region. Holes are injected from the collector region into the drift layer and flow toward the emitter region through a hole path. The hole stopper region blocks a flow of the holes and narrows the hole path to concentrate the holes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 29, 2014
    Assignee: DENSO CORPORATION
    Inventors: Youichi Ashida, Shigeki Takahashi
  • Patent number: 8692266
    Abstract: A circuit substrate structure including a substrate, a dielectric stack layer, a first plating layer and a second plating layer is provided. The substrate has a pad. The dielectric stack layer is disposed on the substrate and has an opening exposing the pad, wherein the dielectric stack layer includes a first dielectric layer, a second dielectric layer and a third dielectric layer located between the first dielectric layer and the second dielectric layer, and there is a gap between the portion of the first dielectric layer surrounding the opening and the portion of the second dielectric layer surrounding the opening. The first plating layer is disposed at the dielectric stack layer. The second plating layer is disposed at the pad, wherein the gap isolates the first plating layer from the second plating layer.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: April 8, 2014
    Assignee: Optromax Electronics Co., Ltd
    Inventor: Kuo-Tso Chen
  • Patent number: 8685830
    Abstract: A method of filling shallow trenches is disclosed. The method includes: successively forming a first oxide layer and a second oxide layer over the surface of a silicon substrate where shallow trenches are formed in; etching the second oxide layer to form inner sidewalls with an etchant which has a high etching selectivity ratio of the second oxide layer to the first oxide layer; growing a high-quality pad oxide layer by thermal oxidation after the inner sidewalls are removed; and filling the trenches with an isolation dielectric material. By using this method, the risk of occurrence of junction spiking and electrical leakage during a subsequent process of forming a metal silicide can be reduced.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 1, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Fan Chen, Xiongbin Chen, Kai Xue, Keran Zhou, Jia Pan, Hao Li, Yongcheng Wang
  • Patent number: 8183574
    Abstract: The present invention relates to an electronic device for providing improved heat transporting capability for protecting heat sensitive electronics and a method for producing the same. The present invention also relates to uses of the electronic device for various applications such as in LED lamps for signalizing, signage, automative and illumination applications or a display apparatus or any combinations thereof.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: May 22, 2012
    Assignee: NXP B.V.
    Inventor: Gilles Ferru
  • Patent number: 8071454
    Abstract: A method for manufacturing a dielectric isolation type semiconductor device comprises: forming a plurality of trenches in a first region on a major surface of a semiconductor substrate; forming a first dielectric layer on the major surface of the semiconductor substrate and a first thick dielectric layer in the first region by oxidizing a surface of the semiconductor substrate; bonding a semiconductor layer of a first conductive type to the semiconductor substrate via the first dielectric layer; forming a first semiconductor region by implanting an impurity into a part of the semiconductor layer above the first thick dielectric layer; forming a second semiconductor region by implanting an impurity of a second conductive type into a part of the semiconductor layer so as to surround the first semiconductor region separating from the first semiconductor region.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: December 6, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hajime Akiyama
  • Patent number: 7989894
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 500 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 500 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 2, 2011
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7939417
    Abstract: A structure is disclosed including a substrate including an insulator layer on a bulk layer, and a bipolar transistor in a first region of the substrate, the bipolar transistor including at least a portion of an emitter region in the insulator layer. Another disclosed structure includes an inverted bipolar transistor in a first region of a substrate including an insulator layer on a bulk layer, the inverted bipolar transistor including an emitter region, and a back-gated transistor in a second region of the substrate, wherein a back-gate conductor of the back-gated transistor and at least a portion of the emitter region are in the same layer of material. A method of forming the structures including a bipolar transistor and back-gated transistor together is also disclosed.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., Edward J. Nowak
  • Patent number: 7939914
    Abstract: A semiconductor device having wiring levels on opposite sides and a method of fabricating a semiconductor structure having contacts to devices and wiring levels on opposite sides. The method including fabricating a device on a silicon-on-insulator substrate with first contacts to the devices and wiring levels on a first side to the first contacts, removing a lower silicon layer to expose the buried oxide layer, forming second contacts to the devices through the buried oxide layer and forming wiring levels over the buried oxide layer to the second contacts.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 10, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Timothy Joseph Dalton, Jeffrey Peter Gambino, Mark David Jaffe, Paul David Kartschoke, Anthony Kendall Stamper
  • Patent number: 7872326
    Abstract: A process for manufacturing an array of bipolar transistors, wherein deep field insulation regions of dielectric material are formed in a semiconductor body, thereby defining a plurality of active areas, insulated from each other and a plurality of bipolar transistors are formed in each active area. In particular, in each active area, a first conduction region is formed at a distance from the surface of the semiconductor body; a control region is formed on the first conduction region; and, in each control region, at least two second conduction regions and at least one control contact region are formed. The control contact region is interposed between the second conduction regions and at least two surface field insulation regions are thermally grown in each active area between the control contact region and the second conduction regions.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti
  • Patent number: 7842577
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming a first isolation region in the semiconductor substrate; after the step of forming the first isolation region, forming a metal-oxide-semiconductor (MOS) device at a surface of the semiconductor substrate, wherein the step of forming the MOS device comprises forming a source/drain region; and after the step of forming the MOS device, forming a second isolation region in the semiconductor substrate.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: November 30, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ka-Hing Fung
  • Patent number: 7709897
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 4, 2010
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7595253
    Abstract: Example embodiments provide a semiconductor device and a method of forming the same. According to the method, a capping insulation pattern may be formed to cover the top surface of a filling insulation pattern in a trench. The capping insulation pattern may have an etch selectivity according to the filling insulation pattern. As a result, the likelihood that the filling insulation layer may be etched by various cleaning processes and the process removing the buffer insulation pattern may be reduced or prevented.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: September 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: II-Young Yoon, Hong-Jae Shin, Nae-In Lee, Jae-Ouk Choo, Ja-Eung Koo
  • Patent number: 7390696
    Abstract: In order to fabricate a semiconductor device that can perform at its full capacity, in which (i) a single-crystal silicon integrated circuit is formed on an insulating substrate without an adhesive agent, and (ii) an active region of the single-crystal integrated circuit is not damaged by implantation of hydrogen ions, (a) the single-crystal silicon integrated circuit is formed on the insulating substrate, and (b) the single-crystal silicon integrated circuit is surrounded by an oxide (buried oxide layer made of silicon dioxide).
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: June 24, 2008
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Arinobu Kanegae
  • Patent number: 7354812
    Abstract: Multiple trench depths within an integrated circuit device are formed by first forming trenches in a substrate to a first depth, but of varying widths. Formation of a dielectric layer can cause some of the trenches to fill or close off while leaving other, wider trenches open. Removal of a portion of the dielectric material can then be tailored to expose a bottom of the open trenches while leaving remaining trenches filled. Removal of exposed portions of the underlying substrate can then be used to selectively deepen the open trenches, which can subsequently be filled. Such methods can be used to form trenches of varying depths without the need for subsequent masking.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Shubneesh Batra, Howard C. Kirsch, Gurtej S. Sandhu, Xianfeng Zhou, Chih-Chen Cho
  • Patent number: 7327012
    Abstract: A method of forming bipolar transistors by using the same mask to form the collector region in a substrate of an opposite conductivity type as to form the base in the collector region. More specifically, impurities of a first conductivity type are introduced into a region of a substrate of a second conductivity type through a first aperture in a first mask to form a collector region. Impurities of the second conductivity type are introduced in the collector through the first aperture in the first mask to form the base region. Impurities of the first conductivity type are then introduced into the base region through a second aperture in a second mask to form the emitter region. The minimum dimension of the first aperture of the first mask is selected for a desired collector to base breakdown voltage. This allows tuning of the breakdown voltage.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 5, 2008
    Inventor: James Douglas Beasom
  • Patent number: 7279769
    Abstract: To suppress occurrence of dislocation in a substrate of a semiconductor device at an end portion of a gate electrode. Provided is a semiconductor device having a plurality of element formation regions formed over the main surface of a semiconductor substrate, an element isolation trench located between the element formation regions and having an element isolation insulating film embedded therein, and a gate insulating film, a gate electrode and a plurality of interconnect layers formed thereabove, each formed in the element formation region, wherein the element isolation trench has a thermal oxide film formed between the semiconductor substrate and the element isolation insulating film, and the element isolation film has a great number of micro-pores formed inside thereof and is more porous than the thermal oxide film.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 9, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Norio Ishitsuka, Jun Tanaka, Tomio Iwasaki, Hiroyuki Ohta
  • Patent number: 7217629
    Abstract: The present invention provides an epitaxial imprinting process for fabricating a hybrid substrate that includes a bottom semiconductor layer; a continuous buried insulating layer present atop said bottom semiconductor layer; and a top semiconductor layer present on said continuous buried insulating layer, wherein said top semiconductor layer includes separate planar semiconductor regions that have different crystal orientations, said separate planar semiconductor regions are isolated from each other. The epitaxial printing process of the present invention utilizing epitaxial growth, wafer bonding and a recrystallization anneal.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: May 15, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Carl Radens, William R. Tonti, Richard Q. Williams
  • Patent number: 7172914
    Abstract: A method of forming a semiconductor structure includes forming an isolation region in a semiconductor substrate. A first oxide layer is on the substrate, a first sacrificial layer is on the first oxide layer, and a first nitride layer is on the first sacrificial layer. The first oxide layer may be a screen oxide layer, and the method provides consistency in the thickness of the screen oxide layer.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 6, 2007
    Assignee: Cypress Semiconductor Corporation
    Inventor: Sundar Narayanan
  • Patent number: 7135364
    Abstract: The lateral pnp transistor encompasses a p-type semiconductor substrate, an n-type first buried region disposed on the semiconductor substrate, an n-type uniform base region disposed on the first buried region, an n-type first plug region disposed in the uniform base region, a p-type first emitter region and a first collector region disposed in and at the top surface of the uniform base region, a graded base region disposed in the uniform base region and a first base contact region disposed in the first plug region. The graded base region encloses the bottom and the side of the first main electrode region. The doping profile in the graded base region intervening between the first emitter region and the first collector region is such that the impurity concentration is gradually decreases towards the second main electrode region from the first main electrode region.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: November 14, 2006
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Makoto Yamamoto, Akio Iwabuchi
  • Patent number: 7060585
    Abstract: A method utilizing in-place bonding and amorphization/templated recrystallization (ATR) is provided for making bulk and semiconductor-on-insulator substrates having coplanar semiconductor layers of different crystallographic orientations. First and second semiconductor layers having different orientations are bonded to opposite sides of a sacrificial spacer layer. Selected areas in one of the semiconductor layers are amorphized; in-place bonding is then performed in a wet etch solution to remove the sacrificial layer and leave the semiconductor layers bonded to each other. The amorphized regions are recrystallized across the bonded interface, using the semiconductor on the non-amorphized side of the bonded interface as a template.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 13, 2006
    Assignee: International Business Machines Corporation
    Inventors: Guy Moshe Cohen, Katherine L. Saenger
  • Patent number: 6964907
    Abstract: In a BJT, the extrinsic base to collector capacitance is reduced by forming a lateral trench between the extrinsic base region and collector. This is typically done by using an anisotropic wet etch process in a <110> direction of a <100> orientation wafer.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 15, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, Vladislav Vashchenko, Peter Johnson
  • Patent number: 6955957
    Abstract: Disclosed is a method of forming the floating gate in the flash memory device. After the first polysilicon film is deposited on the semiconductor substrate, the trench is formed on the first polysilicon film with the pad nitride film not deposited. The HDP oxide film is then deposited to bury the trench. Next, the HDP oxide film is etched to define a portion where the second polysilicon film will be deposited in advance. The second polysilicon film is then deposited on the entire top surface, thus forming the floating gate. Thus, it is possible to completely remove a moat and an affect on EFH (effective field oxide height), solve a wafer stress by simplified process and a nitride film, and effectively improve the coupling ratio of the flash memory device.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: October 18, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyeon Sang Shin
  • Patent number: 6951826
    Abstract: The present invention generally provides a process for depositing silicon carbide using a silane-based material with certain process parameters that is useful for forming a suitable ARC for IC applications. Under certain process parameters, a fixed thickness of the silicon carbide may be used on a variety of thicknesses of underlying layers. The thickness of the silicon carbide ARC is substantially independent of the thickness of the underlying layer for a given reflectivity, in contrast to the typical need for adjustments in the ARC thickness for each underlying layer thickness to obtain a given reflectivity. Another aspect of the invention includes a substrate having a silicon carbide anti-reflective coating, comprising a dielectric layer deposited on the substrate and a silicon carbide anti-reflective coating having a dielectric constant of less than about 7.0 and preferably about 6.0 or less.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: October 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Christopher Bencher, Joe Feng, Mei-Yee Shek, Chris Ngai, Judy Huang
  • Patent number: 6943088
    Abstract: In a trench isolation structure of a semiconductor device, oxide liners are formed within the trenches, wherein a non-oxidizable mask is employed during various oxidation steps, thereby creating different types of liner oxides and thus different types of corner rounding and thus mechanical stress. Therefore, for a specified type of circuit elements, the characteristics of the corresponding isolation trenches may be tailored to achieve an optimum device performance.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf van Bentum, Stephan Kruegel, Gert Burbach
  • Patent number: 6927115
    Abstract: The lateral pnp transistor encompasses a p-type semiconductor substrate, an n-type first buried region disposed on the semiconductor substrate, an n-type uniform base region disposed on the first buried region, an n-type first plug region disposed in the uniform base region, a p-type first emitter region and a first collector region disposed in and at the top surface of the uniform base region, a graded base region disposed in the uniform base region and a first base contact region disposed in the first plug region. The graded base region encloses the bottom and the side of the first main electrode region. The doping profile in the graded base region intervening between the first emitter region and the first collector region is such that the impurity concentration is gradually decreases towards the second main electrode region from the first main electrode region.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: August 9, 2005
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Makoto Yamamoto, Akio Iwabuchi
  • Patent number: 6900108
    Abstract: Semiconductor devices useful in high temperature sensing applications include a silicon carbide substrate, a silicon dioxide layer, and an outer layer of crystalline doped silicon carbide. The device is a 3C—SiC/SiO2/SiC structure. This structure can be employed to fabricate high temperature devices such as piezoresistive sensors, minority carrier devices and so on. The crystalline doped silicon carbide is dielectrically isolated from the substrate. The devices are formed by processes that include bonding a pattern wafer to a substrate wafer, selective oxidation and removal of undoped silicon, and conversion of doped silicon to crystalline silicon carbide. The level of doping and the crystalline structure of the silicon carbide can be selected according to desired properties for particular applications.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: May 31, 2005
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 6867495
    Abstract: Integrated circuits, semiconductor devices and methods for making the same are described. Each embodiment shows a diffused, doped backside layer in a device wafer that is oxide bonded to a handle wafer. The diffused layer may originate in the device handle, in the handle wafer, in the bond oxide or in an additional semiconductor layer of polysilicon or epitaxial silicon. The methods use a thermal bond oxide or a combination of a thermal and deposited oxide.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: March 15, 2005
    Assignee: Intersil Americas Inc.
    Inventors: Joseph A. Czagas, Dustin A. Woodbury, James D. Beasom
  • Patent number: 6822325
    Abstract: Temperature sensitive devices may be shielded from temperature generating devices on the same integrated circuit by appropriately providing a trench that thermally isolates the heat generating devices from the temperature sensitive devices. In one embodiment, the trench may be formed by a back side etch completely through an integrated circuit wafer. The resulting trench may be filled with a thermally insulating material.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: November 23, 2004
    Assignee: Altera Corporation
    Inventor: Ting-Wah Wong
  • Patent number: 6815794
    Abstract: Semiconductor devices with a multiple isolation structure and methods for fabricating the same are provided. In one aspect, a semiconductor device comprises a heavily doped buried layer having a first conductivity type, which is formed in a predetermined region of a semiconductor substrate, and an epitaxial layer having the first conductivity type, which covers an entire surface of the semiconductor substrate. A device isolation structure is disposed such that the device isolation structure penetrates the epitaxial layer and a portion of the semiconductor substrate to define a device region. The device isolation structure includes an upper isolation structure penetrating an epitaxial layer as well as a lower isolation structure formed in the semiconductor substrate under the upper isolation structure.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: November 9, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hwa-Sook Shin, Kwang-Dong Yoo
  • Patent number: 6787880
    Abstract: A method and a structure for a parasitic bipolar silicided ESD device that has high resistivity regions within the collector of the parasitic NPN. The device has the structure of a N-MOS transistor and a substrate contact. The device preferably has silicide regions over the doped regions. The invention has two types of high resistivity regions: 1) isolation regions (e.g., oxide shallow trench isolation (STI)) and 2) undoped or lightly doped regions (e.g., channel regions). The channel regions can have gates thereover and the gates can be charged. Also, optionally a n−well (n minus well) can be formed under the collector. The high resistivity regions increase the collector resistivity thereby improving the performance of the parasitic bipolar ESD device.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: September 7, 2004
    Assignee: Nano Silicon Pte. Ltd.
    Inventors: David Hu, Jun Cai
  • Patent number: 6764922
    Abstract: An oxynitride material is used to form shallow trench isolation regions in an integrated circuit structure. The oxynitride may be used for both the trench liner and trench fill material. The oxynitride liner is formed by nitriding an initially formed oxide trench liner. The oxynitride trench fill material is formed by directly depositing a high density plasma (HDP) oxide mixture of SiH4 and O2 and adding a controlled amount of NH3 to the plasma mixture. The resultant oxynitride structure is much more resistant to trench fill erosion by wet etch, for example, yet results in minimal stress to the surrounding silicon. To further reduce stress, the nitrogen concentration may be varied by varying the proportion of O2 to NH3 in the plasma mixture so that the nitrogen concentration is maximum at the top of the fill material.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: July 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Klaus D. Beyer, Fen F. Jamin, Patrick R. Varekamp
  • Patent number: 6759303
    Abstract: A method for fabricating complementary vertical bipolar junction transistors of silicon-on-sapphire in fewer steps than required for true complimentary vertical bipolar junction transistors is disclosed. Initially a thin layer of silicon is grown on a sapphire substrate. The silicon is improved using double solid phase epitaxy. The silicon is then patterned and implanted with P+-type and N+-type dopants. Subsequently a micrometer scale N-type layer is grown that acts as the intrinsic base for both an PNP transistor and as the collector for an NPN transistor. The extrinsic base for the NPN is then formed and the emitter, collector and ohmic contact regions are next selectively masked and implanted. Conductive metal is then formed between protecting oxide to complete the complementary vertical bipolar junction transistors.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Eric N. Cartagena
  • Patent number: 6729886
    Abstract: A tank-isolated drain extended power device (50, 60, 70, 80) having an added laterally extending heavily doped p-type region (56, 62, 72) in combination with a p-type Dwell (32) which reduces minority carrier buildup. The p-doped regions are defined in a P-epi layer surrounded by a buried NBL region (14) connected with a deep low resistance drain region (16) forming a guardring. This additional laterally extending p-doped region (56,62,72) reduces minority carrier build up such that recovery time is significantly reduced, and power loss is also significantly reduced due to reduced collection time of the minority carriers. The device may be formed as an LDMOS device.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: May 4, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Taylor R. Efland, Chin-Yu Tsai
  • Patent number: 6693325
    Abstract: The present invention relates to a highly integrated SOI semiconductor device and a method for fabricating the SOI semiconductor device by reducing a distance between diodes or well resistors without any reduction in insulating characteristics. The device includes a first conductivity type semiconductor substrate and a surface silicon layer formed by inserting an insulating layer on the semiconductor substrate. A trench is formed by etching a predetermined portion of surface silicon layer, insulating layer and substrate to expose a part of the semiconductor substrate to be used for an element separating region, and a STI is formed in the trench. A transistor is constructed on the surface silicon layer surrounded by the insulating layer and STI with a gate electrode being positioned at the center thereof and with source/drain region being formed in the surface silicon layer of both edges of the gate electrode for enabling its bottom part to be in contact with the insulating layer.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 17, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Gun Ko, Byung-Sun Kim
  • Patent number: 6627515
    Abstract: A method of forming a buried silicon oxide region in a semiconductor substrate with portions of the buried silicon oxide region formed underlying portions of a strained silicon shape, and where the strained silicon shape is used to accommodate a semiconductor device, has been developed. A first embodiment of this invention features a buried oxide region formed in a silicon alloy layer, via thermal oxidation procedures. A first portion of the strained silicon layer, protected during the thermal oxidation procedure, overlays the silicon alloy layer while a second portion of the strained silicon layer overlays the buried oxide region. A second embodiment of this invention features an isotropic dry etch procedure used to form an isotropic opening in the silicon alloy layer, with the opening laterally extending under a portion of the strained silicon layer.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: September 30, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Horng-Huei Tseng, Jyh-Chyurn Guo, Chenming Hu, Da-Chi Lin
  • Patent number: 6620654
    Abstract: A method of forming a MOS device using doped and activated n-type and p-type polysilicon layers includes forming a first doped and activated polysilicon area (either n-type or p-type) on a substrate. An isolation material layer is formed abutting the first activated area. A second doped and activated polysilicon area of opposite conductivity type from the first activated area is formed adjacent to the isolation material layer. The second activated opposite area has a height that does not exceed that of the first doped and activated polysilicon layer. Further processing may be effected to complete the MOS device. The method of the present invention eliminates ion implantation and annealing steps used in previously existing methods.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: September 16, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Publication number: 20030162360
    Abstract: An N type buried layer is formed, in one embodiment, by a non selective implant on the surface of a wafer and later diffusion. Subsequently, the wafer is masked and a selective P type buried layer is formed by implant and diffusion. The coefficient of diffusion of the P type buried layer dopant is greater than the N type buried layer dopant so that connections can be made to the P type buried layer by P wells which have a lower dopant concentration than the N buried layer.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 28, 2003
    Inventor: James D. Beasom
  • Patent number: 6589833
    Abstract: A method and a structure for a parasitic bipolar silicided ESD device that has high resistivity regions within the collector of the parasitic NPN. The device has the structure of a N-MOS transistor and a substrate contact. The device preferably has silicide regions over the doped regions. The invention has two types of high resistivity regions: 1) isolation regions (e.g., oxide shallow trench isolation (STI)) and 2) undoped or lightly doped regions (e.g., channel regions). The channel regions can have gates thereover and the gates can be charged. Also, optionally a n−well (n minus well) can be formed under the collector. The high resistivity regions increase the collector resistivity thereby improving the performance of the parasitic bipolar ESD device.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: July 8, 2003
    Assignee: Nano Silicon Pte Ltd.
    Inventors: David Hu, Jun Cai
  • Patent number: 6562694
    Abstract: A method of manufacturing a semiconductor device including semiconductor elements having semiconductor zones (17, 18, 24, 44, 45) formed in a top layer (4) of a silicon wafer (1) situated on a buried insulating layer (2). In this method, a first series of process steps are carried out, commonly referred to as front-end processing, wherein, inter alia, the silicon wafer is heated to temperatures above 700° C. Subsequently, trenches (25) are formed in the top layer, which extend as far as the buried insulating layer and do not intersect pn-junctions. After said trenches have been filled with insulating material (26, 29), the semiconductor device is completed in a second series of process steps, commonly referred to as back-end processing, wherein the temperature of the wafer does not exceed 400° C. The trenches are filled in a deposition process wherein the wafer is heated to a temperature which does not exceed 500° C.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: May 13, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Henricus Godefridus Rafael Maas, Cornelis Eustatius Timmering, Pascal Henri Leon Bancken
  • Patent number: 6406976
    Abstract: Semiconductor devices and processes for forming the same. The semiconductor device includes field isolation regions within trenches lying within a semiconductor device substrate. The trenches include a first trench and a second trench. The device includes a first component region and a second component region. The first component region lies near the first trench, and the second component region lies near the second trench. The semiconductor device includes a feature selected from a group consisting of: (a) a first liner within the first trench, and a second liner within the second trench, wherein the first liner is significantly thicker than the second liner; and (b) the first component region has a first edge with a first radius of curvature near the first trench, and the second component has a second edge with a second radius of curvature near the second trench, wherein the first radius of curvature is significantly greater than the second radius of curvature.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: June 18, 2002
    Assignee: Motorola, Inc.
    Inventors: Rana P. Singh, Chi Nan Brian Li
  • Patent number: 6395593
    Abstract: A method of minimizing parasitics in an MOS device caused by the formation of a bipolar transistor within the MOS devices and the device, primarily for a polyphase bridge circuit. For the low side device, a substrate of a first conductivity type is provided having a first buried layer of opposite conductivity type thereon. A second buried layer of the first conductivity type is formed over the first buried layer and a further layer of the first conductivity type is formed over the second buried layer. A sinker extending through the further layer to the first buried layer is formed to isolate the second buried layer and the further layer from the substrate. Formation of an MOS device in the further layer including source, drain and gate regions is completed and the sinker is connected to a source terminal of the device.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: May 28, 2002
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Taylor R. Efland
  • Patent number: 6335230
    Abstract: A method of forming a MOS device using doped and activated n-type and p-type polysilicon layers wherein a first doped and activated polysilicon layer (either n-type and p-type) is patterned on a substrate. An isolation material layer is formed abutting the first doped and activated polysilicon layer in the corners formed at the junction between the first doped and activated polysilicon layer and the substrate. A second doped and activated polysilicon layer (either n-type or p-type) is applied over the first doped and activated polysilicon layer and the isolation material layer. The second doped and activated polysilicon layer is planarized to the height of the first doped and activated polysilicon layer. The first and second doped and activated polysilicon layers are etched to substantially bifurcate the first and second doped and activated polysilicon layers. Further processing steps known in the art are utilized to complete the MOS device.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: January 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 6331470
    Abstract: A manufacturing process is carried out starting from an SOI type wafer including a top silicon layer and a bottom silicon layer separated from each other by a buried silicon dioxide layer. In the top layer, a LOCOS type sacrificial region is formed and then removed, so as to form a cavity that extends in depth as far as the buried oxide layer. Subsequently, the cavity is filled with epitaxial or polycrystalline silicon, so as to form a power region extending between the top surface and the bottom surface of the wafer; then lateral insulation regions are formed that insulate the power region from the circuitry region.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: December 18, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Delfo Sanfilippo, Salvatore Leonardi
  • Patent number: 6326292
    Abstract: A semiconductor includes a buried conducting layer, such as a buried collector, comprises a trench, the walls of which are covered with a layer of a material in which dopant ions diffuse faster than in monocrystalline silicon. A contact area is doped in close proximity to the trench wall. The dopants will diffuse through the layer and form a low resistance connection to the buried layer. The layer may comprise polysilicon or porous silicon, or a silicide. If the material used in the layer is not in itself conducting, the size of the component may be significantly reduced.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: December 4, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anders Söderbärg, Håkan Sjödin
  • Patent number: 6316815
    Abstract: A trench isolation structure characterized by a dielectric stud filling and spanning a trench in a semiconductor substrate is suggested for isolating the integrated circuits fabricated in the semiconductor substrate. The dielectric stud is formed by depositing isolating material in a space defined by the trench and a dielectric layer overlying the semiconductor substrate and being partially removed over an area which spans the trench and extends over the lengthwise edges of the trench.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: November 13, 2001
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Horng-Huei Tseng
  • Patent number: 6313000
    Abstract: A vertically-isolated bipolar transistor occupying reduced surface area is fabricated by circumscribing an expected active device region within a first narrow trench. The first trench is filled with sacrificial material impermeable to diffusion of conductivity-altering dopant, and then isolation dopant of a conductivity type opposite to that of the substrate is introduced into the trench-circumscribed silicon region. The introduced isolation dopant is then thermally driven into the substrate, with lateral diffusion of isolation dopant physically constrained by the existing first narrow trench. Epitaxial silicon is then formed over the substrate, with polysilicon formed in regions overlying the filled narrow trench. A second, wider trench encompassing the first trench is etched to consume epitaxial silicon, polysilicon, and the sacrificial material. The second trench is then filled with dielectric material.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: November 6, 2001
    Assignee: National Semiconductor Corporation
    Inventor: Vassili Kitch
  • Patent number: 6303487
    Abstract: In a method for forming an air gap in an insulating film between adjacent interconnection conductors in a semiconductor device, a substrate having a first insulator film and a plurality of lower level interconnection conductors formed separately from each other on the first insulator film is set in a chemical vapor process machine. A second insulator film is deposited to completely cover the plurality of lower level interconnection conductors and the first insulator film in a chemical vapor process under the condition that a growth speed in a vertical direction perpendicular to a principal surface of the substrate is lower than a growth speed in a horizontal direction in parallel to the principal surface of the substrate, until the second insulator film has such a thickness that an air gap is formed within the second insulator film between the adjacent interconnection conductors.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: October 16, 2001
    Assignee: NEC Corporation
    Inventor: Masaki Kagamihara
  • Patent number: 6300173
    Abstract: A conductor 1 crossing a trench around an electrical component 1 is electrically connected to an isolated intermediate conducting region in order to move the field strength concentrations out of the electrical component and into the intermediate conducting region. This prevents avalanche breakdown occurring in the electrical component.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: October 9, 2001
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Anders Söderbärg, Nils Ögren, Håkan Sjödin, Ivar Hamberg
  • Patent number: 6225181
    Abstract: A bipolar transistor is vertically isolated from underlying silicon by an isolation layer of conductivity type opposite that of the collector. This isolation layer lies beneath the heavily doped buried layer portion of the collector, and is formed either by ion implantation prior to epitaxial growth of well regions, or by high energy ion implantation into the substrate prior to formation of the well and the heavily doped buried collector layer. Utilization of trench lateral isolation extending into the semiconductor material beyond the isolation layer permits blanket implant of the isolation layer, obviating the need for an additional masking step.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: May 1, 2001
    Assignee: National Semiconductor Corp.
    Inventor: Haydn James Gregory
  • Patent number: 6146970
    Abstract: A method for forming a capped shallow trench isolation (CaSTI) structure begin by etching a trench opening (210). The opening (210) is filled with an oxide or like trench fill material (216b) via a deposition and chemical mechanical polish (CMP) step. The plug (216b) is reactive ion etched (RIE) to recess a top of the plug (216b) into the trench opening (210) to form a recessed plug region (216c). A silicon nitride or oxynitride capping layer (218b) is then formed over the recessed plug region (216c) via another deposition and polishing step. The nitride cap layer (218b) protects the underlying region (216c) from erosion due to active area preparation, cleaning, and processing.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: November 14, 2000
    Assignee: Motorola Inc.
    Inventors: Keith E. Witek, Mike Hsiao-Hui Chen, Stephen Shiu-Kong Poon